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Achieving the goals of the Paris Agreement depends not only on deploying carbon dioxide
removal (CDR), but on the accounting infrastructure used to define and track its climate
impact. Today, removals are increasingly credited through project-based markets that op-
erate independently from other systems and without explicit linkages to the atmospheric
carbon balance. This decoupling risks an “attribution gap,” where credited removals coexist
with uncounted emissions, potentially distorting international climate targets and weakening
incentives to decarbonize hard-to-abate sectors.

We introduce an Objective Atmospheric Basis (OAB): a shared accounting infrastruc-
ture that tracks emissions and removals using physical carbon balances and two-column
environmental ledgers. Rather than defining policy outcomes, OAB provides a neutral data
interpretation layer that can be used across carbon markets, national inventories, and Arti-
cle 6 cooperation mechanisms. Applied to biochar carbon removal, it shows that upstream
emissions can determine whether a project delivers net removal or emissions reductions. Inte-
grating this accounting layer with net-zero target design, crediting rules under Article 6, and
economic incentives for industry could help ensure that carbon markets complement—but
not replace—direct emissions reductions, while avoiding atmospheric debt shifting.

Highlights

e Current carbon removal accounting infrastructure creates attribution gaps, where re-
movals are credited while associated emissions remain in the atmosphere.

e We introduce an Objective Atmospheric Basis (OAB) that tracks carbon explicitly
using mass balance, treating emissions as persistent liabilities and removals as assets.
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e Applying OAB to biochar shows that upstream emissions allocation often determines
net climate impact, with some residue-based systems shifting emissions burdens rather
than delivering removals.

e OAB functions as accounting infrastructure that enables consistent interpretation of
carbon fluxes across projects, national inventories, and Paris Agreement Article 6 mech-
anisms.

Summary

Efforts to integrate carbon dioxide removal (CDR) into climate policy, markets, and
inventories are advancing rapidly, but without a unified accounting logic to attribute atmo-
spheric impacts. Existing crediting approaches omit upstream emissions, creating a struc-
tural attribution gap in which removals are credited even as associated emissions remain in
the atmosphere. Although it remains small today, we find that this gap could reach gigaton-
scale annually in biomass-based CDR systems. To address this discrepancy, we propose
an Objective Atmospheric Basis (OAB): a technology-agnostic accounting framework that
tracks carbon transfers explicitly using mass-balance ledger that casts emissions as persistent
liabilities and removals as assets. Applied to feedstock materials for biochar carbon removal
(BCR), OAB reveals how system boundaries and emissions allocation decisions shape net re-
moval outcomes. By reconciling emissions and removals within a single atmospheric reference
frame, OAB closes the attribution gap and provides core infrastructure for scalable, high-
integrity CDR. As a common language for carbon bookkeeping grounded in physical fluxes,
OAB enables consistent crediting across jurisdictions, supports policy decision-making, and
strengthens alignment between Article 6 implementation and global temperature goals.

Introduction

Limiting warming to 1.5°C will require 100-300 GtCOsqe of cumulative carbon dioxide re-
moval (CDR) by 2100, an ambition grounded in science-based net-zero targets™ and codified
in the Paris Agreement.”® Article 6 of the Agreement establishes a framework for interna-
tional cooperation, enabling countries to meet their nationally determined contributions
(NDCs) through bilateral trading (Article 6.2) and a centralized crediting mechanism (Arti-
cle 6.4). To date, 78% of countries anticipate using these mechanisms, with CDR, expected
to contribute up to 3.5 GtCOqe by 2030.2

Yet the climate impact of these pledges will depend not only on the volume of removal
credits delivered, but also on the quality of the accounting infrastructure that defines, verifies,
and transfers atmospheric mitigation outcomes.™ Current systems credit removals without a
direct linkage to the atmospheric carbon balance, enabling crediting outcomes to drift from

the physical carbon flows they are meant to represent—a structural divergence we term
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the attribution gap. As CDR scales, this gap could propagate across international market
systems, eroding the atmospheric integrity of the Paris framework and undermining global
efforts to fight climate change.”

Historical experience illustrates how accounting infrastructure can shape the relation-
ship between credited and atmospheric impact. Under the Clean Development Mechanism
(CDM)—a system built to facilitate cost-effective emissions reductions and avoidances—
credit issuance relies on unverifiable additionality tests, arbitrary baselines, and flexible
system boundaries. Although CDM methodologies have evolved, accounting reflects mod-
eled scenarios rather than realized atmospheric impacts:*%14 despite more than $400 billion
invested,® a recent systematic review found that fewer than 16% of examined offset credits
minted under the CDM and other programs delivered real emission reductions.*® This ex-
perience demonstrates a broader structural lesson: without a clear reference frame anchored
to the atmospheric carbon balance, accounting architectures cannot guarantee alignment
between credited and physical outcomes.

Contemporary CDR crediting systems risk repeating this structural flaw. Many programs

177220 even as removals

retain project-based architectures developed for emissions avoidance,
are expected to scale far beyond historical markets and perform distinct functions in net-zero
pathways.?#*¥ Additionality tests and counterfactual logic—intrinsic to emissions avoidance
and reduction schemes®'—sit uneasily with removals, which can in principle be quantified
directly through observable carbon fluxes. Jurisdictional and programmatic fragmentation
further embeds incompatible system boundaries and normative choices into core accounting
rules. 2222027 Tooether, these features impede comparability across contexts and obscure
what constitutes atmospheric CO, removal,?2% % creating and widening the attribution gap
as CDR scales.

Addressing the attribution gap requires a foundational reference frame that consistently
links project-level data to the atmospheric carbon mass balance. We propose an objective
atmospheric basis (OAB) for CDR accounting: a physically grounded accounting layer that
records carbon fluxes using a ledger-based architecture analogous to financial accounting
(Box 1). Under OAB, positive greenhouse gas (GHG) fluxes (emissions) and negative fluxes
(removals) are treated as additive inverse liability-asset pairs traced across process stages.
This structure separates objective, measurement-based accounting from normative crediting
decisions, enabling regulators, crediting programs, and market participants to apply differ-
ent governance choices without obscuring underlying atmospheric impacts. By providing a
consistent foundation on which disparate actors and policies can operate, OAB links empir-
ical carbon data to transparent, interoperable decision frameworks and provides a pathway

toward convergent accounting under Article 6.
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In the sections that follow, we situate OAB within the evolution of carbon accounting
architectures and apply it to biochar carbon removal (BCR), a dominant pathway in today’s
engineered CDR portfolio. We then evaluate how an OAB architecture could prevent at-

tribution gaps, balance mitigation incentives, and strengthen the implementation of Article

6.

Box 1: Accounting for removals with an Objective Atmospheric Basis

An effective carbon removal accounting infrastructure should use an environmental ledger to track
atmospheric carbon flux, apply consistent and fair allocation rules, and apply equally across all CDR
pathways:

(1) Anchor in atmospheric mass balance: All system boundaries are defined relative to atmo-

spheric carbon. Only with an atmospheric reference frame can atmospheric removal be inferred.

(2) Consistently allocate upstream emissions: Ensure consistent allocation of upstream emis-
sions in multifunctional systems using a distribution coefficient, q*, that assigns burdens across

co-products.
(3) Track carbon explicitly: Record carbon flux as a physical transfer using environmental ledgers.

(4) Track emissions and removals as durable ledger entries: Adopt a technology and policy-
agnostic representation of carbon fluxes across the whole process value chain. Assets and liabilities

represent additive inverse pairs.

(5) Enable dynamic permanence tracking: Perform liability retention and rebalancing when

storage is lost or degraded. Require re-evaluation of storage inventories at appropriate intervals.

Evolution and Limitations of Carbon Accounting Architectures

As Article 6 links accounting systems across contexts and scales, inconsistencies among
them magnify risks of misrepresentation and create administrative barriers to international
trade. 2357838 Project-level crediting approaches remain methodologically fragmented and of-
ten fail to distinguish emissions reductions from removals,2%325%42vendering them poorly
aligned with jurisdictional and national frameworks. Those higher-level systems likewise rely
on additionality tests and baseline logic but typically operate on aggregated observational
data with limited project-level specificity.®7 At the planetary scale, integrated assessment
and Earth system models represent mitigation explicitly as physical carbon flows.® 3 These
layers cannot converge without a unifying reference frame; just as financial accounting de-
pends on standardized rules to ensure interoperability, carbon accounting must function as
a shared infrastructure across scales. 2424445 Negted architectures, where project data aggre-
gates cleanly into jurisdictional and global assessments, are only feasible if all scales draw

on neutrally defined flux units.5®
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A common, interoperable basis linking project-level carbon fluxes to atmospheric out-
comes provides this neutral foundation.®*¥ Carbon accounting now spans diverse institutions
and objectives—from project crediting to policymaking and national inventory management.
While different objectives may necessitate different interpretations,***%% the practice of ac-
counting should consistently represent material carbon flows. Flux-based accounting ac-
complishes this by selecting and interpreting the subset of observable greenhouse gas flows
attributable to a CDR project™ Life cycle assessment (LCA) has formalized such logic
through “cradle-to-grave” inventories, yet LCA was not designed for CDR and leaves wide
discretion over system boundaries, treatment of multi-functional processes, and the classifi-
cation of emissions reductions versus removals. 1394048 Standards that permit “zero-burden”
treatment (i.e., no upstream emissions allocation) of "waste” feedstocks further distort flux
logic and undermine efforts to distinguish emissions reductions from true CDR04955,

These inconsistencies are especially acute in biomass-based systems, which sit at the
intersection of LCA conventions, feedstock classifications, and upstream allocation. A re-
cent review of 36 distinct biochar deployments found that project impacts determined with
LCA methods could not be reliably intercompared due to inconsistent boundary conditions,
functional units, and other parameters.®® At roughly 1 tCOse of embodied emissions per
tonne of biomass carbon produced,*™® full mobilization of sustainably harvestable crop
residues in such systems without proper attribution could bias global CDR balances by
nearly 1.4 GtCOse annually.®? Such distortions illustrate how inconsistencies in account-
ing infrastructure—rather than performance of individual CDR pathways—can propagate

substantial attribution gaps at scale.

Analytical framework and allocation methodology

A carbon accounting architecture capable of preventing attribution gaps should operate
from a common atmospheric reference frame and represent both mitigation and ownership
through empirically grounded carbon transfers. OAB meets these requirements by tracking
carbon explicitly through mass-balance principles implemented in a two-column ledger sys-
tem. To illustrate how OAB links physical fluxes to ownership and liability, we apply the
framework to a gradient of biomass-based systems—from pristine ecosystems to intensively
managed croplands and biochar production—and show how the architecture preserves causal

correspondence between carbon flows and CDR claims.



157

158

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

176

177

KEY: [ ] atmospheric carbon @ reduced carbon

respiration a: decomposition a decomposition 8

pristine ecosystem

atmosphere

iCO,

biomass m

o0 soil organic

matter

Figure 1: Molar flux of carbon in pristine ecosystems, where the influx of atmospheric carbon (fCO3) is
in balance with efflux of carbon via soil respiration from roots and heterotrophic organisms. Note that half
of the influx of carbon from the atmosphere is immediately respired by plants such that photosynthesis is
roughly 50% efficient.®2 Decomposition from successively slower-cycling pools (i.e., litter, soil organic matter)
balances the remaining carbon to yield a system at equilibrium.

Pristine and unmanaged ecosystems

Pristine, undisturbed, and unmanaged ecosystems define the null removal case. Although
they exchange carbon continuously with the atmosphere, their carbon inventory remains
nominally at steady-state: atmospheric carbon uptake by plant biomass (fCO;) is balanced
by biogenic carbon emissions from soil respiration and decomposition.? This equilibrium
yields a constant ecosystem carbon reservoir (C(t)) with no net carbon storage over time
(Fig. [1).

Under OAB, carbon removed from the atmosphere and stored in a reservoir is designated
as an asset, while any subsequent release of oxidized carbon back to the atmosphere consti-
tutes a liability. Systems at steady-state generate neither assets nor liabilities, indicated by

a storage rate of zero,
ac

dt

where C, is the mass flux of carbon into the system and k is the system loss coefficient. Al-

=Cp—kC =0 (1)

though these ecosystems may display substantial carbon stocks (C'(t) >> 0) and fluxes, mass
accumulation may have occurred long ago, constituting no additional removal. Accordingly,
fluxes in these systems are not creditable.

Some pristine ecosystems may temporarily accrue carbon (i.e., dC/dt > 0) due to
COs, fertilization, enhanced precipitation, or temperature changes associated with climate
change.® However, these are unmanaged and potentially non-durable gains—and should
not be recognized as removals on an environmental ledger without additional intervention
and assumed oversight.#? Including passive sinks in net-zero claims also obscures national

inventory and target setting, thereby undermining climate change mitigation objectives. 34363
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While pristine ecosystems cannot generate new carbon assets, they can still incur liabil-
ities. Storage reversal can occur in response to wildfire, drought, pestilence, deforestation,
and other disturbances.®*®> When such reversals occur, the landowner—private or public—
must recognize a carbon liability even in the absence of a prior carbon asset or credited

removal .42

Managed ecosystems

In contrast to pristine ecosystems, managed ecosystems and croplands introduce intentional
and deliberate intervention that disrupts the carbon balance, creating measurable departures
from equilibrium that enable assets and liabilities to be established (Fig. . Carbon fluxes
here encompass both biological processes, including non-CO, GHGs (e.g., NoO and CHy),
and emissions resulting from material inputs (e.g., seedling production and planting, fertilizer
usage, tillage, harvesting).®® Under OAB, these systems are modeled with the following

dynamic mass balance:
ac
I S S e 2
i j i j

where ). A; represents the carbon added to storage as assets, and ) i L; is the sum of
liability fluxes resulting from system feedbacks (kC) and technospheric emissions () E;).
Although system energy inputs are not directly tracked as liabilities, the associated emissions
(E;) are. Under this framework, carbon assets (A;) can be generated and transferred, while
liabilities persist and must be rebalanced if storage degrades. In principle, these systems
may also inherit upstream liabilities from infrastructure establishment and raw material
production. For simplicity, these liabilities are not considered here.

The resulting environmental ledger (Fig. ) links the biophysical mass balance (Fig.
) to ownership transfers: photosynthesis generates assets, in-system emissions create lia-
bilities, and both are assigned to harvested biomass at the point of sale.*¥ Each subsequent
transaction carries its carbon value with it to enable traceable responsibility through the
supply chain.

The OAB framework thus achieves two objectives:
1. Accountability: the land manager’s closing balance, and
2. Asset quantification: the atmospheric mass balance over the reporting period.

Here, a closing balance of zero implies neither additional carbon liability nor remaining

transferable assets. The value of assets passed downstream depends on the removal value of
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Figure 2: a) Semiquantitative representation of carbon flows in managed agricultural systems, where the
influx (fCO3) and efflux (respiration and decomposition flux) of carbon may no longer balance. Some COq
influx is immediately respired due to photosynthetic inefficiency (black dots denoted respiration). The
system boundary (gray box) includes technospheric energy inputs (e.g., machinery, water pumping, and
fertilizer). Litter® denotes residues left on field per sustainable harvest guidelines.7 b) The associated
environmental balance sheet: photosynthesis generates assets; in-system GHG and energy-use emissions
create liabilities. Assets/liabilities tied to products transfer to end-users at sale (indicated with parentheses).
Flows follow a sign convention (in = positive, out = negative) with fictious, dimensionless units. Supplier
liabilities (e.g., liabilities associated with fuel, seeds, equipment) are omitted for simplicity.
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captured carbon relative to ancillary emissions. While this system mirrors the presentation
of E-assets under the E-liability framework,*® OAB treats assets as physical fluxes from the
atmosphere to storage without prescribing what constitutes a tradable unit. Under OAB,
asset /liability matching provides a critical test of carbon accountability, with the mass bal-
ance as the central arbiter of integrity according to the process emissions inventory. Managed
systems thus mark the first point where human intervention transforms flux assessment into
verifiable climate accountability, a necessary bridge between biophysical realities and market

governance.

Biochar systems

BCR (>80% of historic engineered carbon removal deliveries®) commonly utilizes crop
residues derived from food systems. Under zero-burden accounting rules, cultivation-phase
emissions in food systems are attributed exclusively to primary food products. Residues
enter the biochar production gate burden-free (e.g., Fig. , Ly, Ly, L3) despite their mate-

rial connection to the biomass. 210562

' Upscaled to biochar carbon removal (BCR) systems,
OAB addresses this distortion via rule-based allocation to restore the causal link between

emissions investment and project-level climate service.

Allocation across co-products

Allocation is the critical step in determining how carbon accountability propagates through
a value chain to result in a system-wide carbon budget. First, OAB tracks and transfers
ledger items from the land manager to the biochar producer. Upstream liabilities are then
partitioned and carried forward, defining clear system boundaries and ensuring net-zero
aligned process emissions assessments (see OAB versus zero-burden inventory in Figure )

In practice, once feedstock enters the BCR system, upstream emissions are allocated to
update the biochar producer’s environmental ledger, reflecting both net process emissions
and carbon ownership. Net-negativity depends on whether the carbon storage value of
the feedstock exceeds operational and inherited emissions liabilities (Fig. [3p) The closing
balance shows the net position of asset and liability fluxes, yielding one of three possible
outcomes: (1) assets exceed liabilities, resulting in a transferable asset, (2) assets match
liabilities resulting in no outstanding obligations, but no potential removal benefit, or (3)
liabilities exceed assets, leaving the producer with outstanding obligations and no viable
removal assets.

Unlike economic allocation, which links emissions to fluctuating market prices, or “zero-

burden” assumptions that admit low-value co-products burden free, OAB introduces a dis-
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tribution coefficient (¢*) to allocate embodied emissions in proportion to carbon content.
For example, if an agricultural producer yields primary and secondary biomass products in
equal mass ratio and carbon content, each stream receives 50% of the production emissions
(see the supplementary information (SI) for methods). This carbon-based method prevents
opportunistic partitioning and ensures that even low-value co-products inherit an appro-
priate share of upstream process emissions. In doing so, OAB ensures that allocation is
proportional to a product’s removal value and reflective of the embedded energy and carbon
necessary to produce it. This strategy establishes parity across pathways and projects—and

is an essential element of OAB as a consistent, interoperable accounting architecture.

10
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Figure 3: a) Carbon fluxes in biochar systems, with (1) upstream assets and liabilities transferred from
residue producer (see Fig. 2) to storage operator at purchase according to the emissions partition coefficient
(¢*). The red dashed “zero burden” boundary excludes upstream liabilities Ly, La, and Ls. Biochar
production adds new liabilities but yields net assets that can be sold or retained by the removal operator.
Based on current market treatments, biochar’s quality determines its permanence factor (f,), which defines
the fraction of carbon expected to remain over 100 years. 773 Alternative time-dependent formulations
are compatible with the objective atmospheric basis (OAB) to determine the resulting outflow of reduced
carbon units (2). See symbol key in Figure [2 b) The associated environmental balance sheet: assets from
photosynthesis and liabilities generated from upstream processes and biochar pyrolysis. Net removal occurs
when assets exceed liabilities.
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Upstream burdens determine atmospheric carbon removal

OAB dictates that a CDR claim is valid only when it reflects net atmospheric removal, not
merely carbon storage within a project boundary. Applying OAB allocation to three rep-
resentative BCR feedstocks across five lifecycle stages reveals the extent to which upstream
burdens and allocation choices dictate true removal value (Fig. . Among the selected
feedstocks, forestry residues consistently yield net-negative outcomes due to low upstream
burdens and favorable co-product allocation conditions. Agricultural residues, such as paddy
straw, exhibit the greatest potential variability, ranging from marginally net-negative to
strongly net-emitting. Purpose-grown feedstocks also achieve net-negativity, regardless of
upstream burden assumptions, but their ultimate benefit depends on how land-use change is

404 These results demonstrate that ap-

managed—an issue which remains unaddressed here.
parent removal can be overstated by an order of magnitude if upstream burdens are ignored.
OAB corrects this distortion by carrying forward embedded liabilities to enable assessment
of net-zero claims.

This analysis clarifies three scenarios with distinct implications for CDR claims. Forestry
residues and purpose-grown biomass consistently yield net-negativity under OAB, supporting
their eligibility for use in compensatory CDR markets. In contrast, when biochar is produced
from agricultural residues, inclusion of upstream cultivation emissions can render the process
net-emitting. In these cases, the benefit lies not in generating offset credits, but in re-
balancing upstream liabilities—reducing net emissions in the parent agricultural system and
stimulating broader decarbonization. Applying OAB to rice straw shows that BCR can
reduce emissions liabilities by up to 60% for the rice straw. Given that rice cultivation
contributes nearly half of global agricultural emissions (=1 GtCO2e/yr)™™® and generates
roughly 0.24 GtC in residues,®” this reduction represents a significant mitigation opportunity.
However, it should be recognized as emissions reductions within the source system—and not

mischaracterized as independent “offset” removal.

12
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Figure 4: COs balance for biochar production at 500°C from a) wood chips (n = 2), b) paddy straw
(n = 4), and c) miscanthus x giganteus (n = 2). Bars represent average emissions (positive) or removals
(negative) across five lifecycle stages: A, B, C, D, and E indicate cultivation, biomass capture, biomass
processing, pyrolysis loss, and biochar end of life, respectively. Gray scatter plots show cumulative sums with
and without cultivation burdens (“atmospheric boundary” (OAB treatment) vs. “zero burden”). Shaded
regions reflect the range of cumulative outcomes per feedstock. The partition coefficient g* denotes carbon-
based allocation across multifunctional processes. See SI for activity details, product parameters, and q*
calculations.

Global implications of the attribution gap in contemporary CDR

accounting

Misaligned accounting at the project-level—as demonstrated by BCR—can propagate into
a systemic attribution gap when upstream emissions are omitted from crediting boundaries.
Unlike over-crediting (unmet performance) or leakage (spatial displacement), the attribution
gap arises from a structural misalignment of unfit accounting systems—mnot a technological
failure. High-quality engineered CDR can deliver genuine atmospheric removal—but only if
accounting systems consistently true removals from emissions reductions. CDR, in market
and policy contexts, is a specific activity that requires a dedicated accounting construction.
Each credited removal must be the additive inverse of a quantified emission. Without closure
of this balance, credits license continued emissions rather than neutralize them, driving excess
atmospheric loading.

Applying OAB to rice straw systems indicates that attribution gaps may generate excess
atmospheric loading approaching 0.8GtCOse per year®—comparable to erasing more than a
decade of progress in U.S. power-sector decarbonization™—simply by omitting cultivation-

phase emissions. By reconciling removal and emissions ledgers OAB prevents this hidden
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atmospheric debt and directs capital toward verified mitigation outcomes. In this way, carbon
accounting functions as core climate infrastructure supporting long-term decarbonization.

Fair and systematic comparison across CDR pathways similarly requires the recognition
of embedded burdens under OAB. All pathways require energy and material inputs and
should be assessed accordingly to incentivize high-impact project development.®# . Existing
direct air capture (DAC) crediting rules alredy require upstream emissions allocation, in-
centivizing low-carbon energy sourcing and off-grid configurations.™ The same discipline is
needed for biochar, where net emissions outcomes depend strongly on feedstock origin, base-
line disposition, and regional practices.™ By allocating upstream burdens to proportionally
to CDR value, OAB would strengthen the mitigation contribution of biochar while improv-
ing agricultural emissions outcomes—rewarding higher-integrity deployment and enabling
credible comparison of biochar’s removal value relative to other pathways.

These implications extend beyond project integrity to global and intergenerational equity.
Without allocation discipline, unmitigated liabilities remain in host countries, obscuring
mitigation potential and creating future atmospheric debt (e.g. residue-derived biochar can
decarbonize rice systems by reducing total emissions by up to 33%). As host countries
design decarbonization strategies aligned with future economic growth, retaining domestic
mitigation potential may be essential to sovereignty. Transacting removals without OAB
risks may exporting benefits while leaving liabilities behind—shifting atmospheric debt to
future generations with potentially severe economic and environmental consequences. OAB
provides an accurate, interoperable accounting framework to re-balance incentives across
crediting and emissions reduction objectives, recognizing the distinct and complementary

roles these activities play in achieving long-term net-zero objectives.

Building decision-support infrastructure for markets, policy, and

governamnce

OAB functions as a connective layer linking ground-truth flux data to the normative sys-
tems of crediting, inventories, and governance (Fig. . It translates measured carbon
transfers—the most objective layer of the system—into actionable information by identi-
fying the relevant physical flows and applying explicit attribution functions. By design,
OAB avoids subjective constructs such as additionality and baseline setting, preserving both

atmospheric integrity and the flexibility needed to scale across jurisdictions.
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Figure 5: The Objective Atmospheric Basis (OAB) serves as a message-passing layer between physical
atmospheric carbon fluxes and the normative systems of policy, crediting, and governance. The bottom
layer represents objective asset and liability fluxes of COg to and from the atmosphere, f = {4;, L;}, which
exist independent of any accounting system. OAB (middle) selects a project-relevant subset f, C f, assigns
attribution weights ¢, and computes the emissions balance as EB = ), A; — ) j q;L;. Decision makers
can consume this with their own activation or interpretation function o(EB) to translate accounting data
to markets, inventories, and policy instruments (top). These systems define incentives, eligibility, and credit
governance on top of OAB’s physically grounded, end-to-end quantification scheme.

By establishing accurate, interoperable accounting foundations and enforcing value chain
accountability via environmental ledgers, OAB enables policymakers and market stakehold-
ers to design incentives, allocate capital efficiently, and communicate outcomes transparently.
However, the classification of “offset” removals or project-level climate service value remains
inherently normative.2222627 OAB defines net negativity within explicit system boundaries
that may exclude broader agricultural emissions; in multi-output systems, co-products retain
liabilities under carbon-based allocation. While alternative allocation strategies are avail-
able, 580 robust accounting requires transparent, reproducible definitions grounded in causal
alignment to atmospheric outcomes. By allocating emissions in proportion to CDR value,
OAB provides a reproducible approach while preserving the integrity of atmospheric impact.

Operationalizing OAB will require parallel development across both governance and in-
frastructure domains: alignment across inventories and registries, robust allocation rules for
complex pathways, accessible ledger infrastructure, parallel analysis of indirect effects, and a
shift towards ledger-based permanence liability. Detailed implementation priorities are pro-

vided in Supplementary Box 1. As Article 6 of the Paris Agreement matures and mechanisms
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such as the EU’s Carbon Removals and Carbon Farming Regulation®' stimulate demand,
ensuring accurate, interoperable, and durable crediting will be essential.

OAB provides a unifying scaffold for this convergence. Grounded in physical flux and
compatible with diverse technologies, OAB enables institutions to consistently interpret
project-level data while preserving the distinction between emissions reductions and true
removals. By closing the attribution gap that arises when accounting systems diverge from
the atmospheric carbon balance, OAB strengthens credit integrity, supports efficient cap-
ital allocation, and improves comparability across pathways. While it cannot resolve all
institutional or technical (e.g., permanence assessment) challenges, OAB reproducibly aligns

carbon accounting with the climate system.
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