

1 **Consistent temporal accounting supports credible CDR use**

2 Bodie Cabiyo^{1*}, Freya Chay², Christopher B. Field¹, Kevin Fingerman³, Zeke Hausfather⁴, Kyle S.
3 Hemes⁵, Claire M. Zariskas^{2,6}

4 ¹*Stanford Woods Institute for the Environment, Stanford University, Stanford, CA, USA*

5 ²*CarbonPlan, San Francisco, CA, USA*

6 ³*California State Polytechnic University, Humboldt, Arcata, CA, USA*

7 ⁴*Stripe, Inc., South San Francisco, CA, USA*

8 ⁵*Amazon Sustainability, Amazon Inc., Seattle, WA, USA*

9 ⁶*University of California, Irvine, Irvine, CA, USA*

10 **Author to whom correspondence should be addressed*

11 *Authors are listed alphabetically.*

12

13

14 **Abstract**

15 Carbon dioxide removal (CDR) is increasingly used to support national targets and
16 corporate net-zero commitments, yet the timing of atmospheric drawdown remains
17 poorly represented in carbon accounting frameworks. Many CDR pathways exhibit
18 temporal lags—either because drawdown occurs only after physical or counterfactual
19 processes unfold, or because excess emissions are incurred before CDR begins. Using
20 the Fair climate model, we quantify the warming implications of four archetypal lag
21 structures. Temporal lags consistently increase near-term warming relative to
22 instantaneous removal and delay the point of atmospheric neutralization when used to
23 offset fossil emissions. Under continuous global deployment in a low emissions scenario,
24 lagged CDR increases peak global temperatures, and some lag types increase the
25 likelihood of peak temperatures exceeding 2°C by up to 6% across 841 ensemble
26 members. These effects arise even when cumulative removals equal cumulative
27 emissions. We propose tractable approaches to addressing these temporal lags, enabling
28 more credible climate claims and consistent treatment across CDR pathways.

29

30

31 **Main Text**

32

33 Carbon dioxide removal (CDR) is increasingly being used to support nationally determined
34 contributions (NDCs), compliance under cap-and-trade systems, and voluntary corporate
35 net-zero commitments (Smith et al., 2024). In these contexts, CDR is often framed as
36 “offsetting” or “neutralizing” fossil CO₂ emissions. For such claims to be physically
37 unambiguous, CDR should counterbalance the warming effects of fossil emissions from
38 the time the claim is made through the atmospheric lifetime of CO₂ (Allen et al., 2025).
39 While the ultimate durability of CDR has received considerable attention in this regard
40 (e.g., Brunner et al. 2024), much less attention has been paid to the temporal dynamics
41 that link a CDR intervention to its atmospheric impact.

42

43 Nearly all approaches to CDR exhibit a lag between the intervention – for example,
44 transforming biomass, rock mineralization, or planting trees – and the point at which all of
45 the atmospheric CO₂ drawdown is completed. These lags can range from months to
46 decades (Fingerman et al., 2023; Bach et al., 2023; Kanzaki et al., 2025). Even in
47 pathways where drawdown is immediate, such as direct air capture (DAC), upfront
48 emissions from facility construction can delay the onset of net drawdown (Lawrence et
49 al., 2025). Yet today, such lags are poorly characterized and inconsistently treated in
50 accounting frameworks that estimate how much drawdown a CDR intervention has
51 achieved at a given point in time.

52

53 This matters for two reasons. First, ignoring lags amounts to ex-ante crediting — granting
54 credit for removals before they occur. If used to neutralize fossil emissions, ex-ante
55 credits may cause temporary warming and, in turn, complicate the interpretation of
56 neutralization claims. Second, inconsistent treatment of lags can distort comparisons
57 across pathways and, in the worst case, could hinder the development of a balanced
58 portfolio of effective CDR approaches. Clear and consistent language for describing
59 temporal lags is essential to address these challenges.

60

61 We identify four archetypes of temporal lag, grouped into two broader classes: *delayed*
62 *drawdown*, encompassing physical and counterfactual delays that postpone CO₂
63 removal, and *front-loaded emissions*, encompassing accelerated and up-front embodied
64 emissions that increase near-term CO₂ emissions before removals accrue. Using the FAIR
65 climate model (Leach et al., 2021), we quantify how these lags influence the temperature
66 response when CDR is used to neutralize fossil CO₂ emissions. This analysis highlights
67 the importance of accounting for temporal lags in CDR policy and crediting frameworks,
68 and provides a foundation for doing so.

69

70 **Results**71 **A framework for temporal accounting in CDR systems**

72

73 Many CDR pathways exhibit a **physical delay** — a lag between the intervention and
 74 atmospheric drawdown (Table 1). These delays occur because interventions initiate
 75 physical processes that take time to affect the atmosphere. For example, planting trees
 76 only leads to drawdown as those trees grow and photosynthesize. Similarly, it can take
 77 months to years for the atmosphere and ocean to equilibrate after an ocean alkalinity
 78 enhancement (OAE) intervention (Zhou et al., 2025). In some cases, these lags could
 79 span decades. Enhanced rock weathering (ERW), for instance, can experience drawdown
 80 delays both from slow rock dissolution and from cation sorption in soils — lags which are
 81 poorly characterized today and likely vary based on site-specific characteristics
 82 (Calabrese et al., 2022; Benettin et al., 2022; Kanzaki et al., 2025).

83

Group	Lag archetype	Description	Example CDR pathways
Delayed drawdown	Physical delay	Lag between CDR intervention and atmospheric impact due to prolonged carbon cycle response	ERW, OAE, ARR
	Counterfactual delay	Lag between CDR intervention and atmospheric impact due to an assumed counterfactual outcome that would play out over time	BiCRS, IFM
	Accelerated emissions	The CDR intervention causes emissions to occur earlier than they would have in the assumed counterfactual	BiCRS
	Front-loaded emissions	The CDR intervention causes emissions from upfront capital expenditures such as facility construction that precede any drawdown	DAC, BiCRS, ERW, OAE

84 **Table 1.** Classification of temporal lag archetypes, and examples of CDR pathways
 85 to which each may apply. Acronyms: ERW, enhanced rock weathering; OAE,
 86 ocean alkalinity enhancement; ARR, forestation, afforestation, reforestation, and
 87 revegetation; BiCRS, biomass carbon removal and storage; IFM, improved forest
 88 management; DAC, direct air capture.

89

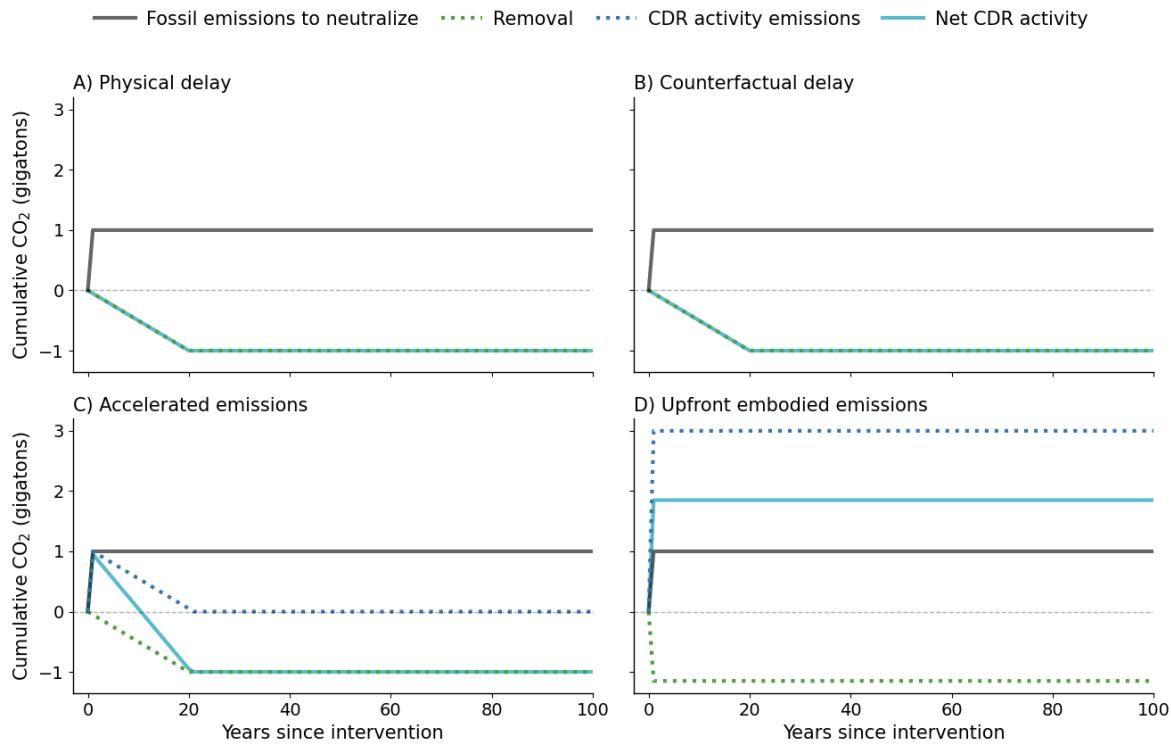
90

91 Other lags arise in relation to the counterfactual rather than the physical process of the
92 CDR intervention. We refer to these as **counterfactual delays**. These lags are most
93 relevant to biomass-based carbon removal and storage (BiCRS) projects, which deliver
94 climate benefits only relative to the fate of the biomass in the absence of the intervention.
95 For example, if biomass that would otherwise decay is used for BiCRS, the atmospheric
96 impact of the intervention is only truly realized when the carbon content of the biomass
97 feedstock would have otherwise been released through decay. This lag can span
98 decades for large-diameter woody biomass in cool or dry environments (Fingerman et al.,
99 2023), but may be short when the counterfactual involves rapid decay or combustion,
100 such as agricultural residues or slash pile burning. Counterfactual delays are equally
101 relevant for landscape-scale carbon stock accounting, such as when increased forest
102 harvest for BiCRS causes temporarily lower standing carbon than the counterfactual
103 (Cabiyo et al., 2025; Cheng et al., 2025).

104

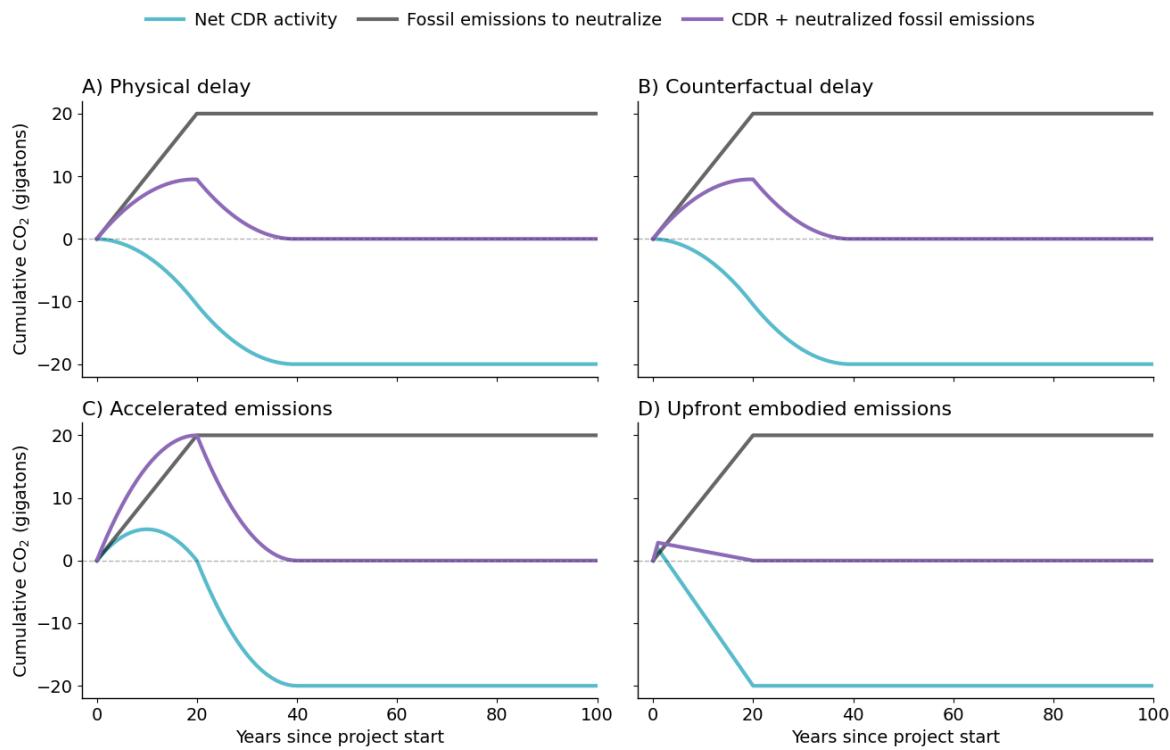
105 Some BiCRS projects also create **accelerated emissions** of CO₂ relative to their
106 counterfactual. In biochar production, for instance, the pyrolysis process typically
107 converts only 25–50% of the biomass carbon into stable char, while the remainder is
108 released as CO₂ during processing (Rodrigues et al., 2023; Tripathi et al., 2016). This
109 means that a portion of the biomass carbon may be emitted earlier than it would have
110 been in the counterfactual, while the rest is sequestered in a more durable form. Such
111 front-loading of emissions can temporarily increase atmospheric CO₂ concentrations
112 even as it enhances the long-term durability of stored carbon. Notably, this biochar
113 example also exhibits the counterfactual delays described above, since both types of lags
114 are linked to the counterfactual outcome for the same biomass feedstock.

115


116 Finally, nearly all CDR projects involve **upfront embodied emissions** from the construction
117 and deployment of facilities and supporting infrastructure. DAC plants, for instance,
118 require steel, concrete, sorbents, and other components whose production generates
119 substantial greenhouse gas emissions. Published LCAs estimate these embodied
120 emissions at tens of kg CO₂ per ton CO₂ captured, and typically amortize these emissions
121 over a 15–25 year facility lifetime (e.g. Keith et al., 2018; Deutz & Bardow, 2021; Madhu et
122 al., 2021). The same is true for energy infrastructure built to power CDR facilities (Brander
123 et al., 2021). Yet in reality, these emissions occur before any CO₂ is removed, causing
124 near-term warming that conventional amortization obscures. If a facility retires early or
125 captures less than expected, its upfront emissions may never be fully offset and the near-
126 term warming effect could persist indefinitely.

127 **Climate impacts of lagged CDR**

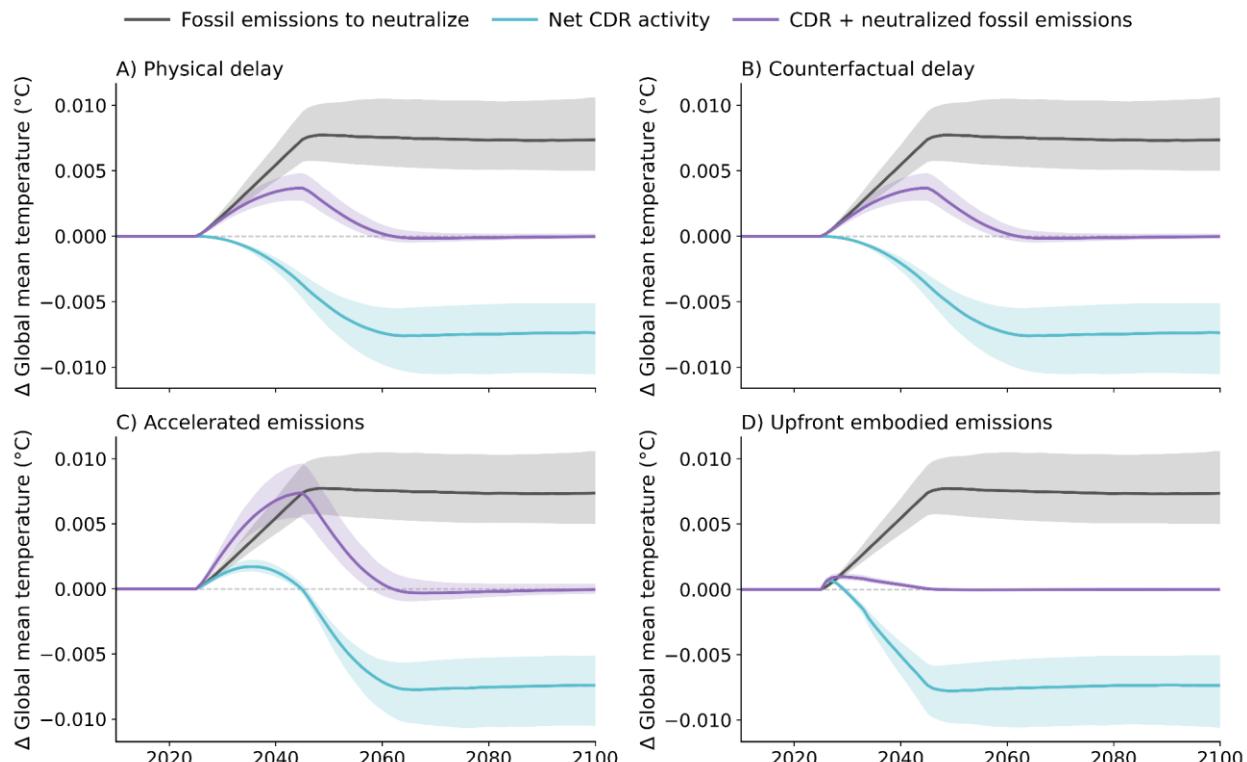
128 To evaluate the influence of temporal lags on climate outcomes, we used the FaIR climate
129 model (Leach et al., 2021; Smith et al., 2024) to quantify the temperature response
130 associated with each lag archetype (see Methods). Across all cases, lagged CDR


131 scenarios result in higher near-term warming when used to neutralize ongoing fossil CO₂
132 emissions. When applied continuously, lagged CDR also increases peak warming. The
133 largest effects will generally occur in cases exhibiting both accelerated emissions and
134 counterfactual delays. The smallest effects occur in the upfront embodied-emissions
135 archetype – which represents a one-time rather than continuous lag. However, individual
136 CDR projects can differ widely, and the relative magnitude of these effects will depend on
137 assumptions about feedstock used, lag duration, embodied emissions, and CDR timing.
138

139 We represent CDR deployments with temporal lags using four stylized removal profiles
140 (Fig. 1). Each profile represents 1 Gt yr⁻¹ of nominal CDR deployment. Physical and
141 counterfactual delay profiles are modeled as 20-yr linear lags between the intervention
142 and the atmospheric drawdown it generates, reflecting delayed carbon-cycle responses.
143 The accelerated-emissions profile combines the same delayed-drawdown assumptions
144 with an immediate release of 50% of biomass carbon, representing pyrolysis or other
145 conversion processes that shift part of the feedstock's emissions forward in time. The
146 upfront embodied-emissions profile applies a one-time construction pulse of 3 GtCO₂
147 followed by 1.15 GtCO₂ yr⁻¹ of removals, approximating the 20-yr amortization of capital
148 emissions in infrastructure-intensive pathways such as DAC. These parameterizations are
149 illustrative rather than representative of specific projects. For example, well-designed
150 DAC projects may have low upfront emissions relative to removals, and some biomass
151 feedstocks will have relatively little counterfactual storage. In practice, the duration and
152 functional form (for example, linear versus logarithmic) of the lag will vary by CDR
153 pathway, deployment context, and feedstock. Similarly, while we assume the same lag
154 function for physical and counterfactual delays, they may differ in real-world applications.

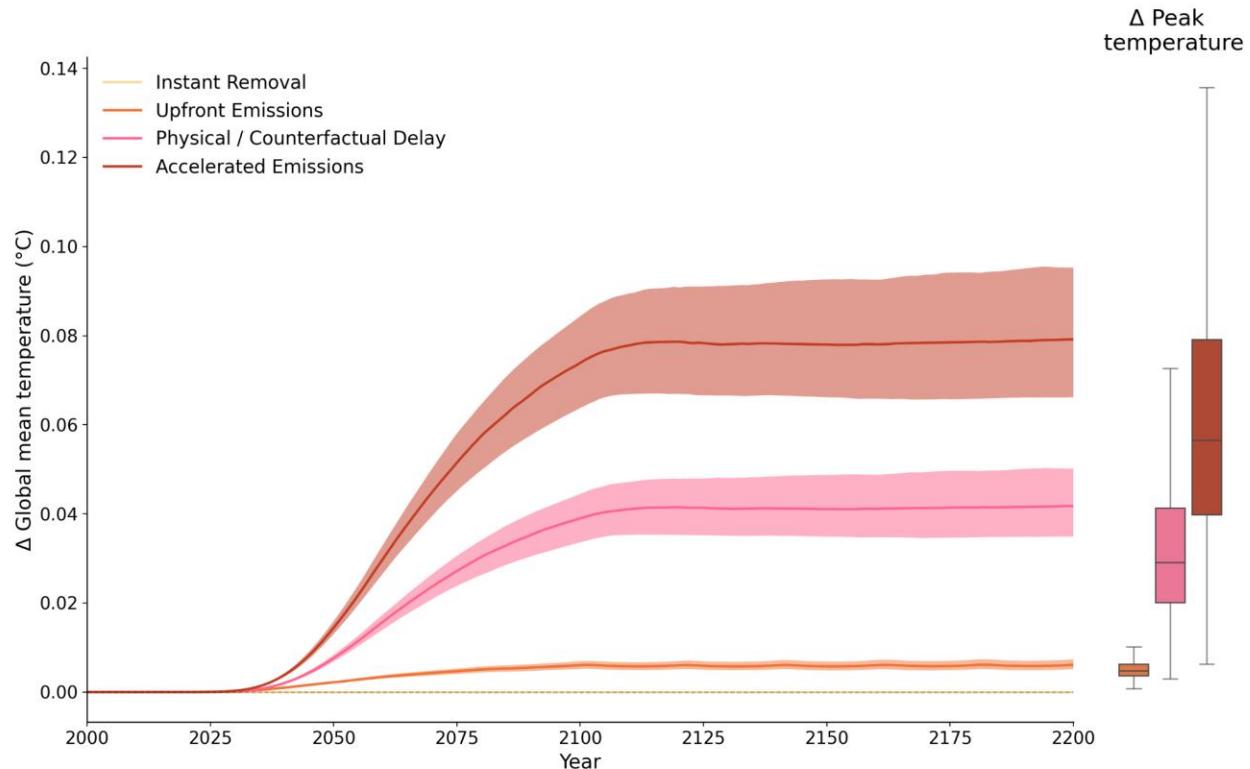
155
 156 **Figure 1.** Stylized annual pulse profiles for the first year of operation for four CDR
 157 deployments exhibiting each temporal lag archetype. Each profile nominally results
 158 in 1 GtCO₂, with distinct temporal patterns of emissions and removals following the
 159 intervention. The CDR activity is plotted alongside 1 GtCO₂ fossil CO₂ emissions
 160 that may be neutralized by CDR. Here, physical and counterfactual delays are
 161 modeled with the same removal profile, though they may differ in practice. The
 162 upfront embodied emissions case is unique in that all activity emissions occur only
 163 in the first intervention year; subsequent years of the same intervention would
 164 occur with no activity emissions.

165
 166 In all experiments, removals were paired with equal emissions at the time of intervention,
 167 representing the use of CDR to neutralize emissions without accounting for temporal lags.
 168 Experiments were structured such that total cumulative removals equaled total fossil
 169 emissions. When extended over a 20-yr deployment period of 1 Gt CO₂ yr⁻¹, these
 170 removal profiles yield distinct emissions-removal trajectories (Fig. 2) despite identical
 171 cumulative carbon balances, isolating the effect of timing alone on the resulting climate
 172 response.



173
174 **Figure 2.** Cumulative emission and removal profiles for four scenarios illustrating the
175 temporal lag archetypes and their use for neutralization of fossil fuel emissions. Each
176 scenario represents 20 yrs of a CDR activity (nominally 1 GtCO₂/yr) with associated lags.
177 The accelerated emissions case combines both accelerated emissions and counterfactual
178 delay, which are described separately in Table 1. The dashed line represents
179 instantaneous emissions neutralization.

180
181
182 All lagged CDR deployments result in elevated near-term warming relative to
183 instantaneous drawdown (Fig. 3). Using lagged CDR to neutralize fossil emissions results
184 in a delayed offsetting effect because atmospheric drawdown occurs gradually while the
185 fossil emission is instantaneous. As a result, the atmosphere retains excess CO₂ for years
186 to decades until the lagged CDR catches up. Global temperatures achieve the net-zero
187 outcome implied by the neutralization claim, and converge with the instantaneous-
188 removal case, between 20 (upfront embodied emissions) and 47 yrs (accelerated
189 emissions) after the deployment period begins (and zero to 27 yrs after the 20-yr CDR
190 project deployment period ends). In the accelerated-emissions case, global mean
191 temperature remains elevated from deployment (2025) through roughly 2062, whereas
192 the warming from upfront embodied emissions is brief and shallow.
193
194 When lagged CDR is deployed without neutralizing concurrent fossil emissions, the
195 temperature response differs across archetypes but still reflects the influence of timing.


196 In the physical and counterfactual-delay scenarios, CDR begins reducing temperatures
197 immediately, but more gradually than instantaneous drawdown. In contrast, accelerated
198 emissions and embodied emissions cause temperatures to rise initially and then decline
199 as removals dominate, with the duration and magnitude of the warming determined by the
200 structure and scale of the lag.

201

202
203 **Figure 3.** Modeled global mean surface temperature response for four scenarios
204 illustrating each temporal lag archetype. Each plot shows 20 yrs of CDR activity
205 (nominally 1 GtCO₂/yr) with associated lags, 20 yrs of fossil CO₂ emissions to be
206 neutralized, and the combination of both reflecting the use of lagged CDR for
207 neutralization. Shaded regions indicate the 5th-95th percentile range across ensemble
208 members. The dashed line represents instantaneous emissions neutralization.

209
210 We next examined continuous application of CDR in a single century-scale mitigation
211 pathway (Fig. 4; see Methods), which reaches 11.1 Gt CO₂ yr⁻¹ of deployment by the end
212 of the century. In all cases, lagged CDR fails to reconverge with the baseline so as long as
213 lagged deployment continues. This occurs because each year's emissions-removals pair
214 retains a timing mismatch. In this setup, neglecting temporal lags increases the share of
215 ensemble members exceeding 2 °C peak warming by up to 6% (from 380 to 432 of the
216 841 ensemble members in the accelerated-emissions deployment scenario (Table S1)).

217
 218 **Figure 4.** Modeled global mean surface temperature response for continuous deployment
 219 of CDR with and without illustrative lag archetypes, in the context of a low-emissions
 220 pathway (SSP1-2.6). Uncertainty bounds in the time series indicate the 15th-85th
 221 percentile range across ensemble members. Changes in peak temperature compare each
 222 lagged deployment scenario to a no-lag baseline. Peak temperature is calculated using a
 223 20-year running mean of global mean temperature, relative to the 1850–1900 baseline.
 224

225 The magnitude of the additional warming varies systematically across temporal lag
 226 archetypes (Table S1). The accelerated-emissions case produces the largest shift in peak
 227 temperature, with a ΔT_{peak} of 0.061°C ($\sigma=0.028$) relative to the instantaneous-removal
 228 baseline. Physical and counterfactual delays yield intermediate warming of 0.032°C
 229 ($\sigma=0.015$). Upfront embodied emissions generate the smallest effect, 0.005°C ($\sigma=0.002$),
 230 reflecting the single early-emission pulse rather than per-ton timing distortions.
 231

232 These results show that even when cumulative emissions and realized removals are
 233 equivalent over the long term for individual CDR projects, differences in the timing of
 234 carbon drawdown can yield substantially different near-term temperature trajectories.
 235 Observed warming reflects the fact that temporal lags cause cumulative net emissions to
 236 exceed those in an instantaneous-removal baseline. This effect is temporary in the pulse
 237 experiments, and persistent under continuous deployment where each year's lag
 238 introduces a new mismatch that is never fully reconciled.
 239

240 **Discussion**

241

242 Today, temporal lags are rarely considered in carbon accounting for CDR pathways, or
243 they are addressed in ways that fail to capture their climatic forcing effects. This is
244 especially problematic in carbon markets, where the primary product is claims of climate
245 impact, and issued credits are used to neutralize fossil emissions. Ignoring or
246 inconsistently treating temporal lags in this context undermines the idea that CDR credits
247 are fully interchangeable with one another or with fossil CO₂, weakening the credibility of
248 neutralization claims and distorting assessments of the most cost- and carbon-efficient
249 pathways (Groom and Venmans, 2023). Given uncertainty about the ultimate scale and
250 mix of technologies needed for a net-zero-aligned portfolio (Fuhrman et al., 2023) and
251 the limited resources available for early-stage investment, such distortions could
252 advantage or disadvantage pathways in ways that do not reflect their true carbon removal
253 efficiency.

254

255 Today, temporal lags are not treated consistently in crediting protocols. The uneven
256 treatment of counterfactual delays across BiCRS protocols offers an instructive example.
257 Depending on the registry, these lags may be unaddressed (Verra, 2025), addressed
258 indirectly through prescription of eligible biomass sources (Puro.earth, 2023), ignored if
259 biomass is sourced from a stable or growing sink (Puro.earth, 2024, European Union,
260 2024), or ignored if shorter than a temporal threshold (e.g. 15 years; Isometric, 2025). By
261 contrast, for physical delays there is usually an expectation that credits are not issued
262 until some physical process has occurred. Approaches range from fully ex-post crediting
263 — as in ocean alkalinity enhancement (Isometric, 2025b) and ARR (Verra, 2025b;
264 Isometric, 2025c) — to intermediate crediting, where a measurable milestone in the
265 physical process triggers credits, but subsequent delays are ignored. For example,
266 current enhanced weathering protocols (Isometric, 2025d; Puro.earth, 2022) issue credits
267 once evidence of rock weathering is observed, even though in some cases, it may be
268 years or decades before the released cations capture carbon dioxide and sequester it in
269 the ocean.

270

271 The consequences of this inconsistency are illustrated starkly by comparing two of the
272 most widely credited CDR pathways: biochar and forestation. Forestation projects
273 typically earn credits only after measurable biomass accumulation following tree planting,
274 which can take at least three to five years (Löfqvist et al., 2023). Biochar protocols, by
275 contrast, generally allow full crediting at the time of project intervention, even though the
276 process often accelerates some biomass emissions and net drawdown accrues gradually
277 after the project intervention due to the associated counterfactual delay. From a strictly
278 climatic forcing standpoint, crediting a biochar project in full at the time of the
279 intervention is in some ways similar to crediting a reforestation project upfront for its
280 projected growth — a practice that has not generated significant demand because it
281 awards credits for CDR that has not yet occurred. This comparison overlooks key

282 differences, such as the reversibility and durability of carbon stored through each
283 pathway and the length of counterfactual delay relative to tree growth. Nonetheless,
284 since credit issuance is necessary for revenue generation, this asymmetry could
285 disadvantage forestation projects, particularly those involving slower-growing or native
286 species (Löfqvist et al., 2023).

287 There are several options for aligning temporal accounting practices in carbon markets
288 and addressing the fungibility problem highlighted by our results. One option is strict ex-
289 post crediting, under which all project types earn credit only once atmospheric drawdown
290 has occurred. A second option is vintaged crediting, in which credits are issued at the
291 time of intervention but dated to the year when drawdown is expected to materialize. A
292 third option is to adopt a standardized short lag (e.g., five years) below which temporal
293 adjustments are not required, thereby simplifying accounting for many projects and only
294 requiring the use of one of the other options for lags exceeding the threshold. Finally,
295 horizontal stacking pairs lagged CDR with temporary removals or abatement, using a
296 temporary cooling benefit to bridge temporal gaps until durable drawdown is realized.

297 Each option represents a distinct balance of physical fidelity and practical feasibility. Ex-
298 post crediting most accurately reflects atmospheric outcomes but delays revenue for
299 pathways with long or uncertain lags, potentially suppressing investment. Vintaged
300 crediting preserves early revenue but requires governance systems to ensure that
301 neutralization claims ultimately align with vintages and creates uncertainty about who
302 bears the risk if drawdown diverges from expectations. A standardized lag is
303 operationally simple and treats pathways consistently, but explicitly codifies some degree
304 of ex-ante crediting and thus allows periods of near-term warming. Horizontal stacking is
305 physically robust—ensuring no net warming at any timestep—but operationally complex,
306 deviates from conventional greenhouse-gas accounting, and would require new diligence
307 frameworks for buyers seeking rigorous neutralization claims.

308 Accounting for temporal lags becomes less fraught outside the offsetting context. If
309 removals are not being used to neutralize ongoing fossil emissions, and are instead
310 utilized as a net negative contribution to climate change mitigation, the risk of
311 exacerbating near-term warming is reduced. Physical and counterfactual delays no
312 longer result in warming, and the additional warming from accelerated and upfront
313 emissions becomes smaller in magnitude and shorter in duration. However, even in this
314 case, consistent and transparent characterization of lags is essential for organizations or
315 jurisdictions reporting on efficacy of their climate change mitigation investments and for
316 funneling limited resources towards the most effective CDR pathways.

317 The challenge of accounting for complex temporal dynamics is not unique to CDR. Other
318 areas of decarbonization, including life-cycle assessment for low-carbon fuels and
319 materials, have long grappled with temporal dynamics — and have not reached perfect
320 consistency. For sectors like green hydrogen or renewable energy, which involve

321 substantial, upfront, embodied emissions, accounting norms are not consistent across
322 technologies or jurisdictions. For example, under the Greenhouse Gas Protocol,
323 organizations purchasing electricity from the grid report only the operational emissions
324 from electricity generation in their Scope 2 inventories (WRI & WBCI, 2015), while the EU
325 Renewable Energy Directive amortizes embodied emissions over standardized
326 technology-specific lifetimes (European Union, 2018).

327 Together, our results show that temporal lags can meaningfully alter near-term
328 temperature outcomes even when cumulative removals ultimately balance cumulative
329 emissions. These timing effects complicate the use of CDR as an instrument for
330 offsetting, challenge the assumption that different credits are fungible, and highlight the
331 need for greater transparency in accounting frameworks. Resolving these issues will
332 require explicit choices about how to balance physical fidelity, operational feasibility, and
333 the imperative to enable durable CDR at scale. Better time-series data on CDR
334 interventions would greatly strengthen the field's ability to characterize temporal lags. A
335 consistent lexicon for describing temporal lags can help standards bodies, regulators,
336 and researchers make these choices more deliberately and advance CDR in ways that
337 reflect both atmospheric reality and practical constraints.

338

339 **Online Methods**

340 *Modeling framework*

341 To model the global mean surface temperature effects of each CDR scenario, we used
342 the Finite amplitude Impulse Response model (FaIR) calibrated constrained ensemble
343 (v1.4.1) to reflect the range of climate parameters (climate sensitivity, carbon cycle
344 feedbacks) as assessed in the IPCC AR6 report (Smith et al., 2024). We created a 841
345 member ensemble of runs of the SSP1-2.6 emissions pathway, reflecting the range of
346 model parameterizations, as well as a separate 841 member ensemble perturbed to
347 reflect the changes in each of the pulse emissions and cumulative emissions scenarios
348 described below (Figures 1 and 2).

349

350 Global mean surface temperature responses were determined by differencing the set of
351 ensemble runs for each of these scenarios from the base SSP1-2.6 emissions pathway.
352 SSP1-2.6 was used as it is consistent with the Paris Agreement target of limiting warming
353 to well-below 2C by 2100, but the results should not be particularly sensitive to the choice
354 of SSP in any deep mitigation pathway where large amounts of CDR deployment are likely
355 to occur. In each scenario we examined baseline emissions, CDR only, and CDR plus
356 baseline emissions temperature outcomes (Figure 3).

357 In addition, we provided simulations of global mean surface temperature evolution over
358 the 2025-2200 period in SSP1-2.6 under the assumption that each pulse of annual CDR
359 deployed in that pathway was subject to each of the four lag scenarios explored (Figure
360 4).

361 *Scenario details*

362 We examine two types of scenarios: (1) cumulative-pulse experiments, which integrate
363 annual pulses of emissions and removals over a 20-year period; and (2) global-scale
364 deployment experiments, which incorporate lagged CDR into a multidecadal mitigation
365 pathway. Together, these scenarios quantify the effects of using lagged CDR at the scale
366 of an offsetting project and at the scale of global CDR deployment, respectively.

367 The cumulative pulse experiments convolved 20 years of annual pulses for the physical
368 delay, counterfactual delay, and accelerated emissions scenarios. For upfront embodied
369 emissions, we assume 3 GtCO₂ upfront embodied emissions in year zero, followed by -
370 1.15 GtCO₂ annual removals for 20 years (where the additional 0.15 GtCO₂ removal over
371 20 years reflects the amortization of the 3 GtCO₂ upfront emissions).

372 To quantify the impact of lagged CDR under continuous global deployment, we split the
373 net SSP1-2.6 CO₂ emissions into its gross emissions and CDR components (Figure S2a),
374 and then applied each lag archetype to the CDR time series (Figure S2b). We defined the
375 CDR time series as the mean CDR across integrated assessment scenarios having $\geq 50\%$
376 probability of limiting warming to 1.5 °C by 2100 (from Fuhrman et al., 2024; green line in
377 Figure S2a) and then held deployment constant at 2100 levels (~10 Gt/yr) in subsequent
378 years. We applied lag archetypes by assuming that the volume of CDR represented in the
379 original time series represented the timing of the intervention (forecasting to its ultimate
380 drawdown effect), rather than the volume of drawdown in that year.

381 *Data Availability*

382 Input and output data for our model simulations are available at
383 <https://github.com/carbonplan/temporal-lags>.

384 *Code Availability*

385 The FaIR model source code is available at <https://github.com/OMS-NetZero/FAIR>. The
386 code to reproduce our analysis is available at <https://github.com/carbonplan/temporal->
387 lags.

388

389

390 Author Contributions

391 B.C., F.C., Z.H., K.S.H., K.F., and C.M.Z. contributed to study conceptualization, analysis,
392 writing, and editing of the manuscript. C.B.F. contributed to conceptualization and editing.
393 Z.H. and C.M.Z. conducted the FaIR analysis.

394 Acknowledgments

395 This work originated from a workshop hosted by the Stanford Woods Institute for the
396 Environment with funding from the Precourt Institute's Strategic Energy Research
397 Consortium. C.M.Z. was supported by the Schmidt Science Fellows, in partnership with
398 the Rhodes Trust.

399 Declaration of Interests

400 The views expressed in this paper are those of the authors and do not necessarily reflect
401 the views or positions of any organization with which they are affiliated. B.C. is employed
402 by Carbon Direct Inc. K.S.H is employed by Amazon.com, Inc. Z.H. helps manage
403 Frontier, an advanced market commitment on the part of corporate carbon removal
404 buyers.

405

406 **References**

407

408 Allen, M. R., Frame, D. J., Friedlingstein, P. *et al.* Geological net zero and the need for
409 disaggregated accounting for carbon sinks. *Nature* 638, 343–350 (2025).
410 <https://doi.org/10.1038/s41586-024-08326-8>

411

412 Bach, L. T., Ho, D. T., Boyd, P. W., & Tyka, M. D. (2023). Toward a consensus framework to
413 evaluate air–sea CO₂ equilibration for marine CO₂ removal. *Limnology and Oceanography Letters*,
414 8(5), 685–691. <https://doi.org/10.1002/lol2.10330>

415

416 Brander, M., Ascui, F., Scott, V. & Tett, S. Carbon accounting for negative emissions technologies.
417 *Climate Policy* 21, 699–717 (2021). <https://doi.org/10.1080/14693062.2021.1878009>

418

419 Deutz, S., Bardow, A. Life-cycle assessment of an industrial direct air capture process based on
420 temperature–vacuum swing adsorption. *Nature Energy* 6, 203–213 (2021).
<https://doi.org/10.1038/s41560-020-00771-9>

421

422 Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J. *et al.* Transit time
423 estimation in catchments: recent developments and future directions. *Water Resources Research*
58, e2022WR033096 (2022). <https://doi.org/10.1029/2022WR033096>

424

425 Brunner, C., Hausfather, Z. & Knutti, R. Durability of carbon dioxide removal is critical for Paris
426 climate goals. *Communications Earth and Environment* 5, 645 (2024).
<https://doi.org/10.1038/s43247-024-01808-7>

427

428 Cabiyo, B., Manner, R., Abt, K., Abt, R., Belmont, E., Brotherson, L., Latta, G., Mavandad, S., &
429 Baker, J. Impacts of unprecedented wood demand for bioenergy in the Southeastern US.,
430 PREPRINT (Version 1) available at Research Square (2025) <https://doi.org/10.21203/rs.3.rs-6839932/v1>

431

432

433 Cheng, F., Rossi, D. J., Gittoes, L., Abt, R. C., Abt, K. L., Hall, E. S., & Larson, E. D. Assessing
434 Carbon Emission Impacts of Forest-Based Bioenergy in the Southern US. *Environmental Science &*
435 *Technology*, 59(16), 7919–7930 (2025).
<https://doi.org/10.1021/acs.est.4c06272>

436

437

438 Calabrese, S., Wild, B., Bertagni, M. B., Bourg, I. C., White, C., Aburto, F., Cipolla, G., Noto, L. V. &
439 Porporato, A. Nano- to Global-Scale Uncertainties in Terrestrial Enhanced Weathering.
440 *Environmental Science and Technology* 56, 15261–15272 (2022).
<https://doi.org/10.1021/acs.est.2c03163>

441

442

443 European Union. Directive (EU) 2023/2413 of the European Parliament and of the Council of 18
444 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive
445 98/70/EC as regards the promotion of energy from renewable sources, and repealing Council
446 Directive (EU) 2015/652. Official Journal of the European Union. (2023)
<https://eur-lex.europa.eu/eli/dir/2023/2413/oj>

447

448

449 European Union. Regulation (EU) 2024/3012 establishing a Union certification framework for
450 permanent carbon removals, carbon farming and carbon storage in products. Official Journal of the
451 European Union, L 2024/3012. (2024) Available at: <https://eur-lex.europa.eu/eli/reg/2024/3012/oj>

452

453 Fingerman, K. R., Qiriazi, J., Barrientos, C. L., Blasdel, M., Comnick, J. M., Harris, A. R., Geronimo,
454 C., Hsu, C.-W., Kane, J. M., O’Neil, E., Rios-Romero, S., Rogers, L. W., Severy, M. & Wright, M. C.
455 Climate and air pollution impacts of generating biopower from forest management residues in

456 California. *Environmental Research Letters* 18, 034038 (2023). <https://doi.org/10.1088/1748-9326/acbd93>

457

458

459 Fuhrman, J., Bergero, C., Weber, M., Monteith, S., Wang, F., Clarens, A., Doney, S., Shobe, W., & 460 McJeon, H. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water– 461 land system. *Nature Climate Change*, 13, 1–10 (2023). <https://doi.org/10.1038/s41558-023-01604-9>

462

463 Fuhrman, J., Speizer, S., O'Rourke, P., Peters, G. P., McJeon, H., Monteith, S., Aldrete Lopez, L. & 464 Wang, F. M. Ambitious efforts on residual emissions can reduce CO₂ removal and lower peak 465 temperatures in a net-zero future. *Environmental Research Letters* 19, 064012 (2024). 466 <https://doi.org/10.1088/1748-9326/ad456d>

467

468 Groom, Ben, and Frank Venmans. "The social value of offsets." *Nature* 619.7971 (2023): 768–773. 469 <https://doi.org/10.1038/s41586-023-06153-x>

470

471 Isometric. Biomass Feedstock Accounting v1.3. Isometric Registry. (2025) Available at: 472 <https://registry.isometric.com/module/biomass-feedstock-accounting/1.3>

473

474 Isometric. Ocean Alkalinity Enhancement from Coastal Outfalls v1.04. Isometric Registry. (2025b). 475 Available at: <https://registry.isometric.com/protocol/ocean-alkalinity-enhancement/1.0>

476

477 Isometric. Reforestation v.1.1. Isometric Registry. (2025c). Available at 478 <https://registry.isometric.com/protocol/reforestation>

479

480 Isometric. Enhanced Weathering in Agriculture v.1.1.2. Isometric Registry. (2025d). Available at 481 <https://registry.isometric.com/protocol/enhanced-weathering-agriculture/1.1>

482

483 Kanzaki, Y., Planavsky, N. J., Zhang, S., Jordan, J., Suhrhoff, T. J. & Reinhard, C. T. Soil cation 484 storage is a key control on the carbon removal dynamics of enhanced weathering. *Environmental 485 Research Letters* 20, 074055 (2025). <https://doi.org/10.1088/1748-9326/ade0d5>

486 Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO₂ from the 487 atmosphere. *Joule* 2, 1573–1594 (2018). <https://doi.org/10.1016/j.joule.2018.05.006>

488 Lawrence, D., Castilow, K. & Johns, T. Embodied emissions accounting: confronting integrity issues 489 in engineered carbon dioxide removals. *Calyx Global* (2025). <https://calyxglobal.com/research-490-hub/research/embodied-emissions-accounting-ecdr/>

491

492 Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J. 493 & Allen, M. R. FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future 494 scenario exploration. *Geoscientific Model Development* 14, 3007–3036 (2021). 495 <https://doi.org/10.5194/gmd-14-3007-2021>

496

497 Löfqvist, S., Garrett, R.D. & Ghazoul, J. Incentives and barriers to private finance for forest and 498 landscape restoration. *Nature Ecology and Evolution* 7, 707–715 499 (2023). <https://doi.org/10.1038/s41559-023-02037-5>

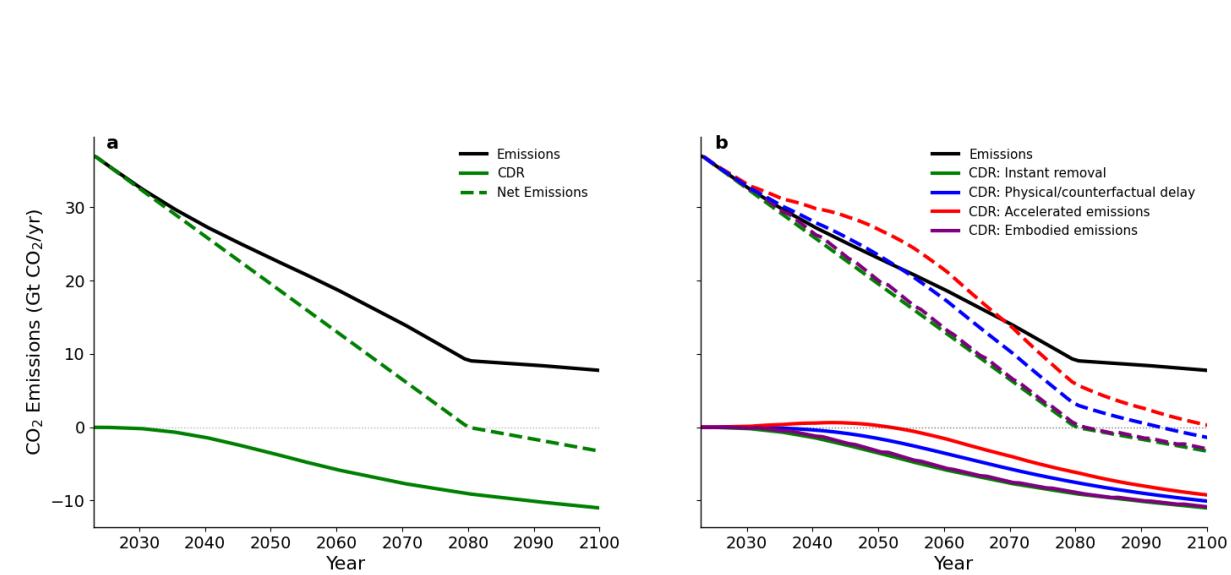
500

501 Madhu, K., Pauliuk, S., Dhathri, S., & Creutzig, F. (2021). Understanding environmental trade-offs 502 and resource demand of direct air capture technologies through comparative life-cycle assessment. 503 *Nature Energy* 2021 6:11, 6(11), 1035–1044. <https://doi.org/10.1038/S41560-021-00922-6>

504

505 Puro.earth. Puro Standard Biochar Methodology 2025 v1.0. (2025). Available at: 506 <https://puro.earth/biochar>

507
508 Puro.earth. Puro Standard Enhanced Rock Weathering in Soil Methodology v2. (2022). Available at:
509 <https://puro.earth/enhanced-rock-weathering>
510
511 Rodrigues, L., Budai, A., Elsgaard, L., Hardy, B., Keel, S. G., Mondini, C., Plaza, C., & Leifeld, J.
512 (2023). The importance of biochar quality and pyrolysis yield for soil carbon sequestration in
513 practice. *European Journal of Soil Science*, 74(4), e13396. <https://doi.org/10.1111/EJSS.13396>
514
515 Smith, C., Cummins, D. P., Fredriksen, H.-B., Nicholls, Z., Meinshausen, M., Allen, M., Jenkins, S.,
516 Leach, N., Mathison, C., & Partanen, A.-I. (2024). fair-calibrate v1.4.1: calibration, constraining, and
517 validation of the FalR simple climate model for reliable future climate projections. *Geoscientific
518 Model Development*, 17(23), 8569–8592. <https://doi.org/10.5194/gmd-17-8569-2024>
519
520 Smith, S. M., Geden, O., Gidden, M. J., Lamb, W. F., Nemet, G. F., Minx, J. C., Buck, H., Burke, J.,
521 Cox, E., Edwards, M. R., Fuss, S., Johnstone, I., Müller-Hansen, F., Pongratz, J., Probst, B. S., Roe,
522 S., Schenuit, F., Schulte, I., Vaughan, N. E. (eds.) The State of Carbon Dioxide Removal - 2nd
523 Edition. (2024) <https://doi.org/10.17605/OSF.IO/F85QJ>
524
525 Tripathi, M., Sahu, J. N. & Ganesan, P. Effect of process parameters on production of biochar from
526 biomass waste through pyrolysis: A review. *Renewable and Sustainable Energy Reviews* 55, 467–
527 481 (2016). <https://doi.org/10.1016/j.rser.2015.10.122>
528
529 Verra. VM0044 Methodology for Biochar Utilization in Soil and Non-Soil Applications, v1.2. Verified
530 Carbon Standard. (2025) Available at: verra.org/methodologies/vm0044-methodology-for-biochar-utilization-in-soil-and-non-soil-applications/
531
532 Verra. VM0047 Afforestation, Reforestation, and Revegetation, v1.1. Verified Carbon Standard.
533 (2025b) Available at: <https://verra.org/methodologies/vm0047-afforestation-reforestation-and-revegetation-v1-1/>
534
535
536 World Resources Institute, & World Business Council for Sustainable Development. *GHG Protocol
537 Scope 2 Guidance: An amendment to the GHG Protocol Corporate Standard*. (2015)
538 <https://ghgprotocol.org/scope-2-guidance>
539
540
541 Zhou, M., Tyka, M. D., Ho, D. T., Yankovsky, E., Bachman, S., Nicholas, T., Karspeck, A. R., &
542 Long, M. C. Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon
543 dioxide removal. *Nature Climate Change*, 15(1), 59–65 (2025). <https://doi.org/10.1038/s41558-024-02179-9>
544


1 **Supplementary material**

2

3 **Consistent temporal accounting supports credible CDR use**

4 Bodie Cabiyo^{1*}, Freya Chay², Christopher B. Field¹, Kevin Fingerman⁵, Zeke Hausfather³, Kyle S.
 5 Hemes⁴, Claire M. Zariskas^{2,6}

6 * Author to whom correspondence should be addressed; bcabiyo@stanford.edu.

	Peak warming	Change in peak warming relative to reference case	Probability of peak warming > 2.0 C	Change in probability of peak warming > 2.0 C relative to reference case

Instant removal (reference case)	2.02 ($\sigma=0.41$)	-	45.2%	-
Physical / counterfactual delay	2.05 ($\sigma=0.42$)	0.032 ($\sigma=0.015$)	47.8%	2.6%
Accelerated emissions	2.08 ($\sigma=0.44$)	0.061 ($\sigma=0.028$)	51.4%	6.2%
Embodied emissions	2.03 ($\sigma=0.41$)	0.005 ($\sigma=0.002$)	45.7%	0.5%

26 **Table S1: Impact of temporal lags on peak warming.** Peak warming is calculated based on a
 27 20-year running mean of global mean temperature, relative to the 1850-1900 baseline.
 28 Probability of peak warming exceeding 2.0°C is calculated as the percentage of ensemble
 29 members with peak warming greater than 2.0°C.