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Achieving the goals of the Paris Agreement depends not only on deploying carbon dioxide14

removal (CDR), but on the accounting infrastructure used to define and track its climate15

impact. Today, removals are increasingly credited through project-based markets that op-16

erate independently from other systems and without explicit linkages to the atmospheric17

carbon balance. This decoupling risks an “attribution gap,” where credited removals coexist18

with uncounted emissions, potentially distorting international climate targets and weakening19

incentives to decarbonize hard-to-abate sectors.20

We introduce an Objective Atmospheric Basis (OAB): a shared accounting infrastruc-21

ture that tracks emissions and removals using physical carbon balances and two-column22

environmental ledgers. Rather than defining policy outcomes, OAB provides a neutral data23

interpretation layer that can be used across carbon markets, national inventories, and Arti-24

cle 6 cooperation mechanisms. Applied to biochar carbon removal, it shows that upstream25

emissions can determine whether a project delivers net removal or emissions reductions. Inte-26

grating this accounting layer with net-zero target design, crediting rules under Article 6, and27

economic incentives for industry could help ensure that carbon markets complement—but28

not replace—direct emissions reductions, while avoiding atmospheric debt shifting.29

Highlights30

• Current carbon removal accounting infrastructure creates attribution gaps, where re-31

movals are credited while associated emissions remain in the atmosphere.32

• We introduce an Objective Atmospheric Basis (OAB) that tracks carbon explicitly33

using mass balance, treating emissions as persistent liabilities and removals as assets.34
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• Applying OAB to biochar shows that upstream emissions allocation often determines35

net climate impact, with some residue-based systems shifting emissions burdens rather36

than delivering removals.37

• OAB functions as accounting infrastructure that enables consistent interpretation of38

carbon fluxes across projects, national inventories, and Paris Agreement Article 6 mech-39

anisms.40

Summary41

Efforts to integrate carbon dioxide removal (CDR) into climate policy, markets, and42

inventories are advancing rapidly, but without a unified accounting logic to attribute atmo-43

spheric impacts. Existing crediting approaches omit upstream emissions, creating a struc-44

tural attribution gap in which removals are credited even as associated emissions remain in45

the atmosphere. Although it remains small today, we find that this gap could reach gigaton-46

scale annually in biomass-based CDR systems. To address this discrepancy, we propose47

an Objective Atmospheric Basis (OAB): a technology-agnostic accounting framework that48

tracks carbon transfers explicitly using mass-balance ledger that casts emissions as persistent49

liabilities and removals as assets. Applied to feedstock materials for biochar carbon removal50

(BCR), OAB reveals how system boundaries and emissions allocation decisions shape net re-51

moval outcomes. By reconciling emissions and removals within a single atmospheric reference52

frame, OAB closes the attribution gap and provides core infrastructure for scalable, high-53

integrity CDR. As a common language for carbon bookkeeping grounded in physical fluxes,54

OAB enables consistent crediting across jurisdictions, supports policy decision-making, and55

strengthens alignment between Article 6 implementation and global temperature goals.56

Introduction57

Limiting warming to 1.5◦C will require 100–300 GtCO2e of cumulative carbon dioxide re-58

moval (CDR) by 2100, an ambition grounded in science-based net-zero targets1,2 and codified59

in the Paris Agreement.3,4 Article 6 of the Agreement establishes a framework for interna-60

tional cooperation, enabling countries to meet their nationally determined contributions61

(NDCs) through bilateral trading (Article 6.2) and a centralized crediting mechanism (Arti-62

cle 6.4). To date, 78% of countries anticipate using these mechanisms, with CDR expected63

to contribute up to 3.5 GtCO2e by 2030.5,664

Yet the climate impact of these pledges will depend not only on the volume of removal65

credits delivered, but also on the quality of the accounting infrastructure that defines, verifies,66

and transfers atmospheric mitigation outcomes.7,8 Current systems credit removals without a67

direct linkage to the atmospheric carbon balance, enabling crediting outcomes to drift from68

the physical carbon flows they are meant to represent—a structural divergence we term69
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the attribution gap. As CDR scales, this gap could propagate across international market70

systems, eroding the atmospheric integrity of the Paris framework and undermining global71

efforts to fight climate change.972

Historical experience illustrates how accounting infrastructure can shape the relation-73

ship between credited and atmospheric impact. Under the Clean Development Mechanism74

(CDM)—a system built to facilitate cost-effective emissions reductions and avoidances—75

credit issuance relies on unverifiable additionality tests, arbitrary baselines, and flexible76

system boundaries. Although CDM methodologies have evolved, accounting reflects mod-77

eled scenarios rather than realized atmospheric impacts:10–14 despite more than $400 billion78

invested,15 a recent systematic review found that fewer than 16% of examined offset credits79

minted under the CDM and other programs delivered real emission reductions.16 This ex-80

perience demonstrates a broader structural lesson: without a clear reference frame anchored81

to the atmospheric carbon balance, accounting architectures cannot guarantee alignment82

between credited and physical outcomes.83

Contemporary CDR crediting systems risk repeating this structural flaw. Many programs84

retain project-based architectures developed for emissions avoidance,17–22 even as removals85

are expected to scale far beyond historical markets and perform distinct functions in net-zero86

pathways.23,24 Additionality tests and counterfactual logic—intrinsic to emissions avoidance87

and reduction schemes25—sit uneasily with removals, which can in principle be quantified88

directly through observable carbon fluxes. Jurisdictional and programmatic fragmentation89

further embeds incompatible system boundaries and normative choices into core accounting90

rules.21,22,26,27 Together, these features impede comparability across contexts and obscure91

what constitutes atmospheric CO2 removal,2,28–36 creating and widening the attribution gap92

as CDR scales.93

Addressing the attribution gap requires a foundational reference frame that consistently94

links project-level data to the atmospheric carbon mass balance. We propose an objective95

atmospheric basis (OAB) for CDR accounting: a physically grounded accounting layer that96

records carbon fluxes using a ledger-based architecture analogous to financial accounting97

(Box 1). Under OAB, positive greenhouse gas (GHG) fluxes (emissions) and negative fluxes98

(removals) are treated as additive inverse liability-asset pairs traced across process stages.99

This structure separates objective, measurement-based accounting from normative crediting100

decisions, enabling regulators, crediting programs, and market participants to apply differ-101

ent governance choices without obscuring underlying atmospheric impacts. By providing a102

consistent foundation on which disparate actors and policies can operate, OAB links empir-103

ical carbon data to transparent, interoperable decision frameworks and provides a pathway104

toward convergent accounting under Article 6.105
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In the sections that follow, we situate OAB within the evolution of carbon accounting106

architectures and apply it to biochar carbon removal (BCR), a dominant pathway in today’s107

engineered CDR portfolio. We then evaluate how an OAB architecture could prevent at-108

tribution gaps, balance mitigation incentives, and strengthen the implementation of Article109

6.110

Box 1: Accounting for removals with an Objective Atmospheric Basis

An effective carbon removal accounting infrastructure should use an environmental ledger to track

atmospheric carbon flux, apply consistent and fair allocation rules, and apply equally across all CDR

pathways:

(1) Anchor in atmospheric mass balance: All system boundaries are defined relative to atmo-

spheric carbon. Only with an atmospheric reference frame can atmospheric removal be inferred.

(2) Consistently allocate upstream emissions: Ensure consistent allocation of upstream emis-

sions in multifunctional systems using a distribution coefficient, q*, that assigns burdens across

co-products.

(3) Track carbon explicitly: Record carbon flux as a physical transfer using environmental ledgers.

(4) Track emissions and removals as durable ledger entries: Adopt a technology and policy-

agnostic representation of carbon fluxes across the whole process value chain. Assets and liabilities

represent additive inverse pairs.

(5) Enable dynamic permanence tracking: Perform liability retention and rebalancing when

storage is lost or degraded. Require re-evaluation of storage inventories at appropriate intervals.
111

Evolution and Limitations of Carbon Accounting Architectures112

As Article 6 links accounting systems across contexts and scales, inconsistencies among113

them magnify risks of misrepresentation and create administrative barriers to international114

trade.23,37,38 Project-level crediting approaches remain methodologically fragmented and of-115

ten fail to distinguish emissions reductions from removals,27,32,39–42rendering them poorly116

aligned with jurisdictional and national frameworks. Those higher-level systems likewise rely117

on additionality tests and baseline logic but typically operate on aggregated observational118

data with limited project-level specificity.3,37 At the planetary scale, integrated assessment119

and Earth system models represent mitigation explicitly as physical carbon flows.3,43 These120

layers cannot converge without a unifying reference frame; just as financial accounting de-121

pends on standardized rules to ensure interoperability, carbon accounting must function as122

a shared infrastructure across scales.2,42,44,45 Nested architectures, where project data aggre-123

gates cleanly into jurisdictional and global assessments, are only feasible if all scales draw124

on neutrally defined flux units.38125
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A common, interoperable basis linking project-level carbon fluxes to atmospheric out-126

comes provides this neutral foundation.3,43 Carbon accounting now spans diverse institutions127

and objectives—from project crediting to policymaking and national inventory management.128

While different objectives may necessitate different interpretations,26,27,46 the practice of ac-129

counting should consistently represent material carbon flows. Flux-based accounting ac-130

complishes this by selecting and interpreting the subset of observable greenhouse gas flows131

attributable to a CDR project10 Life cycle assessment (LCA) has formalized such logic132

through “cradle-to-grave” inventories, yet LCA was not designed for CDR and leaves wide133

discretion over system boundaries, treatment of multi-functional processes, and the classifi-134

cation of emissions reductions versus removals.10,39,47,48 Standards that permit “zero-burden”135

treatment (i.e., no upstream emissions allocation) of ”waste” feedstocks further distort flux136

logic and undermine efforts to distinguish emissions reductions from true CDR10,49–55.137

These inconsistencies are especially acute in biomass-based systems, which sit at the138

intersection of LCA conventions, feedstock classifications, and upstream allocation. A re-139

cent review of 36 distinct biochar deployments found that project impacts determined with140

LCA methods could not be reliably intercompared due to inconsistent boundary conditions,141

functional units, and other parameters.56 At roughly 1 tCO2e of embodied emissions per142

tonne of biomass carbon produced,57–59 full mobilization of sustainably harvestable crop143

residues in such systems without proper attribution could bias global CDR balances by144

nearly 1.4 GtCO2e annually.60 Such distortions illustrate how inconsistencies in account-145

ing infrastructure—rather than performance of individual CDR pathways—can propagate146

substantial attribution gaps at scale.147

Analytical framework and allocation methodology148

A carbon accounting architecture capable of preventing attribution gaps should operate149

from a common atmospheric reference frame and represent both mitigation and ownership150

through empirically grounded carbon transfers. OAB meets these requirements by tracking151

carbon explicitly through mass-balance principles implemented in a two-column ledger sys-152

tem. To illustrate how OAB links physical fluxes to ownership and liability, we apply the153

framework to a gradient of biomass-based systems—from pristine ecosystems to intensively154

managed croplands and biochar production—and show how the architecture preserves causal155

correspondence between carbon flows and CDR claims.156
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Figure 1: Molar flux of carbon in pristine ecosystems, where the influx of atmospheric carbon (fCO2) is
in balance with efflux of carbon via soil respiration from roots and heterotrophic organisms. Note that half
of the influx of carbon from the atmosphere is immediately respired by plants such that photosynthesis is
roughly 50% efficient.62 Decomposition from successively slower-cycling pools (i.e., litter, soil organic matter)
balances the remaining carbon to yield a system at equilibrium.

Pristine and unmanaged ecosystems157

Pristine, undisturbed, and unmanaged ecosystems define the null removal case. Although158

they exchange carbon continuously with the atmosphere, their carbon inventory remains159

nominally at steady-state: atmospheric carbon uptake by plant biomass (fCO2) is balanced160

by biogenic carbon emissions from soil respiration and decomposition.61 This equilibrium161

yields a constant ecosystem carbon reservoir (C(t)) with no net carbon storage over time162

(Fig. 1).163

Under OAB, carbon removed from the atmosphere and stored in a reservoir is designated164

as an asset, while any subsequent release of oxidized carbon back to the atmosphere consti-165

tutes a liability. Systems at steady-state generate neither assets nor liabilities, indicated by166

a storage rate of zero,167

dC

dt
= Ċin − kC = 0 (1)

where Ċin is the mass flux of carbon into the system and k is the system loss coefficient. Al-168

though these ecosystems may display substantial carbon stocks (C(t) >> 0) and fluxes, mass169

accumulation may have occurred long ago, constituting no additional removal. Accordingly,170

fluxes in these systems are not creditable.171

Some pristine ecosystems may temporarily accrue carbon (i.e., dC/dt > 0) due to172

CO2 fertilization, enhanced precipitation, or temperature changes associated with climate173

change.43 However, these are unmanaged and potentially non-durable gains—and should174

not be recognized as removals on an environmental ledger without additional intervention175

and assumed oversight.45 Including passive sinks in net-zero claims also obscures national176

inventory and target setting, thereby undermining climate change mitigation objectives.3,43,63177
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While pristine ecosystems cannot generate new carbon assets, they can still incur liabil-178

ities. Storage reversal can occur in response to wildfire, drought, pestilence, deforestation,179

and other disturbances.64,65 When such reversals occur, the landowner—private or public—180

must recognize a carbon liability even in the absence of a prior carbon asset or credited181

removal.45182

Managed ecosystems183

In contrast to pristine ecosystems, managed ecosystems and croplands introduce intentional184

and deliberate intervention that disrupts the carbon balance, creating measurable departures185

from equilibrium that enable assets and liabilities to be established (Fig. 2). Carbon fluxes186

here encompass both biological processes, including non-CO2 GHGs (e.g., N2O and CH4),187

and emissions resulting from material inputs (e.g., seedling production and planting, fertilizer188

usage, tillage, harvesting).66 Under OAB, these systems are modeled with the following189

dynamic mass balance:190

dC

dt
=

∑
i

Ai −
∑
j

Lj =
∑
i

Ai − kC −
∑
j

Ej (2)

where
∑

i Ai represents the carbon added to storage as assets, and
∑

j Lj is the sum of191

liability fluxes resulting from system feedbacks (kC) and technospheric emissions (
∑

Ej).192

Although system energy inputs are not directly tracked as liabilities, the associated emissions193

(Ej) are. Under this framework, carbon assets (Ai) can be generated and transferred, while194

liabilities persist and must be rebalanced if storage degrades. In principle, these systems195

may also inherit upstream liabilities from infrastructure establishment and raw material196

production. For simplicity, these liabilities are not considered here.197

The resulting environmental ledger (Fig. 2b) links the biophysical mass balance (Fig.198

2b) to ownership transfers: photosynthesis generates assets, in-system emissions create lia-199

bilities, and both are assigned to harvested biomass at the point of sale.44 Each subsequent200

transaction carries its carbon value with it to enable traceable responsibility through the201

supply chain.202

The OAB framework thus achieves two objectives:203

1. Accountability: the land manager’s closing balance, and204

2. Asset quantification: the atmospheric mass balance over the reporting period.205

Here, a closing balance of zero implies neither additional carbon liability nor remaining206

transferable assets. The value of assets passed downstream depends on the removal value of207
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Figure 2: a) Semiquantitative representation of carbon flows in managed agricultural systems, where the
influx (fCO2) and efflux (respiration and decomposition flux) of carbon may no longer balance. Some CO2

influx is immediately respired due to photosynthetic inefficiency (black dots denoted respiration).62 The
system boundary (gray box) includes technospheric energy inputs (e.g., machinery, water pumping, and
fertilizer). Litter* denotes residues left on field per sustainable harvest guidelines.67 b) The associated
environmental balance sheet: photosynthesis generates assets; in-system GHG and energy-use emissions
create liabilities. Assets/liabilities tied to products transfer to end-users at sale (indicated with parentheses).
Flows follow a sign convention (in = positive, out = negative) with fictious, dimensionless units. Supplier
liabilities (e.g., liabilities associated with fuel, seeds, equipment) are omitted for simplicity.
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captured carbon relative to ancillary emissions. While this system mirrors the presentation208

of E-assets under the E-liability framework,45 OAB treats assets as physical fluxes from the209

atmosphere to storage without prescribing what constitutes a tradable unit. Under OAB,210

asset/liability matching provides a critical test of carbon accountability, with the mass bal-211

ance as the central arbiter of integrity according to the process emissions inventory. Managed212

systems thus mark the first point where human intervention transforms flux assessment into213

verifiable climate accountability, a necessary bridge between biophysical realities and market214

governance.215

Biochar systems216

BCR (>80% of historic engineered carbon removal deliveries68) commonly utilizes crop217

residues derived from food systems. Under zero-burden accounting rules, cultivation-phase218

emissions in food systems are attributed exclusively to primary food products. Residues219

enter the biochar production gate burden-free (e.g., Fig. 2, L1, L2, L3) despite their mate-220

rial connection to the biomass.51,55,69–71 Upscaled to biochar carbon removal (BCR) systems,221

OAB addresses this distortion via rule-based allocation to restore the causal link between222

emissions investment and project-level climate service.223

Allocation across co-products224

Allocation is the critical step in determining how carbon accountability propagates through225

a value chain to result in a system-wide carbon budget. First, OAB tracks and transfers226

ledger items from the land manager to the biochar producer. Upstream liabilities are then227

partitioned and carried forward, defining clear system boundaries and ensuring net-zero228

aligned process emissions assessments (see OAB versus zero-burden inventory in Figure 3a).229

In practice, once feedstock enters the BCR system, upstream emissions are allocated to230

update the biochar producer’s environmental ledger, reflecting both net process emissions231

and carbon ownership. Net-negativity depends on whether the carbon storage value of232

the feedstock exceeds operational and inherited emissions liabilities (Fig. 3b) The closing233

balance shows the net position of asset and liability fluxes, yielding one of three possible234

outcomes: (1) assets exceed liabilities, resulting in a transferable asset, (2) assets match235

liabilities resulting in no outstanding obligations, but no potential removal benefit, or (3)236

liabilities exceed assets, leaving the producer with outstanding obligations and no viable237

removal assets.238

Unlike economic allocation, which links emissions to fluctuating market prices, or “zero-239

burden” assumptions that admit low-value co-products burden free, OAB introduces a dis-240
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tribution coefficient (q* ) to allocate embodied emissions in proportion to carbon content.241

For example, if an agricultural producer yields primary and secondary biomass products in242

equal mass ratio and carbon content, each stream receives 50% of the production emissions243

(see the supplementary information (SI) for methods). This carbon-based method prevents244

opportunistic partitioning and ensures that even low-value co-products inherit an appro-245

priate share of upstream process emissions. In doing so, OAB ensures that allocation is246

proportional to a product’s removal value and reflective of the embedded energy and carbon247

necessary to produce it. This strategy establishes parity across pathways and projects—and248

is an essential element of OAB as a consistent, interoperable accounting architecture.249
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Figure 3: a) Carbon fluxes in biochar systems, with (1) upstream assets and liabilities transferred from
residue producer (see Fig. 2) to storage operator at purchase according to the emissions partition coefficient
(q* ). The red dashed “zero burden” boundary excludes upstream liabilities L1, L2, and L3. Biochar
production adds new liabilities but yields net assets that can be sold or retained by the removal operator.
Based on current market treatments, biochar’s quality determines its permanence factor (f p), which defines
the fraction of carbon expected to remain over 100 years.72,73 Alternative time-dependent formulations
are compatible with the objective atmospheric basis (OAB) to determine the resulting outflow of reduced
carbon units (2). See symbol key in Figure 2. b) The associated environmental balance sheet: assets from
photosynthesis and liabilities generated from upstream processes and biochar pyrolysis. Net removal occurs
when assets exceed liabilities.
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Upstream burdens determine atmospheric carbon removal250

OAB dictates that a CDR claim is valid only when it reflects net atmospheric removal, not251

merely carbon storage within a project boundary. Applying OAB allocation to three rep-252

resentative BCR feedstocks across five lifecycle stages reveals the extent to which upstream253

burdens and allocation choices dictate true removal value (Fig. 4). Among the selected254

feedstocks, forestry residues consistently yield net-negative outcomes due to low upstream255

burdens and favorable co-product allocation conditions. Agricultural residues, such as paddy256

straw, exhibit the greatest potential variability, ranging from marginally net-negative to257

strongly net-emitting. Purpose-grown feedstocks also achieve net-negativity, regardless of258

upstream burden assumptions, but their ultimate benefit depends on how land-use change is259

managed—an issue which remains unaddressed here.46,74 These results demonstrate that ap-260

parent removal can be overstated by an order of magnitude if upstream burdens are ignored.261

OAB corrects this distortion by carrying forward embedded liabilities to enable assessment262

of net-zero claims.263

This analysis clarifies three scenarios with distinct implications for CDR claims. Forestry264

residues and purpose-grown biomass consistently yield net-negativity under OAB, supporting265

their eligibility for use in compensatory CDR markets. In contrast, when biochar is produced266

from agricultural residues, inclusion of upstream cultivation emissions can render the process267

net-emitting. In these cases, the benefit lies not in generating offset credits, but in re-268

balancing upstream liabilities—reducing net emissions in the parent agricultural system and269

stimulating broader decarbonization. Applying OAB to rice straw shows that BCR can270

reduce emissions liabilities by up to 60% for the rice straw. Given that rice cultivation271

contributes nearly half of global agricultural emissions (≈1 GtCO2e/yr)75,76 and generates272

roughly 0.24 GtC in residues,60 this reduction represents a significant mitigation opportunity.273

However, it should be recognized as emissions reductions within the source system—and not274

mischaracterized as independent “offset” removal.275
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Figure 4: CO2 balance for biochar production at 500°C from a) wood chips (n = 2), b) paddy straw
(n = 4), and c) miscanthus x giganteus (n = 2). Bars represent average emissions (positive) or removals
(negative) across five lifecycle stages: A, B, C, D, and E indicate cultivation, biomass capture, biomass
processing, pyrolysis loss, and biochar end of life, respectively. Gray scatter plots show cumulative sums with
and without cultivation burdens (“atmospheric boundary” (OAB treatment) vs. “zero burden”). Shaded
regions reflect the range of cumulative outcomes per feedstock. The partition coefficient q* denotes carbon-
based allocation across multifunctional processes. See SI for activity details, product parameters, and q*
calculations.

Global implications of the attribution gap in contemporary CDR276

accounting277

Misaligned accounting at the project-level—as demonstrated by BCR—can propagate into278

a systemic attribution gap when upstream emissions are omitted from crediting boundaries.279

Unlike over-crediting (unmet performance) or leakage (spatial displacement), the attribution280

gap arises from a structural misalignment of unfit accounting systems—not a technological281

failure. High-quality engineered CDR can deliver genuine atmospheric removal—but only if282

accounting systems consistently true removals from emissions reductions. CDR, in market283

and policy contexts, is a specific activity that requires a dedicated accounting construction.284

Each credited removal must be the additive inverse of a quantified emission. Without closure285

of this balance, credits license continued emissions rather than neutralize them, driving excess286

atmospheric loading.287

Applying OAB to rice straw systems indicates that attribution gaps may generate excess288

atmospheric loading approaching 0.8GtCO2e per year
60—comparable to erasing more than a289

decade of progress in U.S. power-sector decarbonization77—simply by omitting cultivation-290

phase emissions. By reconciling removal and emissions ledgers OAB prevents this hidden291
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atmospheric debt and directs capital toward verified mitigation outcomes. In this way, carbon292

accounting functions as core climate infrastructure supporting long-term decarbonization.293

Fair and systematic comparison across CDR pathways similarly requires the recognition294

of embedded burdens under OAB. All pathways require energy and material inputs and295

should be assessed accordingly to incentivize high-impact project development.32 . Existing296

direct air capture (DAC) crediting rules alredy require upstream emissions allocation, in-297

centivizing low-carbon energy sourcing and off-grid configurations.78 The same discipline is298

needed for biochar, where net emissions outcomes depend strongly on feedstock origin, base-299

line disposition, and regional practices.79 By allocating upstream burdens to proportionally300

to CDR value, OAB would strengthen the mitigation contribution of biochar while improv-301

ing agricultural emissions outcomes—rewarding higher-integrity deployment and enabling302

credible comparison of biochar’s removal value relative to other pathways.303

These implications extend beyond project integrity to global and intergenerational equity.304

Without allocation discipline, unmitigated liabilities remain in host countries, obscuring305

mitigation potential and creating future atmospheric debt (e.g. residue-derived biochar can306

decarbonize rice systems by reducing total emissions by up to 33%). As host countries307

design decarbonization strategies aligned with future economic growth, retaining domestic308

mitigation potential may be essential to sovereignty. Transacting removals without OAB309

risks may exporting benefits while leaving liabilities behind—shifting atmospheric debt to310

future generations with potentially severe economic and environmental consequences. OAB311

provides an accurate, interoperable accounting framework to re-balance incentives across312

crediting and emissions reduction objectives, recognizing the distinct and complementary313

roles these activities play in achieving long-term net-zero objectives.314

Building decision-support infrastructure for markets, policy, and315

governance316

OAB functions as a connective layer linking ground-truth flux data to the normative sys-317

tems of crediting, inventories, and governance (Fig. 5). It translates measured carbon318

transfers—the most objective layer of the system—into actionable information by identi-319

fying the relevant physical flows and applying explicit attribution functions. By design,320

OAB avoids subjective constructs such as additionality and baseline setting, preserving both321

atmospheric integrity and the flexibility needed to scale across jurisdictions.322
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Figure 5: The Objective Atmospheric Basis (OAB) serves as a message-passing layer between physical
atmospheric carbon fluxes and the normative systems of policy, crediting, and governance. The bottom
layer represents objective asset and liability fluxes of CO2 to and from the atmosphere, f = {Ai, Li}, which
exist independent of any accounting system. OAB (middle) selects a project-relevant subset fp ⊂ f , assigns
attribution weights q∗i , and computes the emissions balance as EB =

∑
i Ai −

∑
j q

∗
jLj . Decision makers

can consume this with their own activation or interpretation function σ(EB) to translate accounting data
to markets, inventories, and policy instruments (top). These systems define incentives, eligibility, and credit
governance on top of OAB’s physically grounded, end-to-end quantification scheme.

By establishing accurate, interoperable accounting foundations and enforcing value chain323

accountability via environmental ledgers, OAB enables policymakers and market stakehold-324

ers to design incentives, allocate capital efficiently, and communicate outcomes transparently.325

However, the classification of “offset” removals or project-level climate service value remains326

inherently normative.21,22,26,27 OAB defines net negativity within explicit system boundaries327

that may exclude broader agricultural emissions; in multi-output systems, co-products retain328

liabilities under carbon-based allocation. While alternative allocation strategies are avail-329

able,54,80 robust accounting requires transparent, reproducible definitions grounded in causal330

alignment to atmospheric outcomes. By allocating emissions in proportion to CDR value,331

OAB provides a reproducible approach while preserving the integrity of atmospheric impact.332

Operationalizing OAB will require parallel development across both governance and in-333

frastructure domains: alignment across inventories and registries, robust allocation rules for334

complex pathways, accessible ledger infrastructure, parallel analysis of indirect effects, and a335

shift towards ledger-based permanence liability. Detailed implementation priorities are pro-336

vided in Supplementary Box 1. As Article 6 of the Paris Agreement matures and mechanisms337

15



such as the EU’s Carbon Removals and Carbon Farming Regulation81 stimulate demand,338

ensuring accurate, interoperable, and durable crediting will be essential.339

OAB provides a unifying scaffold for this convergence. Grounded in physical flux and340

compatible with diverse technologies, OAB enables institutions to consistently interpret341

project-level data while preserving the distinction between emissions reductions and true342

removals. By closing the attribution gap that arises when accounting systems diverge from343

the atmospheric carbon balance, OAB strengthens credit integrity, supports efficient cap-344

ital allocation, and improves comparability across pathways. While it cannot resolve all345

institutional or technical (e.g., permanence assessment) challenges, OAB reproducibly aligns346

carbon accounting with the climate system.347
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