

¹ Closing the carbon removal attribution gap requires an ² objective atmospheric basis

³ Alexandra J. Ringsby^{1*}, Marc N. Roston², Gian M. Mallarino³, Mislav
⁴ Radic³, and Kate Maher⁴

⁵ ¹Department of Chemical Engineering, Stanford University, Stanford, CA 94305, United
⁶ States

⁷ ²Sustainable Finance Initiative, Stanford University, Stanford, CA 94305, United States

⁸ ³Department of Social and Political Sciences, Bocconi University, 20136 Milan, Italy

⁹ ⁴Department of Earth System Science, Stanford University, Stanford, CA 94305, United
¹⁰ States

¹¹

¹² *Correspondence to: aringsby@stanford.edu

¹³ Science for Society

¹⁴ Achieving the goals of the Paris Agreement depends not only on deploying carbon dioxide
¹⁵ removal (CDR), but on the accounting infrastructure used to define and track its climate
¹⁶ impact. Today, removals are increasingly credited through project-based markets that op-
¹⁷ erate independently from other systems and without explicit linkages to the atmospheric
¹⁸ carbon balance. This decoupling risks an “attribution gap,” where credited removals coexist
¹⁹ with uncounted emissions, potentially distorting international climate targets and weakening
²⁰ incentives to decarbonize hard-to-abate sectors.

²¹ We introduce an Objective Atmospheric Basis (OAB): a shared accounting infrastruc-
²² ture that tracks emissions and removals using physical carbon balances and two-column
²³ environmental ledgers. Rather than defining policy outcomes, OAB provides a neutral data
²⁴ interpretation layer that can be used across carbon markets, national inventories, and Article
²⁵ 6 cooperation mechanisms. Applied to biochar carbon removal, it shows that upstream
²⁶ emissions can determine whether a project delivers net removal or emissions reductions. Inte-
²⁷ grating this accounting layer with net-zero target design, crediting rules under Article 6, and
²⁸ economic incentives for industry could help ensure that carbon markets complement—but
²⁹ not replace—direct emissions reductions, while avoiding atmospheric debt shifting.

³⁰ Highlights

- ³¹ • Current carbon removal accounting infrastructure creates attribution gaps, where re-
³² movals are credited while associated emissions remain in the atmosphere.
- ³³ • We introduce an Objective Atmospheric Basis (OAB) that tracks carbon explicitly
³⁴ using mass balance, treating emissions as persistent liabilities and removals as assets.

35 ● Applying OAB to biochar shows that upstream emissions allocation often determines
36 net climate impact, with some residue-based systems shifting emissions burdens rather
37 than delivering removals.

38 ● OAB functions as accounting infrastructure that enables consistent interpretation of
39 carbon fluxes across projects, national inventories, and Paris Agreement Article 6 mech-
40 anisms.

41 **Summary**

42 Efforts to integrate carbon dioxide removal (CDR) into climate policy, markets, and
43 inventories are advancing rapidly, but without a unified accounting logic to attribute atmo-
44 spheric impacts. Existing crediting approaches omit upstream emissions, creating a struc-
45 tural *attribution gap* in which removals are credited even as associated emissions remain in
46 the atmosphere. Although it remains small today, we find that this gap could reach gigaton-
47 scale annually in biomass-based CDR systems. To address this discrepancy, we propose
48 an Objective Atmospheric Basis (OAB): a technology-agnostic accounting framework that
49 tracks carbon transfers explicitly using mass-balance ledger that casts emissions as persistent
50 liabilities and removals as assets. Applied to feedstock materials for biochar carbon removal
51 (BCR), OAB reveals how system boundaries and emissions allocation decisions shape net re-
52 moval outcomes. By reconciling emissions and removals within a single atmospheric reference
53 frame, OAB closes the attribution gap and provides core infrastructure for scalable, high-
54 integrity CDR. As a common language for carbon bookkeeping grounded in physical fluxes,
55 OAB enables consistent crediting across jurisdictions, supports policy decision-making, and
56 strengthens alignment between Article 6 implementation and global temperature goals.

57 **Introduction**

58 Limiting warming to 1.5°C will require 100–300 GtCO₂e of cumulative carbon dioxide re-
59 moval (CDR) by 2100, an ambition grounded in science-based net-zero targets^{1,2} and codified
60 in the Paris Agreement.^{3,4} Article 6 of the Agreement establishes a framework for interna-
61 tional cooperation, enabling countries to meet their nationally determined contributions
62 (NDCs) through bilateral trading (Article 6.2) and a centralized crediting mechanism (Arti-
63 cle 6.4). To date, 78% of countries anticipate using these mechanisms, with CDR expected
64 to contribute up to 3.5 GtCO₂e by 2030.^{5,6}

65 Yet the climate impact of these pledges will depend not only on the volume of removal
66 credits delivered, but also on the quality of the accounting infrastructure that defines, verifies,
67 and transfers atmospheric mitigation outcomes.^{7,8} Current systems credit removals without a
68 direct linkage to the atmospheric carbon balance, enabling crediting outcomes to drift from
69 the physical carbon flows they are meant to represent—a structural divergence we term

70 the *attribution gap*. As CDR scales, this gap could propagate across international market
71 systems, eroding the atmospheric integrity of the Paris framework and undermining global
72 efforts to fight climate change.⁹

73 Historical experience illustrates how accounting infrastructure can shape the relation-
74 ship between credited and atmospheric impact. Under the Clean Development Mechanism
75 (CDM)—a system built to facilitate cost-effective emissions reductions and avoidances—
76 credit issuance relies on unverifiable additionality tests, arbitrary baselines, and flexible
77 system boundaries. Although CDM methodologies have evolved, accounting reflects mod-
78 eled scenarios rather than realized atmospheric impacts:^{10–14} despite more than \$400 billion
79 invested,¹⁵ a recent systematic review found that fewer than 16% of examined offset credits
80 minted under the CDM and other programs delivered real emission reductions.¹⁶ This ex-
81 perience demonstrates a broader structural lesson: without a clear reference frame anchored
82 to the atmospheric carbon balance, accounting architectures cannot guarantee alignment
83 between credited and physical outcomes.

84 Contemporary CDR crediting systems risk repeating this structural flaw. Many programs
85 retain project-based architectures developed for emissions avoidance,^{17–22} even as removals
86 are expected to scale far beyond historical markets and perform distinct functions in net-zero
87 pathways.^{23,24} Additionality tests and counterfactual logic—*intrinsic* to emissions avoidance
88 and reduction schemes²⁵—sit uneasily with removals, which can in principle be quantified
89 directly through observable carbon fluxes. Jurisdictional and programmatic fragmentation
90 further embeds incompatible system boundaries and normative choices into core accounting
91 rules.^{21,22,26,27} Together, these features impede comparability across contexts and obscure
92 what constitutes atmospheric CO₂ removal,^{2,28–36} creating and widening the attribution gap
93 as CDR scales.

94 Addressing the attribution gap requires a foundational reference frame that consistently
95 links project-level data to the atmospheric carbon mass balance. We propose an objective
96 atmospheric basis (OAB) for CDR accounting: a physically grounded accounting layer that
97 records carbon fluxes using a ledger-based architecture analogous to financial accounting
98 (Box 1). Under OAB, positive greenhouse gas (GHG) fluxes (emissions) and negative fluxes
99 (removals) are treated as additive inverse liability-asset pairs traced across process stages.
100 This structure separates objective, measurement-based accounting from normative crediting
101 decisions, enabling regulators, crediting programs, and market participants to apply differ-
102 ent governance choices without obscuring underlying atmospheric impacts. By providing a
103 consistent foundation on which disparate actors and policies can operate, OAB links empir-
104 ical carbon data to transparent, interoperable decision frameworks and provides a pathway
105 toward convergent accounting under Article 6.

106 In the sections that follow, we situate OAB within the evolution of carbon accounting
107 architectures and apply it to biochar carbon removal (BCR), a dominant pathway in today's
108 engineered CDR portfolio. We then evaluate how an OAB architecture could prevent at-
109 tribution gaps, balance mitigation incentives, and strengthen the implementation of Article
110 6.

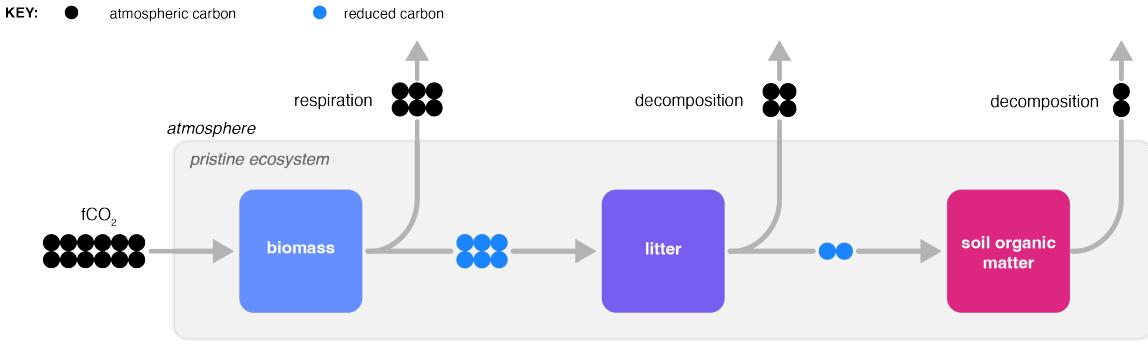
Box 1: Accounting for removals with an Objective Atmospheric Basis

An effective carbon removal accounting infrastructure should use an environmental ledger to track atmospheric carbon flux, apply consistent and fair allocation rules, and apply equally across all CDR pathways:

- (1) **Anchor in atmospheric mass balance:** All system boundaries are defined relative to atmospheric carbon. Only with an atmospheric reference frame can atmospheric removal be inferred.
- (2) **Consistently allocate upstream emissions:** Ensure consistent allocation of upstream emissions in multifunctional systems using a distribution coefficient, q^* , that assigns burdens across co-products.
- (3) **Track carbon explicitly:** Record carbon flux as a physical transfer using environmental ledgers.
- (4) **Track emissions and removals as durable ledger entries:** Adopt a technology and policy-agnostic representation of carbon fluxes across the whole process value chain. Assets and liabilities represent additive inverse pairs.
- (5) **Enable dynamic permanence tracking:** Perform liability retention and rebalancing when storage is lost or degraded. Require re-evaluation of storage inventories at appropriate intervals.

111

112 *Evolution and Limitations of Carbon Accounting Architectures*


113 As Article 6 links accounting systems across contexts and scales, inconsistencies among
114 them magnify risks of misrepresentation and create administrative barriers to international
115 trade.^{23,37,38} Project-level crediting approaches remain methodologically fragmented and of-
116 ten fail to distinguish emissions reductions from removals,^{27,32,39-42} rendering them poorly
117 aligned with jurisdictional and national frameworks. Those higher-level systems likewise rely
118 on additionality tests and baseline logic but typically operate on aggregated observational
119 data with limited project-level specificity.^{3,37} At the planetary scale, integrated assessment
120 and Earth system models represent mitigation explicitly as physical carbon flows.^{3,43} These
121 layers cannot converge without a unifying reference frame; just as financial accounting de-
122 pends on standardized rules to ensure interoperability, carbon accounting must function as
123 a shared infrastructure across scales.^{2,42,44,45} Nested architectures, where project data aggre-
124 gates cleanly into jurisdictional and global assessments, are only feasible if all scales draw
125 on neutrally defined flux units.³⁸

126 A common, interoperable basis linking project-level carbon fluxes to atmospheric out-
127 comes provides this neutral foundation.^{3,43} Carbon accounting now spans diverse institutions
128 and objectives—from project crediting to policymaking and national inventory management.
129 While different objectives may necessitate different *interpretations*,^{26,27,46} the *practice* of ac-
130 counting should consistently represent material carbon flows. Flux-based accounting ac-
131 complishes this by selecting and interpreting the subset of observable greenhouse gas flows
132 attributable to a CDR project¹⁰ Life cycle assessment (LCA) has formalized such logic
133 through “cradle-to-grave” inventories, yet LCA was not designed for CDR and leaves wide
134 discretion over system boundaries, treatment of multi-functional processes, and the classifi-
135 cation of emissions reductions versus removals.^{10,39,47,48} Standards that permit “zero-burden”
136 treatment (i.e., no upstream emissions allocation) of “waste” feedstocks further distort flux
137 logic and undermine efforts to distinguish emissions reductions from true CDR^{10,49–55}.

138 These inconsistencies are especially acute in biomass-based systems, which sit at the
139 intersection of LCA conventions, feedstock classifications, and upstream allocation. A re-
140 cent review of 36 distinct biochar deployments found that project impacts determined with
141 LCA methods could not be reliably intercompared due to inconsistent boundary conditions,
142 functional units, and other parameters.⁵⁶ At roughly 1 tCO₂e of embodied emissions per
143 tonne of biomass carbon produced,^{57–59} full mobilization of sustainably harvestable crop
144 residues in such systems without proper attribution could bias global CDR balances by
145 nearly 1.4 GtCO₂e annually.⁶⁰ Such distortions illustrate how inconsistencies in account-
146 ing infrastructure—rather than performance of individual CDR pathways—can propagate
147 substantial attribution gaps at scale.

148 **Analytical framework and allocation methodology**

149 A carbon accounting architecture capable of preventing attribution gaps should operate
150 from a common atmospheric reference frame and represent both mitigation and ownership
151 through empirically grounded carbon transfers. OAB meets these requirements by tracking
152 carbon explicitly through mass-balance principles implemented in a two-column ledger sys-
153 tem. To illustrate how OAB links physical fluxes to ownership and liability, we apply the
154 framework to a gradient of biomass-based systems—from pristine ecosystems to intensively
155 managed croplands and biochar production—and show how the architecture preserves causal
156 correspondence between carbon flows and CDR claims.

Figure 1: Molar flux of carbon in pristine ecosystems, where the influx of atmospheric carbon ($f\text{CO}_2$) is in balance with efflux of carbon via soil respiration from roots and heterotrophic organisms. Note that half of the influx of carbon from the atmosphere is immediately respired by plants such that photosynthesis is roughly 50% efficient.⁶² Decomposition from successively slower-cycling pools (i.e., litter, soil organic matter) balances the remaining carbon to yield a system at equilibrium.

157 *Pristine and unmanaged ecosystems*

158 Pristine, undisturbed, and unmanaged ecosystems define the null removal case. Although
 159 they exchange carbon continuously with the atmosphere, their carbon inventory remains
 160 nominally at steady-state: atmospheric carbon uptake by plant biomass ($f\text{CO}_2$) is balanced
 161 by biogenic carbon emissions from soil respiration and decomposition.⁶¹ This equilibrium
 162 yields a constant ecosystem carbon reservoir ($C(t)$) with no net carbon storage over time
 163 (Fig. 1).

164 Under OAB, carbon removed from the atmosphere and stored in a reservoir is designated
 165 as an asset, while any subsequent release of oxidized carbon back to the atmosphere consti-
 166 tutes a liability. Systems at steady-state generate neither assets nor liabilities, indicated by
 167 a storage rate of zero,

$$\frac{dC}{dt} = \dot{C}_{\text{in}} - kC = 0 \quad (1)$$

168 where \dot{C}_{in} is the mass flux of carbon into the system and k is the system loss coefficient. Al-
 169 though these ecosystems may display substantial carbon stocks ($C(t) \gg 0$) and fluxes, mass
 170 accumulation may have occurred long ago, constituting no additional removal. Accordingly,
 171 fluxes in these systems are not creditable.

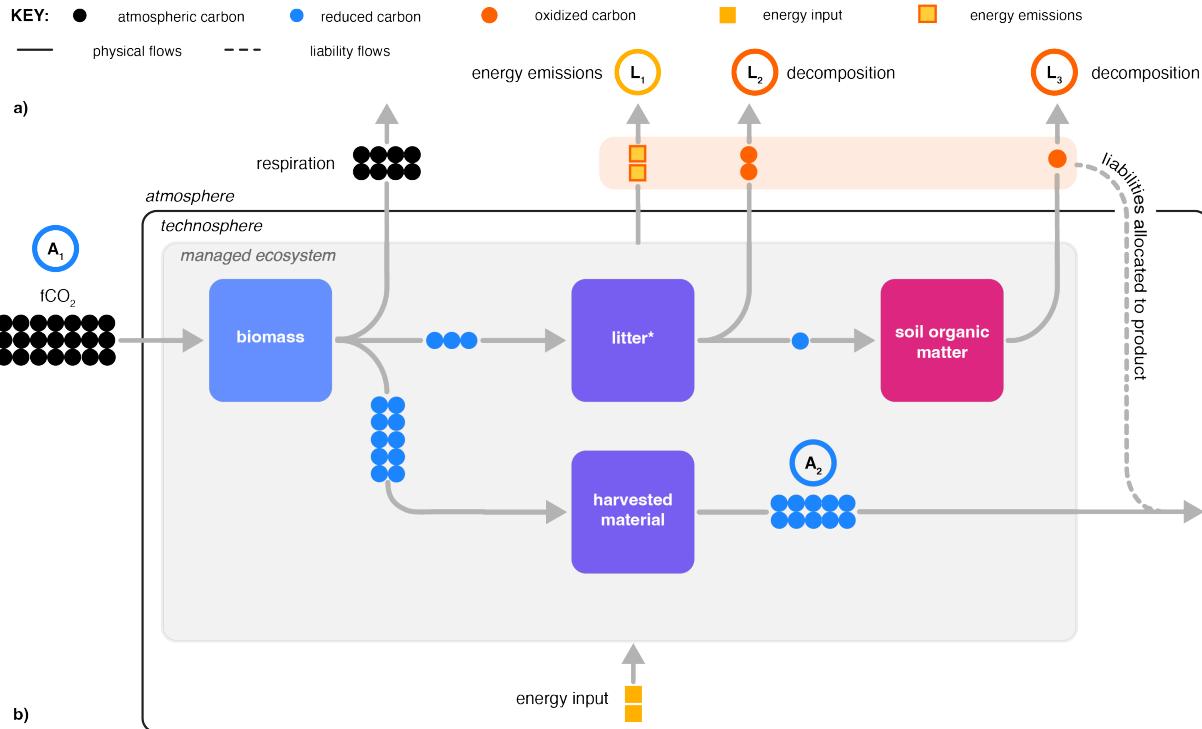
172 Some pristine ecosystems may temporarily accrue carbon (i.e., $dC/dt > 0$) due to
 173 CO_2 fertilization, enhanced precipitation, or temperature changes associated with climate
 174 change.⁴³ However, these are unmanaged and potentially non-durable gains—and should
 175 not be recognized as removals on an environmental ledger without additional intervention
 176 and assumed oversight.⁴⁵ Including passive sinks in net-zero claims also obscures national
 177 inventory and target setting, thereby undermining climate change mitigation objectives.^{3,43,63}

178 While pristine ecosystems cannot generate new carbon assets, they can still incur liabilities.
179 Storage reversal can occur in response to wildfire, drought, pestilence, deforestation,
180 and other disturbances.^{64,65} When such reversals occur, the landowner—private or public—
181 must recognize a carbon liability even in the absence of a prior carbon asset or credited
182 removal.⁴⁵

183 *Managed ecosystems*

184 In contrast to pristine ecosystems, managed ecosystems and croplands introduce intentional
185 and deliberate intervention that disrupts the carbon balance, creating measurable departures
186 from equilibrium that enable assets and liabilities to be established (Fig. 2). Carbon fluxes
187 here encompass both biological processes, including non-CO₂ GHGs (e.g., N₂O and CH₄),
188 and emissions resulting from material inputs (e.g., seedling production and planting, fertilizer
189 usage, tillage, harvesting).⁶⁶ Under OAB, these systems are modeled with the following
190 dynamic mass balance:

$$\frac{dC}{dt} = \sum_i A_i - \sum_j L_j = \sum_i A_i - kC - \sum_j E_j \quad (2)$$


191 where $\sum_i A_i$ represents the carbon added to storage as assets, and $\sum_j L_j$ is the sum of
192 liability fluxes resulting from system feedbacks (kC) and technospheric emissions ($\sum E_j$).
193 Although system energy inputs are not directly tracked as liabilities, the associated emissions
194 (E_j) are. Under this framework, carbon assets (A_i) can be generated and transferred, while
195 liabilities persist and must be rebalanced if storage degrades. In principle, these systems
196 may also inherit upstream liabilities from infrastructure establishment and raw material
197 production. For simplicity, these liabilities are not considered here.

198 The resulting environmental ledger (Fig. 2b) links the biophysical mass balance (Fig.
199 2b) to ownership transfers: photosynthesis generates assets, in-system emissions create li-
200 abilities, and both are assigned to harvested biomass at the point of sale.⁴⁴ Each subsequent
201 transaction carries its carbon value with it to enable traceable responsibility through the
202 supply chain.

203 The OAB framework thus achieves two objectives:

- 204 1. **Accountability:** the land manager's closing balance, and
- 205 2. **Asset quantification:** the atmospheric mass balance over the reporting period.

206 Here, a closing balance of zero implies neither additional carbon liability nor remaining
207 transferable assets. The value of assets passed downstream depends on the removal value of

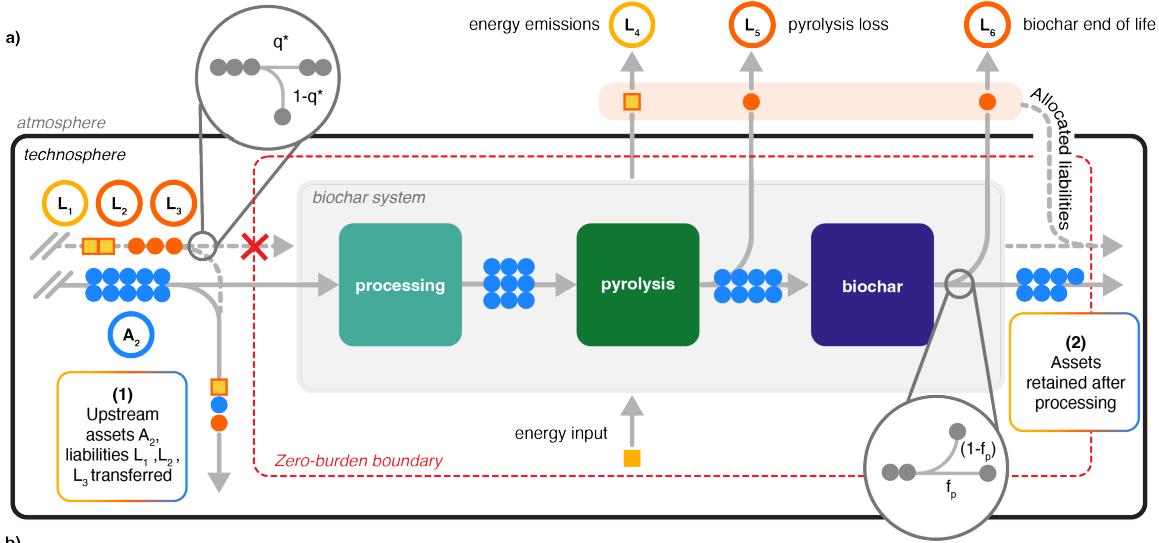
Assets	Removal Units	Liabilities	Emission Units
Assets directly produced through operations	10	Liabilities directly produced through operations	5
A₁ CO_2 fixed in biomass	13	L₁ cultivation and harvest emissions	2
Impairment of generated assets	(3)	L₂ decomposition emissions	2
		L₃ decomposition emissions	1
Subtract assets transferred to customers A₂	(10)	Subtract liabilities transferred to customers	(5)
Closing assets	0	Closing liabilities	0

Figure 2: a) Semiquantitative representation of carbon flows in managed agricultural systems, where the influx (fCO₂) and efflux (respiration and decomposition flux) of carbon may no longer balance. Some CO₂ influx is immediately respired due to photosynthetic inefficiency (black dots denoted respiration).⁶² The system boundary (gray box) includes technospheric energy inputs (e.g., machinery, water pumping, and fertilizer). Litter* denotes residues left on field per sustainable harvest guidelines.⁶⁷ b) The associated environmental balance sheet: photosynthesis generates assets; in-system GHG and energy-use emissions create liabilities. Assets/liabilities tied to products transfer to end-users at sale (indicated with parentheses). Flows follow a sign convention (in = positive, out = negative) with fictitious, dimensionless units. Supplier liabilities (e.g., liabilities associated with fuel, seeds, equipment) are omitted for simplicity.

208 captured carbon relative to ancillary emissions. While this system mirrors the presentation
209 of E-assets under the E-liability framework,⁴⁵ OAB treats assets as physical fluxes from the
210 atmosphere to storage without prescribing what constitutes a tradable unit. Under OAB,
211 asset/liability matching provides a critical test of carbon accountability, with the mass bal-
212 ance as the central arbiter of integrity according to the process emissions inventory. Managed
213 systems thus mark the first point where human intervention transforms flux assessment into
214 verifiable climate accountability, a necessary bridge between biophysical realities and market
215 governance.

216 *Biochar systems*

217 BCR (>80% of historic engineered carbon removal deliveries⁶⁸) commonly utilizes crop
218 residues derived from food systems. Under zero-burden accounting rules, cultivation-phase
219 emissions in food systems are attributed exclusively to primary food products. Residues
220 enter the biochar production gate burden-free (e.g., Fig. 2, L_1 , L_2 , L_3) despite their mate-
221 rial connection to the biomass.^{51,55,69–71} Upscaled to biochar carbon removal (BCR) systems,
222 OAB addresses this distortion via rule-based allocation to restore the causal link between
223 emissions investment and project-level climate service.


224 *Allocation across co-products*

225 Allocation is the critical step in determining how carbon accountability propagates through
226 a value chain to result in a system-wide carbon budget. First, OAB tracks and transfers
227 ledger items from the land manager to the biochar producer. Upstream liabilities are then
228 partitioned and carried forward, defining clear system boundaries and ensuring net-zero
229 aligned process emissions assessments (see OAB versus zero-burden inventory in Figure 3a).

230 In practice, once feedstock enters the BCR system, upstream emissions are allocated to
231 update the biochar producer's environmental ledger, reflecting both net process emissions
232 and carbon ownership. Net-negativity depends on whether the carbon storage value of
233 the feedstock exceeds operational and inherited emissions liabilities (Fig. 3b) The closing
234 balance shows the net position of asset and liability fluxes, yielding one of three possible
235 outcomes: (1) assets exceed liabilities, resulting in a transferable asset, (2) assets match
236 liabilities resulting in no outstanding obligations, but no potential removal benefit, or (3)
237 liabilities exceed assets, leaving the producer with outstanding obligations and no viable
238 removal assets.

239 Unlike economic allocation, which links emissions to fluctuating market prices, or “zero-
240 burden” assumptions that admit low-value co-products burden free, OAB introduces a dis-

²⁴¹ tribution coefficient (q^*) to allocate embodied emissions in proportion to carbon content.
²⁴² For example, if an agricultural producer yields primary and secondary biomass products in
²⁴³ equal mass ratio and carbon content, each stream receives 50% of the production emissions
²⁴⁴ (see the supplementary information (SI) for methods). This carbon-based method prevents
²⁴⁵ opportunistic partitioning and ensures that even low-value co-products inherit an appro-
²⁴⁶ priate share of upstream process emissions. In doing so, OAB ensures that allocation is
²⁴⁷ proportional to a product's removal value and reflective of the embedded energy and carbon
²⁴⁸ necessary to produce it. This strategy establishes parity across pathways and projects—and
²⁴⁹ is an essential element of OAB as a consistent, interoperable accounting architecture.

b)

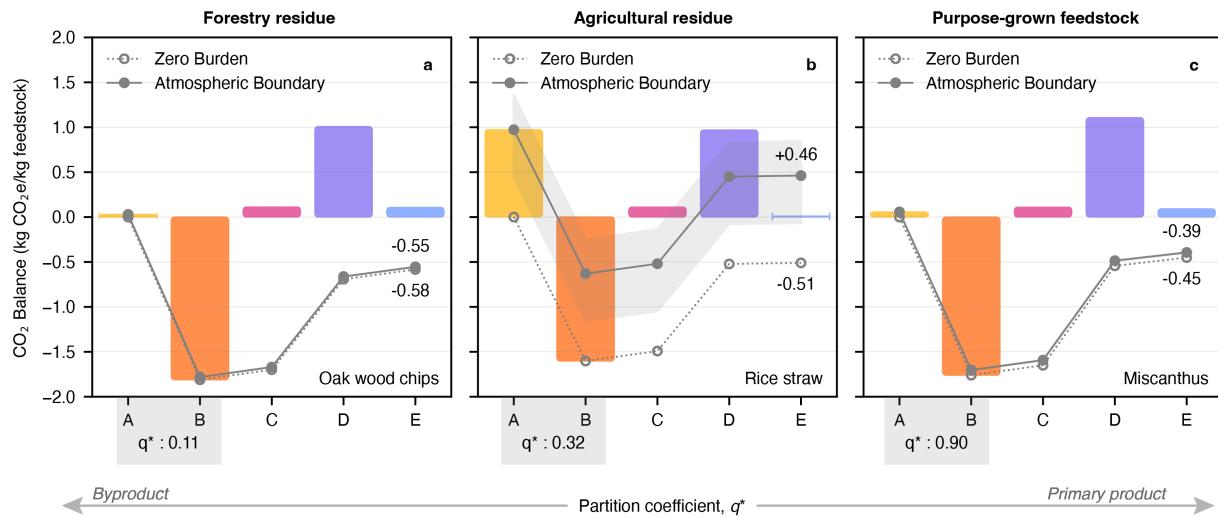

Assets	Removal Units	Liabilities	Emission Units
Add assets acquired from suppliers	9	Add liabilities acquired from suppliers	3
A_2 CO_2 fixed in biomass	10	$q^* \times L_1$ cultivation and harvest emissions	1
units sold to food/industry	(1)	$q^* \times L_2$ decomposition emissions	1
Impairment of purchased assets	(2)	$q^* \times L_3$ decomposition emissions	1
		Liabilities directly produced through operations	3
		L_4 processing and production emissions	1
		L_5 pyrolysis loss	1
		L_6 decomposition emissions	1
Closing assets	7	Closing liabilities	6

Figure 3: a) Carbon fluxes in biochar systems, with (1) upstream assets and liabilities transferred from residue producer (see Fig. 2) to storage operator at purchase according to the emissions partition coefficient (q^*). The red dashed “zero burden” boundary excludes upstream liabilities L_1 , L_2 , and L_3 . Biochar production adds new liabilities but yields net assets that can be sold or retained by the removal operator. Based on current market treatments, biochar’s quality determines its permanence factor (f_p), which defines the fraction of carbon expected to remain over 100 years.^{72,73} Alternative time-dependent formulations are compatible with the objective atmospheric basis (OAB) to determine the resulting outflow of reduced carbon units (2). See symbol key in Figure 2. **b)** The associated environmental balance sheet: assets from photosynthesis and liabilities generated from upstream processes and biochar pyrolysis. Net removal occurs when assets exceed liabilities.

250 **Upstream burdens determine atmospheric carbon removal**

251 OAB dictates that a CDR claim is valid only when it reflects net atmospheric removal, not
252 merely carbon storage within a project boundary. Applying OAB allocation to three rep-
253 resentative BCR feedstocks across five lifecycle stages reveals the extent to which upstream
254 burdens and allocation choices dictate true removal value (Fig. 4). Among the selected
255 feedstocks, forestry residues consistently yield net-negative outcomes due to low upstream
256 burdens and favorable co-product allocation conditions. Agricultural residues, such as paddy
257 straw, exhibit the greatest potential variability, ranging from marginally net-negative to
258 strongly net-emitting. Purpose-grown feedstocks also achieve net-negativity, regardless of
259 upstream burden assumptions, but their ultimate benefit depends on how land-use change is
260 managed—an issue which remains unaddressed here.^{46,74} These results demonstrate that ap-
261 parent removal can be overstated by an order of magnitude if upstream burdens are ignored.
262 OAB corrects this distortion by carrying forward embedded liabilities to enable assessment
263 of net-zero claims.

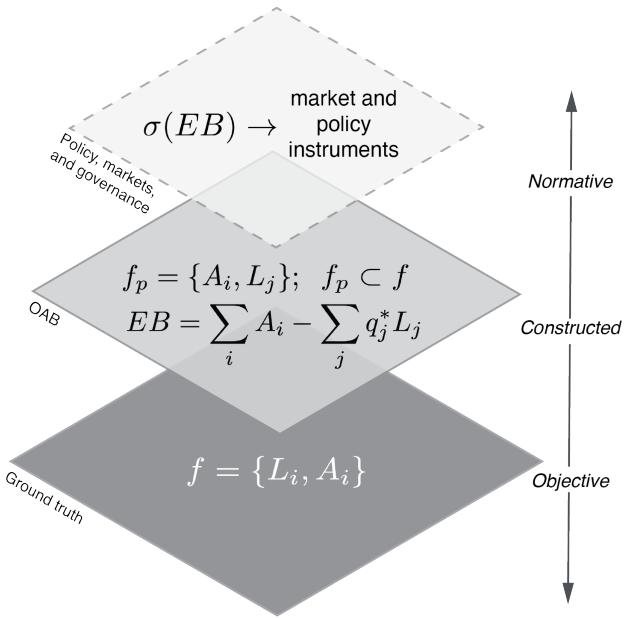
264 This analysis clarifies three scenarios with distinct implications for CDR claims. Forestry
265 residues and purpose-grown biomass consistently yield net-negativity under OAB, supporting
266 their eligibility for use in compensatory CDR markets. In contrast, when biochar is produced
267 from agricultural residues, inclusion of upstream cultivation emissions can render the process
268 net-emitting. In these cases, the benefit lies not in generating offset credits, but in re-
269 balancing upstream liabilities—reducing net emissions in the parent agricultural system and
270 stimulating broader decarbonization. Applying OAB to rice straw shows that BCR can
271 reduce emissions liabilities by up to 60% for the rice straw. Given that rice cultivation
272 contributes nearly half of global agricultural emissions (≈ 1 GtCO₂e/yr)^{75,76} and generates
273 roughly 0.24 GtC in residues,⁶⁰ this reduction represents a significant mitigation opportunity.
274 However, it should be recognized as emissions reductions within the source system—and not
275 mischaracterized as independent “offset” removal.

Figure 4: CO₂ balance for biochar production at 500°C from a) wood chips (n = 2), b) paddy straw (n = 4), and c) miscanthus x giganteus (n = 2). Bars represent average emissions (positive) or removals (negative) across five lifecycle stages: A, B, C, D, and E indicate cultivation, biomass capture, biomass processing, pyrolysis loss, and biochar end of life, respectively. Gray scatter plots show cumulative sums with and without cultivation burdens (“atmospheric boundary” (OAB treatment) vs. “zero burden”). Shaded regions reflect the range of cumulative outcomes per feedstock. The partition coefficient q* denotes carbon-based allocation across multifunctional processes. See SI for activity details, product parameters, and q* calculations.

276 **Global implications of the attribution gap in contemporary CDR
277 accounting**

278 Misaligned accounting at the project-level—as demonstrated by BCR—can propagate into
279 a systemic attribution gap when upstream emissions are omitted from crediting boundaries.
280 Unlike over-crediting (unmet performance) or leakage (spatial displacement), the attribution
281 gap arises from a structural misalignment of unfit accounting systems—not a technological
282 failure. High-quality engineered CDR can deliver genuine atmospheric removal—but only if
283 accounting systems consistently true removals from emissions reductions. CDR, in market
284 and policy contexts, is a specific activity that requires a dedicated accounting construction.
285 Each credited removal must be the additive inverse of a quantified emission. Without closure
286 of this balance, credits license continued emissions rather than neutralize them, driving excess
287 atmospheric loading.

288 Applying OAB to rice straw systems indicates that attribution gaps may generate excess
289 atmospheric loading approaching 0.8GtCO₂e per year⁶⁰—comparable to erasing more than a
290 decade of progress in U.S. power-sector decarbonization⁷⁷—simply by omitting cultivation-
291 phase emissions. By reconciling removal and emissions ledgers OAB prevents this hidden


292 atmospheric debt and directs capital toward verified mitigation outcomes. In this way, carbon
293 accounting functions as core climate infrastructure supporting long-term decarbonization.

294 Fair and systematic comparison across CDR pathways similarly requires the recognition
295 of embedded burdens under OAB. All pathways require energy and material inputs and
296 should be assessed accordingly to incentivize high-impact project development.³² Existing
297 direct air capture (DAC) crediting rules already require upstream emissions allocation, in-
298 centivizing low-carbon energy sourcing and off-grid configurations.⁷⁸ The same discipline is
299 needed for biochar, where net emissions outcomes depend strongly on feedstock origin, base-
300 line disposition, and regional practices.⁷⁹ By allocating upstream burdens to proportionally
301 to CDR value, OAB would strengthen the mitigation contribution of biochar while improv-
302 ing agricultural emissions outcomes—rewarding higher-integrity deployment and enabling
303 credible comparison of biochar’s removal value relative to other pathways.

304 These implications extend beyond project integrity to global and intergenerational equity.
305 Without allocation discipline, unmitigated liabilities remain in host countries, obscuring
306 mitigation potential and creating future atmospheric debt (*e.g.* residue-derived biochar can
307 decarbonize rice systems by reducing total emissions by up to 33%). As host countries
308 design decarbonization strategies aligned with future economic growth, retaining domestic
309 mitigation potential may be essential to sovereignty. Transacting removals without OAB
310 risks may exporting benefits while leaving liabilities behind—shifting atmospheric debt to
311 future generations with potentially severe economic and environmental consequences. OAB
312 provides an accurate, interoperable accounting framework to re-balance incentives across
313 crediting and emissions reduction objectives, recognizing the distinct and complementary
314 roles these activities play in achieving long-term net-zero objectives.

315 **Building decision-support infrastructure for markets, policy, and 316 governance**

317 OAB functions as a connective layer linking ground-truth flux data to the normative sys-
318 tems of crediting, inventories, and governance (Fig. 5). It translates measured carbon
319 transfers—the most objective layer of the system—into actionable information by identi-
320 fying the relevant physical flows and applying explicit attribution functions. By design,
321 OAB avoids subjective constructs such as additionality and baseline setting, preserving both
322 atmospheric integrity and the flexibility needed to scale across jurisdictions.

Figure 5: The Objective Atmospheric Basis (OAB) serves as a message-passing layer between physical atmospheric carbon fluxes and the normative systems of policy, crediting, and governance. The bottom layer represents objective asset and liability fluxes of CO₂ to and from the atmosphere, $f = \{A_i, L_i\}$, which exist independent of any accounting system. OAB (middle) selects a project-relevant subset $f_p \subset f$, assigns attribution weights q_i^* , and computes the emissions balance as $EB = \sum_i A_i - \sum_j q_j^* L_j$. Decision makers can consume this with their own activation or interpretation function $\sigma(EB)$ to translate accounting data to markets, inventories, and policy instruments (top). These systems define incentives, eligibility, and credit governance on top of OAB’s physically grounded, end-to-end quantification scheme.

323 By establishing accurate, interoperable accounting foundations and enforcing value chain
 324 accountability via environmental ledgers, OAB enables policymakers and market stakeholders
 325 to design incentives, allocate capital efficiently, and communicate outcomes transparently.
 326 However, the classification of “offset” removals or project-level climate service value remains
 327 inherently normative.^{21,22,26,27} OAB defines net negativity within explicit system boundaries
 328 that may exclude broader agricultural emissions; in multi-output systems, co-products retain
 329 liabilities under carbon-based allocation. While alternative allocation strategies are avail-
 330 able,^{54,80} robust accounting requires transparent, reproducible definitions grounded in causal
 331 alignment to atmospheric outcomes. By allocating emissions in proportion to CDR value,
 332 OAB provides a reproducible approach while preserving the integrity of atmospheric impact.

333 Operationalizing OAB will require parallel development across both governance and in-
 334 frastructure domains: alignment across inventories and registries, robust allocation rules for
 335 complex pathways, accessible ledger infrastructure, parallel analysis of indirect effects, and a
 336 shift towards ledger-based permanence liability. Detailed implementation priorities are pro-
 337 vided in Supplementary Box 1. As Article 6 of the Paris Agreement matures and mechanisms

³³⁸ such as the EU's Carbon Removals and Carbon Farming Regulation⁸¹ stimulate demand,
³³⁹ ensuring accurate, interoperable, and durable crediting will be essential.

³⁴⁰ OAB provides a unifying scaffold for this convergence. Grounded in physical flux and
³⁴¹ compatible with diverse technologies, OAB enables institutions to consistently interpret
³⁴² project-level data while preserving the distinction between emissions reductions and true
³⁴³ removals. By closing the attribution gap that arises when accounting systems diverge from
³⁴⁴ the atmospheric carbon balance, OAB strengthens credit integrity, supports efficient cap-
³⁴⁵ ital allocation, and improves comparability across pathways. While it cannot resolve all
³⁴⁶ institutional or technical (e.g., permanence assessment) challenges, OAB reproducibly aligns
³⁴⁷ carbon accounting with the climate system.

348 **References**

349 [1] Myles R Allen, David J Frame, Chris Huntingford, Chris D Jones, Jason A Lowe,
350 Malte Meinshausen, and Nicolai Meinshausen. Warming caused by cumulative carbon
351 emissions towards the trillionth tonne. *Nature*, 458(7242):1163–1166, 2009.

352 [2] Sam Fankhauser, Stephen M Smith, Myles Allen, Kaya Axelsson, Thomas Hale,
353 Cameron Hepburn, J Michael Kendall, Radhika Khosla, Javier Lezaun, Eli Mitchell-
354 Larson, et al. The meaning of net zero and how to get it right. *Nature climate change*,
355 12(1):15–21, 2022.

356 [3] Matthew J Gidden, Thomas Gasser, Giacomo Grassi, Nicklas Forsell, Iris Janssens,
357 William F Lamb, Jan Minx, Zebedee Nicholls, Jan Steinhauser, and Keywan Riahi.
358 Aligning climate scenarios to emissions inventories shifts global benchmarks. *Nature*,
359 624(7990):102–108, 2023.

360 [4] UNFCCC. Paris agreement. <https://unfccc.int/documents/184656>, 2015. Accessed:
361 2025-07-29.

362 [5] UNFCCC Secretariat. Nationally determined contributions under the paris agreement,
363 2024. URL <https://unfccc.int/NDCREG>.

364 [6] William F Lamb, Thomas Gasser, Rosa M Roman-Cuesta, Giacomo Grassi, Matthew J
365 Gidden, Carter M Powis, Oliver Geden, Gregory Nemet, Yoga Pratama, Keywan Riahi,
366 et al. The carbon dioxide removal gap. *Nature Climate Change*, 14(6):644–651, 2024.

367 [7] William F Lamb, Carl-Friedrich Schleussner, Giacomo Grassi, Stephen M Smith,
368 Matthew J Gidden, Oliver Geden, Artur Runge-Metzger, Naomi E Vaughan, Gregory
369 Nemet, Ingy Johnstone, et al. Countries need to provide clarity on the role of car-
370 bon dioxide removal in their climate pledges. *Environmental Research Letters*, 19(12):
371 121001, 2024.

372 [8] Jennifer Morris, Angelo Gurgel, Bryan K Mignone, Haroon Kheshgi, and Sergey Paltsev.
373 Mutual reinforcement of land-based carbon dioxide removal and international emissions
374 trading in deep decarbonization scenarios. *Nature Communications*, 15(1):7160, 2024.

375 [9] Myles Allen, Opha Pauline Dube, William Solecki, Fernando Aragón-Durand, Wolfgang
376 Cramer, Stephen Humphreys, Mikiko Kainuma, et al. Special report: Global warming
377 of 1.5 c. *Intergovernmental Panel on Climate Change (IPCC)*, 677:393, 2018.

378 [10] Sarah L Nordahl, Rebecca J Hanes, Kimberley K Mayfield, Corey Myers, Sarah E Baker,
379 and Corinne D Scown. Carbon accounting for carbon dioxide removal. *One Earth*, 7
380 (9):1494–1500, 2024.

381 [11] Lambert Schneider. Assessing the additionality of cdm projects: practical experiences
382 and lessons learned. *Climate Policy*, 9(3):242–254, 2009.

383 [12] Gregory Trencher, Sascha Nick, Jordan Carlson, and Matthew Johnson. Demand for
384 low-quality offsets by major companies undermines climate integrity of the voluntary
385 carbon market. *Nature communications*, 15(1):6863, 2024.

386 [13] Annelise Gill-Wiehl, Daniel M Kammen, and Barbara K Haya. Pervasive over-crediting
387 from cookstove offset methodologies. *Nature Sustainability*, 7(2):191–202, 2024.

388 [14] Martin Cames, Ralph O Harthan, Jürg Füssler, Michael Lazarus, Carrie M Lee, Pete
389 Erickson, and Randall Spalding-Fecher. How additional is the clean development mech-
390 anism? *Analysis of the application of current tools and proposed alternatives*, pages
391 2017–04, 2016.

392 [15] A Michaelowa, G Jember, and EM Diagne. Lessons from the cdm in ldcs, for the design
393 of nmm and fva. *LDC Paper Series*, 2014.

394 [16] Benedict S Probst, Malte Toetzke, Andreas Kontoleon, Laura Díaz Anadón, Jan C
395 Minx, Barbara K Haya, Lambert Schneider, Philipp A Trotter, Thales AP West, An-
396 nelise Gill-Wiehl, et al. Systematic assessment of the achieved emission reductions of
397 carbon crediting projects. *Nature communications*, 15(1):9562, 2024.

398 [17] Raphael Calel, Jonathan Colmer, Antoine Dechezleprêtre, and Matthieu Glachant. Do
399 carbon offsets offset carbon? *American Economic Journal: Applied Economics*, 17
400 (1):1–40, January 2025. doi: 10.1257/app.20230052. URL <https://www.aeaweb.org/articles?id=10.1257/app.20230052>.

402 [18] Axel Michaelowa, Lukas Hermwille, Wolfgang Obergassel, and Sonja Butzengeiger. Ad-
403 dditionality revisited: guarding the integrity of market mechanisms under the paris agree-
404 ment. *Climate Policy*, 19(10):1211–1224, 2019.

405 [19] Axel Michaelowa, Igor Shishlov, and Dario Brescia. Evolution of international carbon
406 markets: lessons for the paris agreement. *Wiley Interdisciplinary Reviews: Climate
407 Change*, 10(6):e613, 2019.

408 [20] Donald MacKenzie. Making things the same: Gases, emission rights and the politics of
409 carbon markets. *Accounting, organizations and society*, 34(3-4):440–455, 2009.

410 [21] Larry Lohmann. Toward a different debate in environmental accounting: The cases of
411 carbon and cost–benefit. *Accounting, organizations and society*, 34(3-4):499–534, 2009.

412 [22] Wim Carton, Adeniyi Asiyani, Silke Beck, Holly J Buck, and Jens F Lund. Negative
413 emissions and the long history of carbon removal. *Wiley Interdisciplinary Reviews: Climate Change*, 11(6):e671, 2020.

414

415 [23] Danny Cullenward, Grayson Badgley, and Freya Chay. Carbon offsets are incompatible
416 with the paris agreement. *One Earth*, 6(9):1085–1088, 2023.

417 [24] Majid Asadnabizadeh and Espen Moe. A review of global carbon markets from kyoto to
418 paris and beyond: The persistent failure of implementation. *Frontiers in Environmental
419 Science*, 12:1368105, 2024.

420 [25] Michael Gillenwater. What is additionality? part 1: A long standing problem (discussion
421 paper no. 1). greenhouse gas management institute, 2012.

422 [26] Wim Carton, Jens Friis Lund, and Kate Dooley. Undoing equivalence: rethinking carbon
423 accounting for just carbon removal. *Frontiers in Climate*, 3:664130, 2021.

424 [27] Francisco Ascui and Heather Lovell. As frames collide: making sense of carbon account-
425 ing. *Accounting, Auditing & Accountability Journal*, 24(8):978–999, 2011.

426 [28] Charlotte Streck, Sara Minoli, Stephanie Roe, Christian Barry, Matthew Brander, So-
427 lene Chiquier, Garrett Cullity, Peter Ellis, Jason Funk, Matthew J Gidden, et al. Con-
428 sidering durability in carbon dioxide removal strategies for climate change mitigation.
429 *Climate Policy*, pages 1–9, 2025.

430 [29] Cyril Brunner, Zeke Hausfather, and Reto Knutti. Durability of carbon dioxide removal
431 is critical for paris climate goals. *Communications Earth & Environment*, 5(1):645,
432 2024.

433 [30] H Damon Matthews, Kirsten Zickfeld, Mitchell Dickau, Alexander J MacIsaac, Sabine
434 Mathesius, Claude-Michel Nzotungicimpaye, and Amy Luers. Temporary nature-based
435 carbon removal can lower peak warming in a well-below 2 c scenario. *Communications
436 Earth & Environment*, 3(1):65, 2022.

437 [31] Nicolas Kreibich and Lukas Hermwille. Caught in between: credibility and feasibility
438 of the voluntary carbon market post-2020. *Climate Policy*, 21(7):939–957, 2021.

439 [32] Emily Grubert and Shuchi Talati. The distortionary effects of unconstrained for-profit
440 carbon dioxide removal and the need for early governance intervention. *Carbon Man-*
441 *agement*, 15(1):2292111, 2024.

442 [33] Vittoria Battocletti, Luca Enriques, and Allessandro Romano. The voluntary carbon
443 market: market failures and policy implications. *U. Colo. L. Rev.*, 95:519, 2024.

444 [34] Johannes Bednar, Michael Obersteiner, Artem Baklanov, Marcus Thomson, Fabian
445 Wagner, Oliver Geden, Myles Allen, and Jim W Hall. Operationalizing the net-negative
446 carbon economy. *Nature*, 596(7872):377–383, 2021.

447 [35] Johannes Bednar, Justin Macinante, Artem Baklanov, Jim W Hall, Fabian Wagner,
448 Navraj S Ghaleigh, and Michael Obersteiner. Beyond emissions trading to a negative
449 carbon economy: a proposed carbon removal obligation and its implementation. *Climate*
450 *Policy*, 24(4):501–514, 2024.

451 [36] Andrew Macintosh, Gregory Trencher, Benedict Probst, Shanta Barley, Danny Cullen-
452 ward, Thales AP West, Don Butler, and Johan Rockström. Carbon credits are failing
453 to help with climate change—here’s why. *Nature*, 646(8085):543–546, 2025.

454 [37] M. Poralla, M. Honegger, C. Gameros, Y. Wang, A. Michaelowa, A.-K. Sacherer, H.-M.
455 Ahonen, and L. Moreno. Tracking greenhouse gas removals: baseline and monitoring
456 methodologies, additionality testing, and accounting. Technical report, NET-Rapido
457 Consortium and Perspectives Climate Research, London, UK and Freiburg i.B., Ger-
458 many, 2022.

459 [38] Marco Schletz, Angel Hsu, Brendan Mapes, and Martin Wainstein. Nested climate ac-
460 counting for our atmospheric commons—digital technologies for trusted interoperability
461 across fragmented systems. *Frontiers in Blockchain*, 4:789953, 2022.

462 [39] Matthew Brander. Transposing lessons between different forms of consequential green-
463 house gas accounting: lessons for consequential life cycle assessment, project-level ac-
464 counting, and policy-level accounting. *Journal of Cleaner Production*, 112:4247–4256,
465 2016.

466 [40] Valentin Bellassen, Nicolas Stephan, Marion Afriat, Emilie Alberola, Alexandra Barker,
467 Jean-Pierre Chang, Caspar Chiquet, Ian Cochran, Mariana Deheza, Christopher Di-
468 mopoulos, et al. Monitoring, reporting and verifying emissions in the climate economy.
469 *Nature Climate Change*, 5(4):319–328, 2015.

470 [41] Stephanie Arcusa and Starry Sprenkle-Hyppolite. Snapshot of the carbon dioxide re-
471 removal certification and standards ecosystem (2021–2022). *Climate Policy*, 22(9-10):
472 1319–1332, 2022.

473 [42] Heather Lovell. Climate change, markets and standards: the case of financial accounting.
474 *Economy and Society*, 43(2):260–284, 2014.

475 [43] Myles R Allen, David J Frame, Pierre Friedlingstein, Nathan P Gillett, Giacomo Grassi,
476 Jonathan M Gregory, William Hare, Jo House, Chris Huntingford, Stuart Jenkins, et al.
477 Geological net zero and the need for disaggregated accounting for carbon sinks. *Nature*,
478 638(8050):343–350, 2025.

479 [44] Robert S Kaplan and Karthik Ramanna. Accounting for climate change. *Harvard
480 Business Review*, 99(6), 2021.

481 [45] Robert S Kaplan, Karthik Ramanna, and Marc Roston. Accounting for carbon offsets—
482 establishing the foundation for carbon-trading markets. 2023.

483 [46] Matthew Brander, Francisco Ascui, Vivian Scott, and Simon Tett. Carbon accounting
484 for negative emissions technologies. *Climate Policy*, 21(5):699–717, 2021.

485 [47] Freya Chay, Zeke Hausfather, and Kata Martin. ““what is cdr?” is the wrong ques-
486 tion”, 2025. URL <https://carbonplan.org/research/defining-good-cdr>. Ac-
487 cessed: 2025-03-25.

488 [48] Matthew Brander. The most important ghg accounting concept you may not have heard
489 of: the attributional-consequential distinction, 2022.

490 [49] Yuan Yao and Bingquan Zhang. Life cycle assessment in the monitoring, reporting, and
491 verification of land-based carbon dioxide removal: Gaps and opportunities. *Environ-
492 mental Science & Technology*, 59(24):11950–11963, 2025.

493 [50] Thomas Oldfield and Nicholas M Holden. An evaluation of upstream assumptions in
494 food-waste life cycle assessments. In *Proceedings of the 9th International Conference on
495 Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA*, pages 8–10,
496 2014.

497 [51] Romain Pirard. Is biochar a carbon dioxide removal? *BOIS & FORETS DES
498 TROPIQUES*, 361:1–8, 2024.

499 [52] Gonca Seber, Robert Malina, Matthew N Pearson, Hakan Olcay, James I Hileman, and
500 Steven RH Barrett. Environmental and economic assessment of producing hydropro-
501 cessed jet and diesel fuel from waste oils and tallow. *Biomass and Bioenergy*, 67:108–118,
502 2014.

503 [53] Marilys Pradel, Lynda Aissani, Jonathan Villot, Jean-Christophe Baudez, and Valérie
504 Laforest. From waste to added value product: towards a paradigm shift in life cycle
505 assessment applied to wastewater sludge—a review. *Journal of cleaner production*, 131:
506 60–75, 2016.

507 [54] Johanna Olofsson and Pål Börjesson. Residual biomass as resource–life-cycle environ-
508 mental impact of wastes in circular resource systems. *Journal of Cleaner Production*,
509 196:997–1006, 2018.

510 [55] Hao Cai, Greg Cooney, Michael Shell, Uisung Lee, Udayan Singh, Troy Hawkins,
511 Michael Wang, Eric Tan, and Yimin Zhang. Best practices for life cycle assessment (lca)
512 of biomass carbon removal and storage (bicrs) technologies. Technical report, U.S. De-
513 partment of Energy, Washington, DC, January 2025. URL <https://www.energy.gov>.

514 [56] Tom Terlouw, Christian Bauer, Lorenzo Rosa, and Marco Mazzotti. Life cycle assess-
515 ment of carbon dioxide removal technologies: a critical review. *Energy & Environmental
516 Science*, 14(4):1701–1721, 2021.

517 [57] Peter Potapov, Svetlana Turubanova, Matthew C Hansen, Alexandra Tyukavina, Vi-
518 viana Zalles, Ahmad Khan, Xiao-Peng Song, Amy Pickens, Quan Shen, and Jocelyn
519 Cortez. Global maps of cropland extent and change show accelerated cropland expan-
520 sion in the twenty-first century. *Nature Food*, 3(1):19–28, 2022.

521 [58] G.-J. Nabuurs, R. Mrabet, A. Abu Hatab, M. Bustamante, H. Clark, P. Havlík, J. House,
522 C. Mbow, K. N. Ninan, A. Popp, S. Roe, B. Sohngen, and S. Towprayoon. Agriculture,
523 forestry and other land uses (afolu). In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie,
524 R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi,
525 A. Hasija, G. Lisboa, S. Luz, and J. Malley, editors, *Climate Change 2022: Mitigation
526 of Climate Change. Contribution of Working Group III to the Sixth Assessment Report
527 of the Intergovernmental Panel on Climate Change*. Cambridge University Press, Cam-
528 bridge, UK and New York, NY, USA, 2022. doi: 10.1017/9781009157926.009. URL
529 <https://doi.org/10.1017/9781009157926.009>.

530 [59] FAO. Emissions due to agriculture: Global, regional and country trends 2000–2018.
531 Technical report, FAOSTAT Analytical Brief Series No. 18, Rome, 2020. URL <https://doi.org/10.1017/9781009157926.009>.

532 //www.fao.org/faostat/en/#data/. Suggested citation: FAO. 2020. *Emissions due
533 to agriculture. Global, regional and country trends 2000–2018*. FAOSTAT Analytical
534 Brief Series No 18. Rome.

535 [60] Shivesh Kishore Karan, Dominic Woolf, Elias Sebastian Azzi, Cecilia Sundberg, and
536 Stephen A Wood. Potential for biochar carbon sequestration from crop residues: A
537 global spatially explicit assessment. *GCB Bioenergy*, 15(12):1424–1436, 2023.

538 [61] James W. Raich, Christopher S. Potter, and Dwipen Bhagawati. Interannual
539 variability in global soil respiration, 1980–94. *Global Change Biology*, 8(8):800–
540 812, 2002. doi: <https://doi.org/10.1046/j.1365-2486.2002.00511.x>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2486.2002.00511.x>.

542 [62] John Grace. Understanding and managing the global carbon cycle. *Journal of Ecology*,
543 92(2):189–202, 2004.

544 [63] Kirsten Zickfeld, Alexander J MacIsaac, Josep G Canadell, Sabine Fuss, Robert B
545 Jackson, Chris D Jones, Annalea Lohila, H Damon Matthews, Glen P Peters, Joeri
546 Rogelj, et al. Net-zero approaches must consider earth system impacts to achieve climate
547 goals. *Nature Climate Change*, 13(12):1298–1305, 2023.

548 [64] William RL Anderegg, Chao Wu, Nezha Acil, Nuno Carvalhais, Thomas AM Pugh,
549 Jon P Sadler, and Rupert Seidl. A climate risk analysis of earth’s forests in the 21st
550 century. *Science*, 377(6610):1099–1103, 2022.

551 [65] Augustin Prado and Niall Mac Dowell. The cost of permanent carbon dioxide removal.
552 *Joule*, 7(4):700–712, 2023.

553 [66] Gopi Chataut, Bikram Bhatta, Dipesh Joshi, Kabita Subedi, and Kishor Kafle. Green-
554 house gases emission from agricultural soil: A review. *Journal of Agriculture and Food
555 Research*, 11:100533, 2023.

556 [67] Susan S. Andrews. Crop residue removal for biomass energy production: Effects on
557 soils and recommendations. White paper, USDA Natural Resources Conservation
558 Service, Washington, DC, 2006. URL https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf. Leader, Soil Quality National Technology Development
559 Team.

561 [68] CDR.fyi. 2024 year in review, 2025. URL <https://www.cdr.fyi/blog/2024-year-in-review>. Accessed: 2025-07-29.

563 [69] International Organization for Standardization. Environmental management—life cycle
564 assessment—principles and framework (no. 14040). ISO, 2006. <https://www.iso.org/standard/37456.html>.

566 [70] International Organization for Standardization. Environmental management—life cycle
567 assessment—requirements and guidelines (no. 14044). ISO, 2006. <https://www.iso.org/standard/38498.html>.

569 [71] Thomas L Oldfield, Eoin White, and Nicholas M Holden. The implications of stakeholder
570 perspective for lca of wasted food and green waste. *Journal of Cleaner Production*, 170:
571 1554–1564, 2018.

572 [72] Elias S Azzi, Haichao Li, Harald Cederlund, Erik Karlsson, and Cecilia Sundberg. Mod-
573 elling biochar long-term carbon storage in soil with harmonized analysis of decomposi-
574 tion data. *Geoderma*, 441:116761, 2024.

575 [73] Dominic Woolf, Johannes Lehmann, Stephen Ogle, Ayaka W Kishimoto-Mo, Brian
576 McConkey, and Jeffrey Baldock. Greenhouse gas inventory model for biochar additions
577 to soil. *Environmental science & technology*, 55(21):14795–14805, 2021.

578 [74] Kelli G. Roberts, Brent A. Gloy, Stephen Joseph, Norman R. Scott, and Johannes
579 Lehmann. Life cycle assessment of biochar systems: Estimating the energetic, economic,
580 and climate change potential. *Environmental Science and Technology*, 44(2):827–833,
581 1 2010. ISSN 0013936X. doi: 10.1021/ES902266R/SUPPL\FILE/ES902266R\SI\002.XLS. URL <https://pubs.acs.org/doi/full/10.1021/es902266r>.

583 [75] Haoyu Qian, Xiangchen Zhu, Shan Huang, Bruce Linquist, Yakov Kuzyakov, Reiner
584 Wassmann, Kazunori Minamikawa, Maite Martinez-Eixarch, Xiaoyuan Yan, Feng Zhou,
585 et al. Greenhouse gas emissions and mitigation in rice agriculture. *Nature Reviews Earth & Environment*, 4(10):716–732, 2023.

587 [76] Xiang Wang, Xiaoyan Chang, Libang Ma, Jing Bai, Man Liang, and Simin Yan. Global
588 and regional trends in greenhouse gas emissions from rice production, trade, and con-
589 sumption. *Environmental Impact Assessment Review*, 101:107141, 2023.

590 [77] Daniel E Klein. Co2 emission trends for the us and electric power sector. *The Electricity
591 Journal*, 29(8):33–47, 2016.

592 [78] Junyao Wang, Shuangjun Li, Shuai Deng, Xuelan Zeng, Kaixiang Li, Jianping Liu,
593 Jiahui Yan, and Libin Lei. Energetic and life cycle assessment of direct air capture: a
594 review. *Sustainable Production and Consumption*, 36:1–16, 2023.

595 [79] Kimberly M Carlson, James S Gerber, Nathaniel D Mueller, Mario Herrero, Graham K
596 MacDonald, Kate A Brauman, Petr Havlik, Christine S O'Connell, Justin A Johnson,
597 Sassan Saatchi, et al. Greenhouse gas emissions intensity of global croplands. *Nature
598 Climate Change*, 7(1):63–68, 2017.

599 [80] Dieuwertje L Schrijvers, Philippe Loubet, and Guido Sonnemann. Developing a system-
600 atic framework for consistent allocation in lca. *The International Journal of Life Cycle
601 Assessment*, 21(7):976–993, 2016.

602 [81] Anne Siemons and Lambert Schneider. Second assessment of the draft technical speci-
603 fications for certification under the eu crcf, 2025.

604 **Acknowledgments**

605 The authors gratefully acknowledge support from the Woods Institute for the Environment
606 Environmental Ventures Program and the Stanford Doerr School of Sustainability Acceler-
607 ator Program.

608 **Author contributions**

609 A.J.R. and K.M. conceptualized the study. A.J.R drafted the initial version and developed
610 the figures and data analysis. K.M. contributed significantly to manuscript drafting, figure
611 development, literature review, and editing. M.N.R. guided accounting formulation. M.N.R.,
612 G.M.M., and M.R. contributed to conceptual development, manuscript editing, and final
613 figures. All authors reviewed, edited, and approved the final manuscript.

614 **Competing interests**

615 The authors declare no competing interests.

616 **Supplementary information**

617 Supplementary Information is available for this paper.

618 **Corresponding author**

619 Correspondence and requests for materials should be addressed to Alexandra Ringsby.