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ABSTRACT 

Rapid deployment of direct air capture and storage (DACS) is essential for meeting net-zero 

emission targets and requires accurate assessment of both the scale and cost of carbon dioxide 

removal. This analysis, focused on land, renewable electricity, and geologic CO2 storage 

availability within the United States, estimates a technical potential capacity for low-temperature, 

adsorbent DACS of approximately 9 gigatonnes of CO2 per year. Much of this removal could be 

accomplished at costs between $200–250 per tonne of CO2, depending on the scale and location 

of the facility, and the associated storage costs. High-potential regions were identified in West 

Texas, the Rocky Mountains, and Alaska, among others. In the near term, DACS deployment will 

identify critical research areas for technology improvement to reduce the cost of carbon removal; 

simultaneously, there is a need for scientifically guided and rigorous standards for DACS 

monitoring, reporting, and verification across existing and emerging DACS technologies and 

energy sources. 
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1. INTRODUCTION 

Reaching global carbon neutrality will require, beyond mitigation of existing greenhouse gas 

emissions, rapid and expansive deployment of carbon dioxide removal technologies to compensate 

for hard-to-abate emissions and eventually address historic anthropogenic emissions. Recent 

reports suggest the United States alone will require carbon removals at the gigatonne scale by 2050 

1,2, likely achieved through a combination of nature- and engineering-based solutions 3,4. To bridge 

the gap in the scale and durability of nature-based carbon dioxide removal (CDR) solutions 2, such 

as afforestation and soil carbon sequestration, more costly and upcoming engineering-based 

removals will be required, with direct air capture and storage (DACS) being one the most widely 

studied 5.  

The majority of DACS technologies deployed today can be grouped into two categories. The 

first is solvent-based DACS, which puts incoming air in contact with a liquid solvent, such as an 

aqueous hydroxide, which reacts with CO2 to form a carbonate 6. The carbonate, following several 

processing steps, is eventually treated at temperatures approaching 900 °C to release the high 

purity CO2 for storage. The high regeneration temperature is typically accomplished via 

oxycombustion of natural gas 6, although electrified kilns may provide a solution less reliant on 

fossil fuels, provided their scale limitations can be overcome 7. The use of a solvent capture agent 

also leads to substantial evaporative water losses, estimated at 1–9 tonnes water per tonne of 

captured CO2 
6. The second option, adsorbent-based DACS, commonly uses functionalized solids 

in a two-step ‘swing’ process in which the solid chemically binds CO2 before being regenerated to 

release it 8. This regeneration occurs at temperatures between 80–120°C, allowing for a greater 

diversity of heat sources, which in turn enables integration with low-carbon and renewable energy 

sources. While there are several emerging approaches to DACS, both in terms of the method of 
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capture (mineral adsorption 9,10, physisorbents 11) and regeneration (moisture-12, pH-13, electro-

swing14), the lack of in-depth cost and process information available to-date makes their 

assessment for large-scale deployment difficult at this time.  

Regardless of the specific technology utilized, DACS deployment must ramp up considerably to 

reach the net-zero goals of the United States, requiring significant investment in terms of land, 

energy, natural resources, and capital. Due to DACS’ high energy requirements, approximately 

80% of which is used for regeneration heat 15,16, rapid expansion requires concurrent expansion of 

energy generation. Renewable electricity is perhaps the most promising power source for DACS 

due to its low cost and low carbon intensity, high scalability, and siting flexibility 17. Adsorbent 

DACS is particularly suited to utilize on-site renewables as it can be operated entirely via 

electricity through the use of Joule heating 18,19, electric boiler-produced steam 16, or electric heat 

pumps 8. In this configuration, the majority of the land footprint is occupied by electricity 

generation 20,21, with the capture facility itself expected to only account for less than 2% of the 

total land area 8,20. Alongside electricity requirements, deployment of DACS is limited by the 

storage potential of geologic formations in proximity to the capture facility. Estimations of 

geologic CO2 storage potential in the United States are in the thousands of gigatonne scale 22,23 but 

is highly spatially dependent 2, requiring combined capture and storage on-site or the use of CO2 

pipeline infrastructure.  

Most current studies on DACS deployment focus on what is required instead of what is possible 

within different timeframes. In the early years of deployment, coined the ‘formative phase’ by 

Nemet et al. 24, novel forms of CDR will need to grow rapidly to become climate relevant, as 

widespread deployment will allow CDR to benefit from factors such as technology learning rates 

25, market competition 26, and public-private partnerships 26. Nemet’s analysis suggests that, 
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depending on the scale of DACS relative to other novel CDR technologies, hundreds of facilities, 

each capturing 1 megatonne of CO2 per year, may be required by 2040 to reach gigatonne-scale 

for net-zero by mid-century. Actual assessments of possible near- and long-term deployment of 

DACS focus on the availability of electricity and heat to operate the facility, and their co-location 

or proximity to geologic storage 23,27.   

Work by Young et al. 26 estimated the evolving costs of a DACS facility, and a facility where 

gigatonne scale had been reached. In the near-term, location drives variation in DAC prices due to 

differences in labor and materials costs, while in the long-term the electricity source becomes more 

critical due to decreasing capital costs with deployment. The report estimates that solid adsorbent 

DACS will cost between $170–730 per tonne of net-removed CO2, which is in agreement with 

other assessments 28, and that grid decarbonization should be a priority both for reducing emissions 

and for powering DACS. Fauvel et al. 29 suggest that DACS could have a significant demand on 

both regional electricity generation and natural gas supplies by 2050, but could still play a 

significant role alongside other negative emissions technologies depending on its cost at scale. 

Geothermal energy has been identified as a potential accelerator for near-term adsorbent DAC 

deployment, with McQueen et al. 16 estimating removal potentials between 10–13 megatonnes of 

CO2 per year in the United States alone, at costs below $300 per tonne of CO2. However, the global 

potential for DACS powered by geothermal energy has been estimated at only 1 gigatonne of CO2 

per year by Fahr et al 30, several orders of magnitude lower than the potential for wind- or solar-

powered DACS. A study by Terlouw et al. 27 came to similar conclusions regarding the utilization 

of industrial waste heat for DACS in Europe, with only Sweden having enough capacity to feasibly 

compensate for 10% of its national emissions through waste-heat powered DACS. These studies 
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illustrate the need for accurate assessment of DACS potential capacity and cost, and how these are 

influenced by the location of the facility, and the timeframe in which it is deployed.  

In this study we investigated the near- and long-term deployment of adsorbent-based DACS 

within the United States utilizing renewable electricity. High-resolution geospatial analysis was 

used to identify the intersection between: 1) available land, accounting for physical (land category, 

slope) and social (protected lands) constraints; 2) available electricity, including construction of 

on-site renewable energy generation while accounting for electricity needs for grid 

decarbonization; 3) identified and quantifiable geologic storage. Spatially explicit capture costs 

and potentials were quantified at the United States county level, highlighting regions of high 

opportunity for large-scale adsorbent DACS deployment. Current grid electricity mixes were 

assessed to understand their role in DACS deployment. This work lays the groundwork for, and 

emphasizes, the importance of further in-depth regional studies, moving away from a ‘one size fits 

all’ solution for carbon dioxide removal.  

2. METHODS 

2.1. CO2 capture facility process model 

For the adsorbent DACS process, a process model was developed based on a modular vacuum-

temperature-swing system using an amine-based adsorbent loaded onto a square-channel contactor 

(Figure 1) 2,16. The model assumes a fixed cycle time and working CO2 capacity, the latter of 

which was modulated by local temperature and humidity 31 and set to decrease at due to 

degradation of the amine-based adsorbent 32. The heat for regeneration was supplied via steam 

generated by a renewable electricity-powered heat pump. A full summary of the process 

parameters can be found in Table S1.  
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Figure 1. Schematic of mass and heat flow within adsorbent DAC process, wherein heat is 

provided via saturated steam, itself generated using an electric heat pump 2. The heat pump system, 

powered by grid or renewable electricity, may receive heat input from the evaporator or available 

low-grade heat or air. Captured CO2 is sent for refining and compression prior to geologic storage 

(not pictured). Adapted from Pett-Ridge et al. 2 

We evaluated two timepoints for adsorbent DACS deployment. In the near-term (2025), energy 

was assumed to be supplied by grid electricity, with the cost and carbon intensity of this electricity 

varying by state (Table S2) 33 34. The facility was assumed to be co-located with geologic storage, 

the cost of which was based on long-term projections of storage cost 2. Environmental conditions 

of 15°C and 55 % relative humidity were used for productivity estimates.  

For adsorbent DACS deployment in 2050, a learning-by-doing analysis was carried out based 

on the estimated deployment of adsorbent DACS by 2025 35–37. The levelized cost of carbon 

removal was estimated by projecting capital costs based on estimations of total global deployment 

in 2050, and projecting operating costs using state-level electricity prices, which in turn were based 

on a 100% grid decarbonization scenario 38 (Table S2). The climate-dependent productivities were 
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used to calculate the quantity of adsorbent required to match the capture demands dictated by 

renewable energy supply, rather than affecting the scale of the facility.  

2.2. Long-term potential and cost of renewable-powered adsorbent-DACS 

Technical potential and cost estimates for 2050 were based on the assumption that future DACS 

development would utilize on-site renewable electricity, constraining capture potential by land 

availability, electricity generation potential, and proximity to geologic storage. 

2.2.1. Suitable land analysis 

Due to the small land footprint of an adsorbent DACS facility, the land suitability analysis was 

focused on what is required for land-based wind and utility-scale photovoltaics, chosen based on 

their projected low cost compared to other forms of renewable energy 39.  

Land suitability criteria categorized into ‘general’ restrictions agnostic to the generation 

technology, and ‘specific’ restrictions that account for the unique requirements of each technology. 

These restrictions, summarized in Table S3, were applied onto the 30-meter resolution 2019 

National Land Cover Database (NLCD) 40. The NLCD layer, due to its high resolution, serves as 

a reference layer of projection and processing steps for any geospatial analysis.  

General siting criteria were grouped into three categories. The first, land classification, excluded 

lands categorized as ‘water’ or ‘wetlands’, including a buffer region for the latter due to the 

difficulty of constructing electricity generation and capture facilities on these lands. The second, 

developed lands, excluded land categorized as ‘developed’ and applied buffer zones around man-

made installations such as buildings, airports and power plants. The third excluded lands identified 

as ‘protected’ by United States Government, such as wilderness areas, national parks, and historic 

areas due to the potential ecological and societal harm that DACS construction could have in these 

areas.  
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Technology-specific criteria were then applied, based on the highest generation potential for 

each region. The first excluded land with slope equal above 5 and 20% for wind and solar 

respectively. The second excluded land based on their co-location with certain NLCD land classes. 

This was accomplished by grouping the land class data, at 30-meter resolution, into 2250 by 2250 

meter (~5 km2) analysis spaces. Wind development was excluded in spaces containing more than 

25% forest, and solar development in areas with more than 25% of forest, pasture/hay, or cultivated 

crops 40. The third criteria excluded land that is projected to be occupied by wind/solar 

development for United States electrical grid decarbonization as identified by Denholm, et al. 41 

in the “All-Options” which included DACS deployment as part of its analysis. It is important to 

note that future demands for grid and/or renewable electricity, such as those required for data 

centers and emerging technologies such as artificial intelligence 42,43 could require significant 

expansion of renewable electricity generation, but were not included in this analysis due to their 

difficulty to predict. Finally, a minimum contiguous land area of 5km2 was specified to remove 

isolated pixels. In Alaska, solar photovoltaic was excluded as a primary renewable energy option 

because of low solar resources in that region 44. 

After determining suitable land, the 30-meter resolution map was resampled into a 2250-meter 

resolution grid point map (Figure S1). We consider this an acceptable tradeoff to improve 

computational efficiency due to the minimum land contiguous area requirement of 5 km2.  

2.2.2. Renewable electricity potential and cost analysis 

At each of the resampled grid points i, the electricity generation potential 𝐸𝑖,𝑗 in MWh per year 

with technology j (j is wind or solar) can be calculated as: 

𝐸𝑖,𝑗 = 𝐶𝐹 × 8760 × 𝐴𝑖,𝑗 × 𝑃𝐷𝑗 
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where CF is the capacity factor, Ai,j is the quantity of suitable land, in km2, and PDj is the power 

density of the technology, 4.3 45 and 45 46 MW per km2 for wind and solar respectively.  

2.2.3. Geologic storage potential and cost 

For this analysis, adsorbent DACS facilities were assumed to be constructed only on land with 

geologic storage potential. While CO2 transport has been considered using several methods 47, it 

is beyond the scope of this work. Spatially explicit geologic storage capacities and cost were taken 

from Chapter 4 of the ‘Roads to Removal’ report 2, which took into account factors related to 

injectivity, CO2 plume and pressure area, and the costs associated with project exploration. 

Regions with poorly defined storage potential or cost, and electricity generation grid points 

overlapping these regions, were excluded from further analysis.  

2.2.4. Impact of local climate on performance 

To quantify the impact of climate—temperature and humidity/dew point—on capture 

productivity, spatially explicit climate data at a resolution of 25 kilometers 48 was combined with 

estimates of productivity at different temperatures and dew points 31, adapted to adjust the cyclic 

working capacity of the adsorbent.  

3. RESULTS AND DISCUSSION 

3.1. Near-term cost of adsorbent DACS 

At a plant scale of 0.3 megatonnes of CO2 per year, we estimate that a first-of-a-kind adsorbent 

DACS facility could capture and store CO2 at a cost of $630 per tonne CO2, in good agreement 

with the cost ranges estimated by previous studies 26,28. The overall cost is most strongly affected 

by the capital cost for adsorbent material and regeneration, and the electricity costs associated with 

the steam generation, calculated as the average of state-level industrial prices in 2025 33. This cost 

is a ‘net-removed’ cost and is highly dependent on the carbon intensity of the heat and electricity 
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(i.e. the CO2 released during heat and electricity generation, Figure S2). For example, if natural 

gas is used for steam generation without capturing the combustion emissions, the cost of capture 

increases to $800 per tonne of CO2 due to the subsequent release of CO2 during natural gas 

combustion (Figure S3).  

3.1.1. Impact of electrical grid carbon intensity 

Due to the high energy requirements of adsorbent DACS, the carbon intensity of the grid 

electricity also strongly affects the net-removed cost of CO2 capture. These carbon intensities vary 

strongly by state (Figure 2) due to differences in energy source and power plant efficiency. Based 

on 2021 grid carbon intensity, two states (Washington and Vermont) could capture CO2 at below 

$500 per tonne of CO2, although the lack of availability of geologic storage in these regions makes 

deployment challenging. In states like Wyoming and Indiana, where most electricity is generated 

through coal or natural gas, CO2 emissions from electricity generation exceed the quantity of CO2 

captured by DACS, resulting in overall positive emissions and effectively ‘infinite’ net-removed 

cost. Similar results were demonstrated by Sendi et al. 49 who found that net CO2 removal could 

not be achieved in India, China, South Africa, and the central United States due to their grid carbon 

intensity. This demonstrates the need for carefully considering the CO2 emissions of a region’s 

existing electrical grid mixture if DACS is planned to utilize it and illustrates the importance of 

grid decarbonization.  



12 

 

Figure 2. (a) State-level carbon intensities of 2021 electrical grid; (b) State-level Costs for  

adsorbent DACS facilities powered by equivalent grid electricity. Calculations assume facility size 

of 0.3 megatonnes of CO2 per year.  

 

3.2. Long-term deployment of renewable-powered adsorbent DACS 

3.2.1. Identifying suitable land for renewable energy generation 

As shown in Figure 3(a), the criteria that resulted in the largest above-ground land exclusions 

were regions with excessive slope (0.53/ 1.69 million km2 for wind/solar), regions containing or 

adjacent to wetlands (1.74 million km2), and land prioritized for grid decarbonization (1.07/ 0.67 

million km2 for wind/solar). Exclusion type was strongly related to the NLCD land classification 

within a region. For example, forests and shrublands made up approximately 38 and 35 % of 

protected lands, but only 27 and 7 % of lands on or around wetlands respectively.  
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Figure 3. (a) Quantity of land excluded by general and technology-specific above-ground siting 

criteria; (b) land-class distribution of area intersecting renewable generation and geologic storage.    

 

After applying above-ground general and technology-specific siting criteria (Figure S4), 

approximately 1.2 million km2 was identified as suitable for renewable electricity generation, with 

0.45 and 0.75 million km2 being utilized for solar and wind respectively. States surrounding, or 

east of, the Rocky Mountains such as Montana and Wyoming have high potential for wind, as does 

north and southwest Alaska, while southwestern states such as Texas, New Mexico, and Arizona 

have high potential for solar. These analyses were conducted at a 30-meter resolution, higher than 

other studies analyzing siting of wind 50,51 and solar 51 electricity generation, with resolutions 

between 90-100 meters, which can lead to differences in the determined quantity of suitable land 

(Figure S5), and results in a more conservative estimate of the quantity of suitable land for 

electricity generation. 

3.2.2. Intersection with geologic storage 

When considering only generation above geologic storage with quantifiable cost and capacity, 

approximately 0.34 million km2 could be utilized for renewables generation for adsorbent DACS 

(Figure 3(b)). This land accounts for 16% of the total land area in the contiguous United States 

and would enable the generation of 41 and 10 PWh by solar and wind installations respectively. 
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In regions where both wind and solar energy could be produced, the technology with the higher 

generation potential was prioritized, although selecting based on cost produced similar results 

(Figure S6). Much of this land is of the ‘Herbaceous’ or ‘Shrub/Scrub’ land class, and is located 

in south and west Texas, Wyoming, and Colorado, with storage costs per tonne of CO2 varying 

between $4–40, with an average of $8. The requirement for collocation with geologic storage 

eliminated several regions within the western United States with significant potential for 

renewable electricity generation, such as northern Nevada and southern Arizona—both of which, 

due to their low population density, have relatively little land prioritized for decarbonizing the 

electrical grid 41. These regions demonstrate the benefits of expansive mass and energy transport 

networks for both grid decarbonization and direct air capture.  
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Figure 4. Identified suitable land for renewable energy generation for adsorbent DACS facilities 

in 2050, and their overlap with quantifiable geologic storage. Solar (green) and wind (blue) 

installations are color graded based on their generation potential, with darker colors indicating 

higher potential.  

 

3.2.3. Impact of local climate on performance 

Based on the impact of temperature and humidity on amine efficiency 52 and regeneration 

efficiency 53, DACS facilities deployed in colder drier regions were found to have increased 

capture productivity 31, such as those in the northwestern United States (Figure S7). Alaska, while 

having the lowest average yearly temperature in the United States, has low absolute levels of 

humidity (Figure S8) and thus cannot leverage the benefits of water vapor during the capture 

process.  

3.2.4. Cost and technical potential for adsorbent DACS in 2050 

First-of-a-kind total adsorbent DACS capacity was estimated at 41 kilotonnes of CO2 per year 

between existing and planned operations by Climeworks 35,36 and Global Thermostat 37. The 

modular nature of the adsorbent contactor means that, although these facilities may be considered 

pre-commercial-scale, the size of the core technology unit will not be subject to scaling. A blend 

of component-specific learning rates were considered for the pieces of equipment comprising 

adsorbent DACS 54–58. Components with high degrees of modularity, or that are based on emerging 

science and technology such as the contactor and adsorbent media, were generally assigned higher 

learning rates 26,57, which are reflected in the reductions in cost between 2025 and 2050 (Figure 

5). A recent study by Sievert et al. 59 used a similar methodology for an adsorbent DACS process, 

assigning learning rates ranging from 3-27% based on the novelty of the component 59. Using 
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moderate rates for all components (Table 1) resulted in an overall learning rate of 9.7%, relatively 

conservative compared to other studies 26,59,60. In addition to learning rates on capital expenditures, 

we applied learning to the thermal-energy requirement, fit to a target value at the final projected 

deployment in 2050. Our moderate estimate for thermal energy requirement was 7.6 GJ per tonne 

of CO2, higher than several short- and long-term estimates 16,54 but lower than experimentally 

determined requirements at lab-scale 61,62. The post-learning electricity requirement for adsorbent 

DACS, including generation of thermal energy via heat pump with a coefficient of performance 

of 2.5 (Table S1), was determined to be approximately 5.2 GJ per tonne of CO2, and accounted 

for almost 20% of the post-learning cost reduction. The calculated energy requirement is similar 

to publicly reported estimates of energy requirements for current DAC plants by Carbon 

Engineering and Climeworks 25, and on the more conservative end of estimates for long-term 

capture facilities 16,26,54. The contactor used for adsorption and regeneration is modular and was 

assumed to not benefit from economies of scale.  

 

Figure 5. (a) Learning curves for adsorbent DACS for deployment up to 1 gigatonne of CO2 per 

year, dark blue line indicates ‘moderate’ learning rate; (b) Cost breakdown of FOAK adsorbent 

DACS in 2025 and post-moderate learning adsorbent DACS located in in 2050. Both facilities 
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were assumed to operate at a scale of 0.3 megatonnes of CO2 per year, at a location with identical 

climate, and utilize renewable electricity for energy supply.  

Table 1. Component-based learning rates for adsorbent DAC technology learning.  

Component Learning rates Moderate value 
Adsorbent and contactor 10–15% 12% 
Heat pump 5–12% 10% 
Fans 2.5–7.5% 5% 
Vacuum pumps 0–2.5% 0% 
Drying and compression 0–2.5% 0% 

 

Based on the quantity of renewable energy generation co-located with storage we estimate that, 

by 2050, approximately 2.5 and 6.8 gigatonnes of CO2 per year could be captured utilizing 

adsorbent DACS powered by purpose-built wind and solar energy respectively. This value 

accounts for seasonal variations in CO2 capture productivity, and learning-based improvements to 

the energy efficiency of the capture and regeneration process. While most regions in the United 

States have some potential to accommodate adsorbent DACS facilities, the largest opportunities 

for deployment are concentrated in: San Juan, McKinley, and Webb county, New Mexico; Reeves, 

Webb and Culberson county, Texas; North Slope, Alaska; Sweetwater and Carbon county, 

Wyoming. Capture costs vary from $190–490 per tonne of CO2, with a weighted average of $250 

per tonne of CO2. Adsorbent DACS cost was primarily influenced by the scale of the facility and 

state-level electricity price, while local temperature and humidity had more minor impacts, 

matching the trends observed in the regional analysis by Terlouw et al. 27. The states with the 

lowest DACS costs are generally expected to have the lowest costs for producing electricity and 

geologic storage, particularly Texas, New Mexico, and Wyoming. Several of these states were 

considered relatively undesirable in the near term for adsorbent DACS deployment based on 
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Figure 2, due to their carbon intensive electrical grid. However, the analysis for 2050 emphasizes 

the importance of decarbonization and its ability to significantly expand the potential for adsorbent 

DACS in pathways towards net-zero.  

 

Figure 6. County-level assessment of potential cost and capacity of adsorbent DACS powered by 

renewable electricity, co-located with geologic storage.  

3.4. Limitations of this study 

The analysis in this work is intended to provide insight into the deployment of adsorbent-based 

direct air capture and storage in the United States, both in the near- and long-term as we move 

towards net-zero emissions. To carry out this analysis a number of assumptions were made, and 
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several aspects of DACS deployment were outside the scope of this study and should be addressed 

in future work.  

While the assumptions for siting of renewable energy generation and DACS facilities were 

relatively restrictive, this work did not account for state- or county-level restrictions and 

ordinances 63. The potential overlap in lands utilized for direct air capture and other carbon removal 

technologies, such as biomass carbon removal and storage (BiCRS) or forest management, was 

not quantified in this work, but can be found elsewhere 2,64.   

The carbon intensity of energy generation, and by extension CO2 capture, is quantified in this 

work; however, the broader environmental impact and burdens of these facilities were not. For 

example large-scale deployment of direct air capture would require concurrent scale-up of supply 

chains for raw materials related to the capture media 65, such as reagents for the synthesis of amine-

rich polymers 25. To understand these impacts on cost and viability, full life-cycle assessment 

(LCA) of the capture facility is required, and will be dependent on the specific technology, the 

scale of the facility, and its location.  

Quantifiable geologic storage was an essential part of this analysis, providing a durable method 

of sequestering captured CO2. The utilization of pipelines to transport CO2 to suitable geologic 

storage was also not investigated in this work as, due to uncertainties around public perception 66 

and their location depending on the location of CO2 sources and sinks, predicting their long-term 

deployment is challenging. Other analyses, such as the ‘Roads to Removal’ 2 and ‘Net Zero 

America’ 67 have conducted assessments of CO2 pipeline infrastructure and its role in achieving 

net-zero emissions by 2050. There are also analyses of other transport options such as road, rail, 

and barge, the costs for which vary strongly by the quantity and travel distance of CO2 being 

transported 68–70.  
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3.5. Outlook for adsorbent DACS deployment in the continental United States 

These analyses provide a foundation for further study on direct air capture and storage across 

the global, not only within the United States. Challenges with heat supply and the current carbon 

intensity of the United States’ electrical grid further support the need for prioritizing grid 

decarbonization, not only to reduce emissions but improve the efficiency of capture processes 

utilizing electrified processes. In the near-term, the viability of grid electricity for powering DACS 

is strongly dependent on location, due to the energy mix and carbon intensity of each state’s 

electrical grid. States like Vermont and Washington have relatively low capture costs in the near-

term due to their high proportion of renewables, resulting in net-removed capture efficiencies of 

99 and 81% respectively, but geologic storage availability makes these locations challenging in 

absence of robust and inexpensive CO2 transportation networks. On the other hand, states with 

ample geologic storage resources have much lower capture efficiencies, with Texas having only 

19% and Wyoming’s carbon intensive grid resulting in DACS being a net producer of CO2.  

After applying moderate component learning rates to the DACS process, we estimate that 9.3 

gigatonnes of CO2 could be captured utilizing purpose-built renewable energy by 2050. Much of 

this capacity is concentrated in several states (Texas, Wyoming, New Mexico, California, and 

Alaska) due to a combination of land availability and suitable weather for electricity generation. 

An average capture cost of $250 per tonne was calculated, with regions such as Texas, Wyoming 

and New Mexico having substantially lower costs due to the scale of facilities possible, and their 

low electricity and storage costs. The high-resolution geospatial analysis emphasizes the need for 

region-specific research, as local environment and terrain are likely to have a strong impact on 

both the performance of a capture facility, and the cost for constructing and operating one. 
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However, this work identifies a number of high potential regions for long-term DACS deployment 

at a gigatonne scale, which could cement its role in a pathway towards net-zero. 
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SYNOPSIS 

Current energy supplies for direct air capture significantly increase net-removed cost. High-

resolution geospatial analysis is used to assess the deployment of renewable-powered direct air 

capture in the United States, quantifying capacity and cost at the county level.  
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Table S1. Adsorbent DACS process information, including scale and cost parameters 

Parameter Units Baseline value 

Baseline adsorbent cyclic working capacity (30°C, 0% RH) molCO2/kgadsorbent 0.8 

Mass ratio of contactor to adsorbent kgcontactor/kgadsorbent 0.2 

Average CO2 removal efficiency % 75 

Cycle time mins 20 

Degradation rate constant, k 
 

5.1 × 10-5 

Relative CO2 capture capacity prior to sorbent replacement % 70 

Adsorbent material lifetime a years 0.3 

Contactor lifetime years 10 

Contactor length m 0.3 

Contactor channel size mm 0.5 

Fan electricity requirement 1,2 GJ/tonneCO2 1.1 

Vacuum pump electricity requirement 1 GJ/tonneCO2 0.6 

Compressor electricity requirement 3 GJ/tonneCO2 0.3 

Regeneration steam requirement 4 GJ/tonneCO2 12.1 

Heat pump coefficient of performance b 
 

2.5 

Plant scale (low, nearby generation) tonneCO2/y 100,000 

Plant scale (moderate, nearby generation) tonneCO2/y 300,000 

Plant scale (high. nearby generation) tonneCO2/y 1,000,000 

Capacity factor  0.9 

Average storage cost $/tonneCO2 7.75 

Storage cost range $/tonneCO2 3.95 - 135 

Labor and maintenance % total OPEX 4.5 

Balance of plant CAPEX % total CAPEX 10 

Capital scaling factor $overnight/$bare 4.5 

Plant lifetime years 20 

Capital discount rate % 12.5 
a Adsorbent lifetime is a derived parameter based on the degradation rate constant, full cycle time, 

and relative capacity at the time of sorbent replacement. Residual capacity = (1–k)n where n is the 

number of cycles.  

b Based on a heat pump system using recovered heat from excess steam, air, and/or low-grade 

process, waste, or renewable heat sources. 

 

 

 

 

 



 

 

 

Figure S1. Schematic depicting the process of aggregating higher resolution dataset into lower 

resolution dataset with corresponding grid points. This resampling process retains the information 

of the fraction of suitable land contained within each re-sampled area within each grid point.  

 

 

 

 

Figure S2. Illustration of ‘net-removed’ CO2 in a typical adsorbent DACS process utilizing either 

grid or renewable resources for electricity requirements, and combustion of natural gas for heat 

requirements. This illustration assumes no capture of CO2 released from electricity and heat 

generation alongside direct air capture of CO2 from the atmosphere. In some cases, calculating net 

CO2 removal may result in a negative number, in which case the DACS process results in net CO2 

emissions.  



Table S2. United States state-specific electricity prices and carbon intensities. 

State 

2025 electricity 

purchase price 

[US$/kWh]a 

2025 grid carbon 

intensity 

[gCO2/kWh]b 

2050 electricity 

purchase price 

[US$/kWh]c 

Alabama 7.21 538 9.22 

Alaska 19.20 347 21.70 

Arizona 7.74 483 8.00 

Arkansas 7.49 315 7.47 

California 16.89 228 9.38 

Colorado 9.13 547 5.38 

Connecticut 10.97 248 12.96 

Delaware 8.66 571 12.71 

D.C. 8.97 531 10.14 

Florida 8.72 390 10.43 

Georgia 7.40 350 10.60 

Hawaii 30.90 699 34.93 

Idaho 7.28 152 8.91 

Illinois 8.32 314 8.14 

Indiana 8.42 747 8.75 

Iowa 7.56 430 6.73 

Kansas 8.41 401 5.72 

Kentucky 6.78 801 9.94 

Louisiana 7.08 464 8.03 

Maine 10.88 209 11.55 

Maryland 9.64 314 12.16 

Massachusetts 17.30 430 12.65 

Michigan 8.76 475 9.09 

Minnesota 9.45 391 6.55 

Mississippi 6.78 378 8.30 

Missouri 8.10 774 7.12 

Montana 7.11 511 7.66 

Nebraska 8.27 559 5.71 

Nevada 6.86 332 8.70 

New Hampshire 15.74 131 12.18 

New Jersey 12.19 240 12.97 

New Mexico 7.02 488 5.00 

New York 7.22 226 11.48 

North Carolina 7.00 317 10.53 

North Dakota 8.40 640 4.51 

Ohio 7.46 547 10.11 

Oklahoma 6.27 344 6.06 



State 

2025 electricity 

purchase price 

[US$/kWh]a 

2025 grid carbon 

intensity 

[gCO2/kWh]b 

2050 electricity 

purchase price 

[US$/kWh]c 

Oregon 6.80 142 9.42 

Pennsylvania 7.45 331 11.77 

Rhode Island 18.30 381 12.78 

South Carolina 6.92 255 9.97 

South Dakota 9.14 145 5.53 

Tennessee 6.28 342 9.18 

Texas 6.97 427 6.63 

Utah 7.05 697 8.11 

Vermont 12.97 4.99 11.00 

Virginia 7.40 294 11.62 

Washington 6.62 99.3 9.76 

West Virginia 6.92 877 10.92 

Wisconsin 8.69 565 7.82 

Wyoming 7.78 843 5.44 

United States average 9.41 388 6.51 
a U.S. Energy Information Administration, EIA-861, 2021, Total Electric Industry, Industrial 

price 5, projected to 2025 from 2021 (14% increase)  

b U.S. Energy Information Administration, 2021, Table 7. Electric power industry emissions 

estimates 6 

c NREL, Cambium 2022, Mid-case with 100% decarbonization by 2035, 2050 projected 7. 

United States average is a weighted average of state-level 2050 projected electricity prices by 

potential renewable generation capacity. 

 

 

 

 

 



 

Figure S3. Cost breakdowns for first-of-a-kind adsorbent DACS facilities, utilizing either an 

electric heat pump or natural gas combustion to provide thermal energy for regeneration. Costs, 

calculated on a ‘net-removed CO2’ basis, assume facility size of 0.3 megatonnes CO2 per year.  

 

 

 

 

Figure S4. Maps illustrating land exclusions applied to renewable electricity deployment for 

adsorbent DACS: (a) wetlands and developed area buffers; (b) protected areas; (c) lands prioritized 

for grid decarbonization, based on analyses by the National Renewable Energy Laboratory 8; (d) 

land slopes exceeding allowable values for wind and solar deployment.   

 



 

 

Figure S5. Land excluded by the wetland buffer condition using 30-meter (blue) and 90-meter 

(red) resolution in Hemphill County, Texas, including overlap between the two regions (purple).  

 

The resolution of the geospatial analysis can have several impacts on the determined quantity of 

suitable land. First, pixels of ‘unsuitable’ land use classes that would be excluded from use, due to 

merging with neighboring pixels, remain in the dataset. As a result, more pixels/land are identified 

as not suitable due to the land cover type. This results in a higher level of fragmentation in the land 

and more potential discontinuity, reducing the quantity of contiguous land. Additionally, the slope 

calculated can vary based on the resolution. Buakhao and Kangrang 9 found that, for the same area, 

the slope calculated at 90-meter resolution is 25% percent lower than the slope calculated at 30-

meter resolution. Finally, roads, railways, and low-voltage transmission lines disappear at lower 

resolutions and are therefore not properly accounted for. The retention of smaller land class 

features at higher resolutions leads to more exclusions based on the 5 km2 contiguous land 

condition compared to lower resolution. These factors result in a more conservative estimate of 

the quantity of suitable land for electricity generation.  

 



 

 

Figure S6. Impact of selecting grid-level electricity generation technology based on least cost vs. 

maximum generation potential. Similar results are obtained when comparing land use, generation 

potential, and median cost of electricity.  

 

Levelized costs of energy (LCOE) were calculated using the Electricity Annual Technology 

Baseline’s 2050 Moderate scenario 10. Spatially explicit estimates of LCOE were based on 

resource class (Table S3, S4), i.e. wind speed at a 120-meter height and global horizontal 

irradiance for wind and solar electricity respectively 11,12. 

 

 

 

 

 

 

 

 

 

 



Table S3. Criteria applied for land suitability of wind and solar deployment for DACS. 

Condition Notes 
Data 

Source 

NLCD Open water excluded 13 

Protected land 

Protected Areas Database, National Conservation Easement 

Database 

3 km buffer distance for GAPa-status = 1, 2 (e.g., national parks 

0 km buffer distance for GAPa-status = 3, 4 (e.g., state parks) 

14,15 

3 km buffer distance for areas of critical environmental concern 16 

3 km buffer distance for roadless areas 17 

Wetlands 0.3 km buffer distance 13 

Developed 0 km buffer distance 13 

Other developed 

Airports: 3 km buffer distance  18 

Railroads: 0.015 km buffer distance 18 

Transmission lines: buffer distance based on voltage 18 

Power plants: 3 km buffer distance 19 

Buildings: 0.3 km buffer distance 20 

Wind turbines: 3 km buffer distance 21 

Decarbonization 
Excluded land overlapping with prioritized renewable electricity 

development area 
8 

Slope (Solar) Slope <5% (2.86°) 22 

Slope (Wind) Slope <20% (11.31°) 22 

Co-location (Solar) 
Excluded lands with forests, pasture/hay or cultivated crops 

occupying >25% of ~5 km2 grid space 
13 

Co-location (Wind) 
Excluded lands with forests occupying >25% of ~5 km2 grid 

space 
13 

Contiguity <5 km2 contiguous area excluded Calculated 
a GAP = Gap Analysis Project 

 

 

 

 

 

 

 

 

 

 



Table S4: Land-based wind resource classes and levelized cost of electricity 10. 

Type 
Min. wind speed 

[m/s] 

Max. wind speed 

[m/s] 

LCOE 

[$/MWh] 

Class 1 9.01 12.89 15.4 

Class 2 8.77 9.01 16.6 

Class 3 8.57 8.77 17.0 

Class 4 8.35 8.57 17.5 

Class 5 8.07 8.35 18.0 

Class 6 7.62 8.07 18.9 

Class 7 7.10 7.62 20.8 

Class 8 6.53 7.10 23.3 

Class 9 5.90 6.53 27.9 

Class 10 1.72 5.90 42.5 

 

 

 

 

Table S5: Utility-scale solar photovoltaic resource classes and levelized cost of electricity 10 

Type 
Min. GHI a 

[kWh/m2/day] 

Max. GHI 

[kWh/m2/day] 
LCOE [$/MWh] 

Class 1 5.75 - 13.2 

Class 2 5.50 5.75 13.6 

Class 3 5.25 5.50 14.3 

Class 4 5.00 5.25 15.1 

Class 5 4.75 5.00 16.1 

Class 6 4.50 4.75 16.8 

Class 7 4.25 4.5 17.6 

Class 8 4.00 4.25 18.5 

Class 9 3.75 4.00 19.4 

Class 10 0 3.75 21.2 
a Global horizontal irradiance 

 

 

 



 

Figure S7. State-level CO2 capture productivities, defined per adsorbent contactor unit, illustrating 

impact of local temperature and dew point on DACS performance.  

 

 

Figure S8: State-level (a) temperature and (b) dew point 23. 

 

The focus of this study is capture based on an amine-based adsorbent, but it is important to note 

that different capture technologies have different responses to local climate conditions. For 

example, physisorbents perform poorly in humid conditions due to competition between water and 



CO2 for active sites, but may be suitable for cold, dry conditions such as Alaska 24. Optimizing 

productivity through the selection of adsorbents or process variables tailored to specific 

environments could have significant impacts on both capture capacity and cost 25, but is outside 

the scope of this work. Another topic warranting additional study is that many regions experience 

significant changes to temperature and humidity throughout the year, and even throughout a single 

24-hour period. As adsorbent DAC processes typically operate with total cycle times less than one 

hour changes in local conditions during a regular diurnal cycle could impact performance by up to 

a factor of ~2 26.  

 

Table S6. State-level building cost coefficients. 

State Average cost factor a  State Average cost factor a 

Alabama 0.835  Montana 1.084 

Alaska 2.718  Nebraska 0.913 

Arizona 0.935  Nevada 1.150 

Arkansas 0.910  New Hampshire 1.080 

California 1.205  New Jersey 1.192 

Colorado 1.037  New Mexico 0.933 

Connecticut 1.136  New York 1.127 

Delaware 1.121  North Carolina 0.879 

D.C. 1.04  North Dakota 1.118 

Florida 0.858  Ohio 0.961 

Georgia 0.859  Oklahoma 0.909 

Hawaii 2.175  Oregon 1.168 

Idaho 0.988  Pennsylvania 1.090 

Illinois 1.078  Rhode Island 1.138 

Indiana 0.916  South Carolina 0.926 

Iowa 0.988  South Dakota 0.982 

Kansas 0.911  Tennessee 0.846 

Kentucky 0.914  Texas 0.894 

Louisiana 0.887  Utah 1.093 

Maine 1.077  Vermont 1.001 

Maryland 0.995  Virginia 0.973 

Massachusetts 1.180  Washington 1.142 

Michigan 1.021  West Virginia 0.972 

Minnesota 1.102  Wisconsin 1.092 



Mississippi 0.798  Wyoming 1.022 

Missouri 0.949    
a US DoD Facilities Pricing Guide (UFC 3-701-01) 27. Average of area cost factors by state (Table 

4-1, CONUS). 

 

 

Figure S9. Percent change in total cost for adsorbent DACS in 2050 after applying state-specific 

cost factors. 

 

State-level building costs were also considered for their impact on capture cost 27. Generally, 

there was a strong correlation between state-level electricity and building costs. Many of the 

identified ‘high priority’ regions had cost coefficients between 0.85-1.15, resulting in minimal 

positive or negative changes to DACS cost. The primary exception to this is Alaska with a 

coefficient of 2.7, which resulted in an average increase in capture cost of 29%, or $133 per tonne 

of CO2.  



Potential for utilizing geothermal heat for adsorbent DACS 

There is potential for using low-grade (70–150 °C) geothermal brine to upgrade process steam, 

thereby reducing the electricity requirements of the process heat pump compared to an air-source 

heat pump. To understand the impact on cost and capacity, the adsorbent DACS process was 

modelled using a heat pump with a coefficient of performance of 4 to reflect the increased heat 

source temperature. Heat from the resource, assumed to be re-injected at a temperature of 70 °C, 

was upgraded to produce steam using a heat pump. Yearly DACS capacity utilizing heat from 

hydrothermal sources was calculated using the following equations: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐺𝑒𝑜 𝐴𝑑−𝐷𝐴𝐶 =
𝑄𝑠𝑡𝑒𝑎𝑚

(𝐸𝑠𝑡𝑒𝑎𝑚/𝑡𝑜𝑛𝑛𝑒𝐶𝑂2
)
 

𝑄𝑠𝑡𝑒𝑎𝑚 = 𝑄ℎ𝑦𝑑𝑟𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 ×
𝐶𝑂𝑃𝐻𝑃

𝐶𝑂𝑃𝐻𝑃 − 1
 

𝐶𝑂𝑃𝐻𝑃 =
𝑄𝑠𝑡𝑒𝑎𝑚

𝑊𝑖𝑛
=

𝑄ℎ𝑦𝑑𝑟𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑊𝑖𝑛

𝑊𝑖𝑛
= 4 

where Qsteam is the quantity of thermal energy produced by the hydrothermal-source heat pump 

in GJ per year, Esteam/tonneCO2 is the thermal energy requirement of adsorbent DACS process in 

GJ per tonne of CO2, Qhydrothermal is the thermal energy available in the hydrothermal resource in 

GJ per year (assuming a re-injection temperature of 70 °C, calculated using the resource 

temperature and flow rate), and Win is the heat pump work input, as electrical energy in GJ per 

year. Resource temperatures and flow rates were obtained from the NREL Geothermal Prospector 

28. Resources with temperatures exceeding 150 °C were not considered due to their potential for 

electricity generation 29 and grid decarbonization 30. Adsorbent DACS was calculated for a facility 

scale determined by the availability of thermal energy for each hydrothermal resource, with a 



minimum of 10 kilotonnes of CO2 per year, and a levelized cost of hydrothermal heat, determined 

using the System Advisory Model 31. 

Hydrothermal resources with known temperature and flow-rate information 28 could provide 

thermal energy to power nearly 2.1 million tonnes per year of adsorbent DAC (Figure S7) at costs 

between $240–460 per tonne of CO2, with an average of $285 per tonne of CO2. The majority of 

these resources are located within the western United States. Capture cost was strongly influenced 

by the temperature of the hydrothermal resource and the scale of the facility, and did not include 

storage costs due to the lack of overlap between hydrothermal resources and storage with 

quantifiable cost. A 2023 analysis 32 suggests that harnessing geothermal energy in Texas, 

California, or Alaska could result in capture costs 16–33 % lower than baselines utilizing grid 

electricity, with carbon intensities similar to those in Figure 3 in the main text, to drive 

regeneration. In this work, utilization of hydrothermal resources would either require some form 

of CO2 transportation or an alternative CO2 end case, e.g. utilization or conversion, both of which 

are outside the scope of this study.  



 

Figure S10: Potential for adsorbent DACS in 2050, where thermal energy requirements are 

provided for at least partially by hydrothermal resources 70–150 °C.   
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