- 2 Rebecca B. Neumann^{1,*}, Tyler Kukla², Shuang Zhang³, David E. Butman^{1,4} 3 1. Department of Civil & Environmental Engineering, University of Washington, 4 Seattle, WA 5 2. CarbonPlan, San Francisco, CA 6 3. Department of Oceanography, Texas A&M University, College Station, TX 7 4. School of Environmental and Forest Sciences, University of Washington, 8 Seattle, WA
- 9

10 Abstract

- 11 As climate mitigation efforts lag, dependence on anthropogenic CO_2 removal increases.
- 12 Enhanced rock weathering (ERW) is a rapidly growing CO₂ removal approach. In terrestrial
- 13 ERW, crushed rocks are spread on land where they react with CO_2 and water, forming
- 14 dissolved inorganic carbon (DIC) and alkalinity. For long-term sequestration, these
- 15 products must travel through rivers to oceans, where carbon remains stored for over
- 16 10,000 years. Carbon and alkalinity can be lost during river transport, reducing ERW
- 17 efficacy. However, the ability of biological processes, such as aquatic photosynthesis, to
- 18 affect the fate of DIC and alkalinity within rivers has been overlooked. Our analysis
- 19 indicates that within a stream-order segment, aquatic photosynthesis uptakes 1% – 30% of
- 20 DIC delivered by flow for most locations. The effect of this uptake on ERW efficacy,
- 21 however, depends on the cell-membrane transport mechanism and the fate of
- 22 photosynthetic carbon. Different pathways can decrease just DIC, DIC and alkalinity, or
- 23 just alkalinity, and the relative importance of each is unknown. Further, data show that
- 24 expected river chemistry changes from ERW may stimulate photosynthesis, amplifying the
- 25 importance of these biological processes. We argue that estimating ERW's carbon
- 26 sequestration potential requires consideration and better understanding of biological
- 27 processes in rivers.

28 Main

- 29 Carbon dioxide removal (CDR) has become an increasingly prevalent tool in IPCC modeled
- 30 mitigation pathways that limit global warming to 1.5 or 2 °C relative to the preindustrial
- 31 period.¹ There is still vast uncertainty and debate around the need, cost, efficacy,
- 32 scalability, and ethics of using CDR to meet climate objectives.²⁻⁴ Nonetheless, the
- 33 likelihood of CDR dependence grows with the ongoing failure of pledged and actualized
- 34 emissions reductions to meet what is needed to limit warming⁵. In response, the CDR
- 35 industry is growing rapidly as it prepares to meet future demand.^{6,7}
- 36 In the durable CDR landscape — i.e., carbon removal for >1000 years — enhanced rock
- 37 weathering (ERW) is an emerging and rapidly growing approach. Currently, eighteen ERW
- 38 companies exist and ~19% of the total tons of carbon sold in the durable carbon market is
- attributed to ERW.⁶ However, the CDR potential of ERW at scale is uncertain.⁸ Given the 39

1 Photosynthesis in Rivers as a Loss Pathway for ERW-Derived DIC and Alkalinity

- 40 proliferating CDR landscape and increasing use of ERW as a carbon offset tool, it is crucial
- 41 to fully understand the approach's efficacy in order to avoid emitting more carbon than is
- 42 actually sequestered.
- 43 In ERW, silicate or carbonate rocks are crushed and spread on land usually agricultural
- 44 fields where the minerals react with CO_2 and water to form bicarbonate (HCO_3^{-1}) and
- 45 cations. For ERW to successfully and durably remove CO₂, the weathering products must
- 46 reach a long-term reservoir. For most deployments, that reservoir is the ocean where the
- 47 residence time of carbon is long enough (>10,000 years⁹) to offset fossil emissions, which
- 48 stay in the atmosphere for 1000's of years.¹⁰
- 49 The journey from fields, where weathering occurs, to the ocean, where sequestration
- 50 occurs, involves streams, rivers, lakes, and reservoirs. In these freshwater systems, many
- 51 processes can pull or release weathering products from water, altering the amount
- 52 delivered to the ocean. Thus far, the ERW community has only considered the ability of
- abiotic processes namely carbonate precipitation¹¹⁻¹³ and CO2 degassing¹⁴ to
- 54 facilitate the loss of ERW products within rivers.
- 55 We contend that biological processes namely photosynthesis by submerged plants
- 56 and algae represent an important but overlooked loss pathway for ERW products in
- 57 freshwater systems. Quantifying the impact of biological processes on carbon and
- 58 alkalinity budgets is necessary to correctly estimate net CDR associated with ERW.
- 59 Here we briefly review ERW as a CDR technology, use existing data from river systems to
- 60 explore the importance of aquatic photosynthesis on carbon budgets, and consider how
- 61 large-scale deployment of ERW could feedback and alter biological processes.

62 Enhanced Rock Weathering as CDR Technology

- 63 Carbonic-acid weathering of carbonate and silicate minerals is one of the natural
- 64 processes that controls CO₂ concentrations in the atmosphere. It is estimated that,
- 65 currently, natural rock weathering on land removes ~ 1 GtCO₂ yr⁻¹ from the atmosphere.¹⁵
- 66 The goal of ERW is to augment and speed up this natural weathering process by crushing
- and spreading rocks. Assuming the weathered products enter the ocean, both reactions
- hold potential to remove CO_2 from the atmosphere on timescales of interest to humans
- 69 (i.e., hundreds to thousands of years).^{9,13}
- 70 Ultimately, carbonic-acid weathering converts CO₂ gas into dissolved inorganic carbon
- 71 (DIC) and generates alkalinity. We distinguish between DIC and alkalinity because, while
- the two are tightly coupled, there are processes that can affect one while not influencing
- the other. Both are important for CDR. ERW-generated DIC delivered to the deep ocean is
 the metric of interest for sequestration. Alkalinity affects DIC when waters equilibrate with
- 74 and metric of interest for sequestration. Attaining affects DIC when waters equestration. Attaining affects DIC when waters equestration of CO_2 in the atmosphere, but full equilibration does not always occur.^{16–18}
- 76 There have been multiple theoretical assessments of the carbon-sequestration potential
- of ERW on agricultural fields^{19–22} as well as analyses of potential life-cycle carbon budgets
- associated with mining, transporting, crushing, and spreading rock.^{23–25} These analyses

- 79 have concluded that ERW on agricultural fields has potential to sequester a meaningful
- amount of carbon (0.5 to 3 Gt CO_2 year⁻¹). However, many of these ERW CDR estimates did
- 81 not account for loss of carbon and/or alkalinity in rivers as ERW products travel from fields
- 82 to ocean. Estimates that included river losses only considered abiotic processes or were
- 83 process-agnostic. The impact of river biology was neglected.

84 Inorganic Carbon in River Systems

- 85 Measurements of total DIC in rivers represent a snapshot of dynamic bio-physical and
- 86 chemical interactions that are constrained by the buffering capacity of the aquatic
- 87 environment.¹⁶ Upon entering open waters, DIC can be lost to the atmosphere as CO₂,²⁶
- 88 incorporated into submerged aquatic biomass through the uptake of either $CO_{2(aq)}$ or $HCO_{3^{-1}}$
- 89 during photosynthesis,²⁷ remain dissolved and exported downstream, or removed from
- 90 solution through carbonate precipitation²⁸ (Figure 1a-c).
- 91 The relative importance of each loss pathway is a function of the physical environment
- 92 (light, temperature, gas exchange velocity, channel slope, and stream flow), the biological
- 93 composition of aquatic and riparian primary producers that alter aqueous chemical
- 94 conditions (pH, alkalinity), and the inputs of geochemically complex groundwater. Perhaps
- 95 the strongest control on the fate and transport of DIC is hydrology. Water velocity controls
- 96 the residence time of carbon²⁹ and the rate of CO_2 degassing.³⁰ Seasonal changes in run-off
- 97 can drive extreme shifts in the magnitude of CO₂ emissions across stream networks.³¹
- 98 Here we recognize that rivers drive toward equilibrium but often never reach it, ^{16,17} and are
- 99 often not at steady state, particularly smaller tributaries.^{32,33} Thus, our discussion
- 100 considers how riverine biological processes can affect DIC and alkalinity within rivers, but
- 101 it does not presume how these biologically driven changes in turn affect other processes
- 102 occurring within the river, such as degassing and carbonate precipitation.

103 Aquatic Photosynthesis and Respiration

- 104 Aquatic photosynthesis requires uptake of either dissolved CO₂ or bicarbonate —
- submerged plants and algae cannot access atmospheric CO₂ for photosynthesis. The
- 106 bicarbonate carbon fixation pathway dominates over the $CO_{2(aq)}$ fixation pathway in river
- 107 systems with high bicarbonate concentrations.^{34,35} In fact, the proportion of HCO_3^- vs
- 108 CO_{2(aq)} affects aquatic plant assemblages. Systems that experienced increases in available
- 109 HCO₃⁻ through agricultural liming shifted species composition to those most able to
- 110 actively take up HCO_3^{-1} for photosynthesis.^{36,37}
- 111 Uptake of charged ions, such as bicarbonate, by plants requires transport of other ions
- 112 across cell walls to maintain internal pH balance and ionic equilibrium. Figure 1 illustrates
- 113 the various HCO₃⁻ uptake pathways that are known to exist for aquatic macroalgae and
- 114 seagrass.³⁸ Membrane transport of bicarbonate by vegetation is not well documented.³⁸
- 115 One set of known uptake pathways involves active transport of H⁺ out of the cell followed
- 116 by passive outward transport of OH⁻ (Figure 1a). The H⁺ then is either co-transported back
- 117 into the cell with HCO_3^- or it reacts with HCO_3^- and generates CO_2 that then diffuses

- 118 through the cell membrane. Both carbon uptake pathways remove DIC from the river water
- 119 but have no impact on alkalinity.
- 120 The other set of known carbon uptake pathways involves anion exchange across the cell
- 121 membrane (Figure 1b). A chloride ion exits the cell while either a single bicarbonate or two
- 122 bicarbonates and a sodium ion enter the cell. This uptake pathway reduces DIC and
- 123 alkalinity in the surrounding river water.
- 124 Aquatic plant productivity has additional indirect impacts on river DIC and alkalinity. First,
- 125 benthic algae promote calcite precipitation, which decreases both DIC and alkalinity
- 126 (Figure 1b); the algal mats provide a surface for crystal growth while mat photosynthesis
- 127 increases pH and the saturation index of calcite in local microenviornments.^{39,40} Second,
- associated uptake of nitrogen (NH₃) and phosphorous (H₃PO₄, H₂PO₄, HPO₄²⁻, PO₄³⁻) by
- 129 plants can affect the non-carbonate components of alkalinity. Finally, in addition to
- 130 nitrogen and phosphorous, plants require cations and uptake of these can be coupled with
- 131 the release of H^+ out of the cell⁴¹ (Figure 1c). If H^+ is released, it reduces alkalinity in the
- 132 surrounding water. However, cation uptake is not always coupled with H^+ release.
- 133 Sometimes, uptake of a given cation, like Ca²⁺, is coupled with the release of another non-
- 134 acidic cation, like Na^{+} ,⁴¹ which will not alter alkalinity.
- 135 Uptake pathways used by aquatic vegetation, as illustrated by Figure 1, strongly determine
- 136 the impact plant productivity has on DIC and alkalinity in rivers. However, it is extremely
- 137 difficult to discern the actual membrane transport pathways used in a field setting;
- 138 detailed, cell-level investigations are most likely required. In the context of ERW, a
- 139 conservative approach is to assume that all photosynthetic activity reduces both DIC and
- 140 alkalinity (i.e., plants are using bicarbonate uptake via anion exchange) and all cation
- 141 uptake reduces alkalinity (i.e., plants take up cations using H^+ exchange) in rivers.

Figure 1: Riverine processes affecting weathering products. Processes are numbered for reference. **A.** Processes that affect dissolved inorganic carbon concentrations, but not alkalinity: 1. equilibrium degassing, 2. respiration, and 3a. photosynthesis where either dissolved CO₂ is used or bicarbonate use is coupled with H⁺ transport across the cell membrane. **B.** Processes that affect both dissolved inorganic carbon concentrations and alkalinity: 4. acid inputs that drive degassing, 5. calcite precipitation, and 3b. photosynthesis where bicarbonate uptake occurs via anion exchange. **C.** Process that do not affect dissolved inorganic carbon concentrations species that contribute to alkalinity (i.e., N-alkalinity and P-alkalinity) — phosphorous ions are transported across the cell membrane using H⁺ transport, as illustrated in panel A — and 7. cation uptake by aquatic plants and algae that is coupled with H⁺ transport across the cell membrane.

143 The Magnitude of Aquatic Photosynthesis Relative to DIC Transport

- 144 Recent advances in sensor
- 145 technology and modeling
- 146 approaches have allowed
- 147 scientists to estimate river gross
- 148 primary production (GPP) across
- 149 hundreds of rivers.⁴² We
- 150 harnessed this dataset along
- 151 with USGS stream chemistry
- 152 data⁴³ to determine the
- 153 magnitude of plant productivity
- 154 and to put its influence in
- 155 context.
- 156 The two datasets shared at least
- 157 three overlapping time points at
- 158 70 USGS gaging stations; the
- 159 median number of overlapping
- 160 points was 16. The combined
- 161 dataset included 1600 datapoints
- 162 spanning from 2007 to 2016. The
- 163 GPP dataset reports GPP in terms
- 164 of O₂ concentrations. Although
- 165 photosynthetic quotients have
- 166 been shown to vary between 0.8
- 167 and 1.2,⁴⁴ here we assumed a 1:1
- 168 molar ratio between CO_2 and O_2 .
- 169 We used a stream-order
- 170 framework (Figure 2b) to compare
- 171 the rate of carbon transport to
- 172 that of photosynthesis. We
- 173 harnessed the power-law
- 174 relationship between average
- 175 stream-order length and median
- 176 discharge^{45,46} (Figure 2a) to
- 177 calculate a stream-order length
- 178 for each gage location (Figure 2d).
- 179 With this length set, we
- 180 calculated a stream-order
- 181 photosynthesis fraction for each
- 182 time point. The stream-order
- 183 photosynthesis fraction was
- 184 defined as the ratio between the

Figure 2: Magnitude of aquatic photosynthesis quantified using a streamorder mass-balance framework. **A.** Power-law relationship between average stream-order length and stream-order discharge based on published literature.^{50,51} **B.** Example stream-order network. **C.** Mass

balance calculation producing stream-order photosynthesis fraction (*f*), which is the ratio between the amount of carbon removed by photosynthesis within the stream-order section to the amount of carbon delivered to the stream-order section by water flow. **D**. Histogram of stream-order lengths calculated for the dataset using median discharge rates and the relationship in panel A. **E**. Resulting stream-order photosynthesis fraction versus photosynthesis rate. Colors indicate DIC concentrations. Circles are individual data points and squares are site medians. The solid line marks the power-law relationship for individual points (R² = 0.5). Dashed line marks the power-law relationship for site medians. (R² = 0.3). **F**. Histogram of stream-order photosynthesis fraction

- 185 amount of carbon removed by photosynthesis within the stream-order section to the
- 186 amount of carbon delivered to the stream-order section by water flow (Figure 2c).
- 187 Resulting fractions are plotted in Figure 2e and f.
- 188 The stream-order photosynthesis fraction for individual time points ranged from less than
- 189 0.01% to greater than 1000%. The median fraction for gage sites ranged from 0.2% to
- 190 125%, with most sites falling between 1% and 30% (Figure 2f). These results indicate that
- 191 photosynthesis can process a notable portion of the carbon moving through a stream
- 192 order. The fraction processed increased as photosynthesis rates increased and DIC
- 193 concentrations decreased. In fact, the stream-order photosynthesis fraction and
- 194 photosynthesis rate had a positive power-law relationship ($R^2 = 0.48$ for individual points,
- 195 solid black line, $R^2 = 0.30$ for site medians, dashed black line, Figure 2e). The
- 196 photosynthesis fraction did not systematically vary across stream orders; longer stream-
- 197 order lengths were not associated with a greater fraction of carbon processed by
- 198 photosynthesis.
- 199 The calculated fractions apply to a single stream order. A river is composed of series of
- stream orders. For a given carbon input, it is possible to estimate the total fraction taken
- 201 up by photosynthesis across a series stream orders by assuming a perfectly ideal river
- network (e.g., Figure 2b) and no cycling of carbon taken up by plants. In this simplified
- situation, the fraction leaving a given stream order is 1 minus the stream-order
- 204 photosynthesis fraction (Figure 2c). This is then the amount entering the next higher stream
- order within which photosynthesis can uptake an additional fraction of the original carbon
 input. Thus, total fractional uptake of a given carbon input due to photosynthesis across *n*
- stream orders can be calculated as: $F_n = 1 (1 f_1) (1 f_2) ... (1 f_n)$, where f_n is the
- 208 photosynthesis fraction within the n^{th} stream order. With this framework, relatively small
- 209 fractions within individual stream orders can grow to a large total photosynthesis fraction
- 210 across a river network. For example, if a single carbon input travels through 10 stream
- 211 orders and plants take up 5% of the received input in each stream order (i.e., the network
- has a consistent 0.05 stream-order photosynthesis fraction), by the end of journey, 40% of
- 213 the original input will be lost from the water due to plant uptake.
- 214 The effect of aquatic photosynthesis on ERW-generated DIC and alkalinity depends on the
- 215 membrane transport pathway used by the plant during carbon uptake (Figure 1a,b) as well
- as on the occurrence of processes associated with photosynthesis, such as calcite
- 217 precipitation (Figure 1b) and uptake of nutrients or cations (Figure 1c). The net effect, in
- turn, that these biologically driven DIC and alkalinity shifts have on CDR efficacy depends
- 219 on what happens to the vegetation (discussed in the next section) and the impact these
- 220 DIC and alkalinity shifts have on other riverine processes (e.g., CO₂ air-water exchange).
- 221 Fate of Carbon and Alkalinity in Aquatic Vegetation
- 222 Carbon and alkalinity taken up by aquatic vegetation is stored as plant biomass. Biomass
- is subsequently lost from plants through respiration, degradation, or consumption by
- herbivores. The fate of plant carbon and alkalinity differs depending on which of these
- 225 processes occurs and if the vegetation is covered by water. Aquatic vegetation can cycle

- between submersion and exposure to the atmosphere as river levels change; remarkably
 more than half of US runoff is sourced from ephemeral streams.³³
- 228 While the vegetation is alive, it releases carbon as CO_2 during respiration. If the vegetation
- is covered by water, respired CO_2 re-enters the water, returning carbon, but not alkalinity,
- to the river system (Figure 1a). If instead respiration occurs when the vegetation is not
- 231 covered by water, respired CO₂ directly enters the atmosphere. Degradation is similar to
- 232 respiration in that CO_2 is released either back into river water or the atmosphere depending
- 233 on if the plant matter is covered by water. However, full degradation also releases
- alkalinity, represented by the excess cations stored in the plant biomass (Figure 1c), back
- into the river channel. If instead aquatic biomass is consumed by aquatic or terrestrial
- herbivores, its carbon and alkalinity are transferred to the consuming organism. At thispoint, tracking the carbon and alkalinity becomes highly challenging because they can
- 238 continue moving through either the aquatic or terrestrial food web.
- Of these fates, only aquatic degradation fully reverses the removal of DIC and alkalinity
- from the stream associated with aquatic photosynthesis. The other fates either drive
- carbon emissions (directly or indirectly) or move DIC and alkalinity out of the stream and
- into food webs where they are nearly impossible to track. Given these outcomes, we
- 243 contend that when aquatic plants uptake DIC and alkalinity generated by ERW, a portion of
- it likely never reaches the ocean. The remainder that does reach the ocean is delayed
- relative to water flow due to time spent incorporated in aquatic biomass.
- 246 These results are relevant for ERW carbon crediting. Credits should only be awarded once
- the carbon is durably stored or when there is a high degree of confidence that it will not be
- released before it reaches the durable reservoir. Carbon that is returned to the "fast"
- carbon cycle, where CO_2 is taken up and released by organic matter, should not count as
- removal until more is known about the fate of photosynthetic carbon. Standard practice
- today assumes a ~15% loss of ERW-generated carbon during transport between the field
- and ocean;⁴⁷ our analysis indicates the actual losses are potentially higher and hard to
- 253 predict.

254 **Response of Photosynthesis to ERW-Induced River Chemistry Changes**

- 255 Today, ERW deployments are small and sparse enough that weathering products are
- essentially undetectable once they reach a river. In this situation, we can assume that
- 257 ERW products behave and partition similarly to background riverine DIC and alkalinity.
- 258 However, as ERW scales, it will begin to have measurable impacts on river chemistry, in
- 259 particular, increases in DIC concentrations and alkalinity, and changes in pH.⁴⁸ Such
- chemical changes can feedback and impact the biological processes discussed above.
- 261 Figure 3 shows existing relationships between photosynthesis rates, pH, and DIC
- 262 concentrations. Photosynthesis rates tend to increase as pH and DIC concentrations
- 263 increase. This trend could reflect a general photosynthesis response to higher DIC
- 264 concentrations, or a specific response to increased bicarbonate concentrations. However,
- other explanations exist. For example, pH can affect sorption of elements to sediment. In

- 266 particular, phosphorous, a key
- 267 nutrient for biological activity, has
- 268 been shown to sorb less to
- 269 sediment and remain more
- 270 dissolved in water at higher pH
- 271 values.⁴⁹ It is also possible that
 272 the data are showing the existing
- 273 impact of agricultural runoff, with
- 274 higher pH, DIC, and nutrient
- 275 concentrations,⁵⁰ on aquatic
- 276 photosynthesis. Regardless of
- 277 the mechanisms, Figure 4
- 278 indicates that chemical changes
- 279 in rivers induced by ERW hold
- 280 potential to enhance the rate at
- 281 which plants process carbon and
- 282 alkalinity. The net impact of this
- 283 chemical-biological feedback on

Figure 3: Photosynthesis rate versus pH. Color indicates DIC concentrations. Circles are for individual data points. Squares are for site medians.

the fate of ERW products in rivers is hard to predict.

285 Summary

- 286 The analyses demonstrate that riverine biological processes should not be ignored by the
- 287 ERW community. At most locations within our dataset, aquatic photosynthesis currently
- processes 1% to 30% of DIC moving through a stream-order section (Figure 2). The
- 289 cumulative proportion processed by plants quickly increases as photosynthesis operates
- across an entire stream network composed of multiple stream orders. Our analysis also
- 291 indicated that as ERW scales, the anticipated changes to downstream water chemistry will
- likely feedback and enhance aquatic photosynthesis. The fate of DIC and alkalinity
- removed from the stream by aquatic photosynthesis is unclear and should be an area of
- further study. We contend that, most likely, a portion of DIC and alkalinity transformed into
- aquatic biomass never makes it into a durable storage reservoir, introducing uncertainty to
- the estimates of downstream losses that are currently used for crediting.
- 297

298 References

- 299 1. IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working
- 300 Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate
- 301 Change. doi:10.1017/9781009157926 (2022).

- 302 2. Hollnaicher, S. On economic modeling of carbon dioxide removal: values, bias, and
- norms for good policy-advising modeling. Global Sustainability **5**, e18 (2022).
- 304 3. Rockström, J. et al. The world's biggest gamble. Earth's Future **4**, 465–470 (2016).
- 4. Anderson, K. & Peters, G. The trouble with negative emissions. Science **354**, 182–183
 (2016).
- 307 5. Boehm, S. et al. State of Climate Action 2022. (2022).
- 308 6. CDR.fyi. CDR.fyi. https://www.cdr.fyi/.
- 309 7. Vaughan, N. et al. The State of Carbon Dioxide Removal 2nd Edition. (2024)
- 310 doi:10.17605/OSF.IO/F85QJ.
- 8. Buma, B. et al. Expert review of the science underlying nature-based climate solutions.
- 312 Nat. Clim. Chang. **14**, 402–406 (2024).
- 313 9. Middelburg, J. J., Soetaert, K. & Hagens, M. Ocean Alkalinity, Buffering and
- Biogeochemical Processes. Reviews of Geophysics **58**, e2019RG000681 (2020).
- 315 10. Archer, D. et al. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev. Earth
- 316 Planet. Sci. **37**, 117–134 (2009).
- 317 11. Harrington, K. J., Hilton, R. G. & Henderson, G. M. Implications of the Riverine
- 318 Response to Enhanced Weathering for CO2 removal in the UK. Applied Geochemistry
- **152**, 105643 (2023).
- 320 12. Knapp, W. J. & Tipper, E. T. The efficacy of enhancing carbonate weathering for carbon
- dioxide sequestration. Frontiers in Climate **4**, (2022).
- 322 13. Zhang, S. et al. River chemistry constraints on the carbon capture potential of surficial
- enhanced rock weathering. Limnology and Oceanography **67**, S148–S157 (2022).

324	14. Zhang, S., Reinhard, C. T., Liu, S., Kanzaki, Y. & Planavsky, N. J. A framework for
325	modeling carbon loss from rivers following terrestrial enhanced weathering. Environ.
326	Res. Lett. 20 , 024014 (2025).
327	15. Ciais, P. et al. Carbon and Other Biogeochemical Cycles. in Climate Change 2013 – The
328	Physical Science Basis (ed. Intergovernmental Panel On Climate Change) 465–570
329	(Cambridge University Press, 2014). doi:10.1017/CBO9781107415324.015.
330	16. Campeau, A. et al. Multiple sources and sinks of dissolved inorganic carbon across
331	Swedish streams, refocusing the lens of stable C isotopes. Sci Rep 7 , 9158 (2017).
332	17. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503,
333	355–359 (2013).
334	18. Zhou, M. et al. Mapping the global variation in the efficiency of ocean alkalinity
335	enhancement for carbon dioxide removal. Nat. Clim. Chang. 15, 59–65 (2025).
336	19. Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock
337	weathering with croplands. Nature 583 , 242–248 (2020).
338	20. Kantola, I. B., Masters, M. D., Beerling, D. J., Long, S. P. & DeLucia, E. H. Potential of
339	global croplands and bioenergy crops for climate change mitigation through
340	deployment for enhanced weathering. Biology Letters 13 , 20160714 (2017).
341	21. Kantzas, E. P. et al. Substantial carbon drawdown potential from enhanced rock
342	weathering in the United Kingdom. Nat. Geosci. 15 , 382–389 (2022).
343	22. Baek, S. H. et al. Impact of Climate on the Global Capacity for Enhanced Rock
344	Weathering on Croplands. Earth's Future 11 , e2023EF003698 (2023).

345	23. Moosdorf, N., Renforth, P. & Hartmann, J. Carbon Dioxide Efficiency of Terrestrial
346	Enhanced Weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).
347	24. Li, Z., Planavsky, N. J. & Reinhard, C. Geospatial assessment of the cost and energy
348	demand of feedstock grinding for enhanced rock weathering in the coterminous United
349	States. Front. Clim. 6 , (2024).
350	25. Zhang, B., Kroeger, J., Planavsky, N. & Yao, Y. Techno-Economic and Life Cycle
351	Assessment of Enhanced Rock Weathering: A Case Study from the Midwestern United
352	States. Environ. Sci. Technol. 57 , 13828–13837 (2023).
353	26. Butman, D. & Raymond, P. A. Significant efflux of carbon dioxide from streams and
354	rivers in the United States. Nature Geosci 4 , 839–842 (2011).
355	27. Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change
356	with the size of streams and rivers. Nature Geosci 8 , 696–699 (2015).

- 28. Tobias, C. & Böhlke, J. K. Biological and geochemical controls on diel dissolved
- inorganic carbon cycling in a low-order agricultural stream: Implications for reach
- scales and beyond. Chemical Geology **283**, 18–30 (2011).
- 360 29. Rehn, L., Sponseller, R. A., Laudon, H. & Wallin, M. B. Long-term changes in dissolved
- 361 inorganic carbon across boreal streams caused by altered hydrology. Limnology and
- 362 Oceanography **68**, 409–423 (2023).
- 363 30. Hall Jr., R. O. & Ulseth, A. J. Gas exchange in streams and rivers. WIREs Water 7, e1391
 364 (2020).
- 365 31. Conroy, H. D. et al. Seasonality Drives Carbon Emissions Along a Stream Network.
- 366 Journal of Geophysical Research: Biogeosciences **128**, e2023JG007439 (2023).

307 - 32. Durighetto, N., Virigiani, F., Dertassetto, E. E., Camporese, M. & Dotter, O. Intraseas	iseason	. Int	. G.	Botter,	. &	Μ.	porese.	Cam	L. E.	Bertassello,	F.,	ingiani,	N.,	ghetto,	Duri	32.	367
---	---------	-------	------	---------	-----	----	---------	-----	-------	--------------	-----	----------	-----	---------	------	-----	-----

368 Drainage Network Dynamics in a Headwater Catchment of the Italian Alps. Water

369 Resources Research **56**, e2019WR025563 (2020).

- 370 33. Brinkerhoff, C. B., Gleason, C. J., Kotchen, M. J., Kysar, D. A. & Raymond, P. A.
- 371 Ephemeral stream water contributions to United States drainage networks. Science

372 384, 1476–1482 (2024).

- 373 34. Kaijser, W., Lorenz, A. W., Birk, S. & Hering, D. The interplay of nutrients, dissolved
- inorganic carbon and algae in determining macrophyte occurrences in rivers. Science
- 375 of The Total Environment **781**, 146728 (2021).
- 376 35. Aho, K. S., Hosen, J. D., Logozzo, L. A., McGillis, W. R. & Raymond, P. A. Highest rates of
- 377 gross primary productivity maintained despite CO2 depletion in a temperate river

network. Limnology and Oceanography Letters **6**, 200–206 (2021).

- 379 36. Brandrud, T. E. Effects of liming on aquatic macrophytes, with emphasis on
- 380 Scandinavia. Aquatic Botany **73**, 395–404 (2002).
- 381 37. Iversen, L. L. et al. Catchment properties and the photosynthetic trait composition of

382 freshwater plant communities. Science **366**, 878–881 (2019).

- 383 38. Poschenrieder, C. et al. Transport and Use of Bicarbonate in Plants: Current
- 384 Knowledge and Challenges Ahead. International Journal of Molecular Sciences 19,
 385 1352 (2018).
- 386 39. Hayashi, M., Vogt, T., Mächler, L. & Schirmer, M. Diurnal fluctuations of electrical

387 conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange.

388 Journal of Hydrology **450–451**, 93–104 (2012).

389	40. Hoffer-French, K. J. & Herman, J. S. Evaluation of hydrological and biological influences
390	on CO2 fluxes from a karst stream. Journal of Hydrology 108 , 189–212 (1989).
391	41. Babourina, O. & Rengel, Z. Ion Transport in Aquatic Plants. in Waterlogging Signalling
392	and Tolerance in Plants (eds. Mancuso, S. & Shabala, S.) 221–238 (Springer, Berlin,
393	Heidelberg, 2010). doi:10.1007/978-3-642-10305-6_11.
394	42. Appling, A. P. et al. The metabolic regimes of 356 rivers in the United States. Sci Data 5,
395	180292 (2018).
396	43. USGS. USGS Water-Quality Historical Instantaneous Data for the Nation. National
397	Water Information System: Web Interface
398	https://waterdata.usgs.gov/nwis/uv/?referred_module=qw (2021).
399	44. Trentman, M. T., Hall Jr., R. O. & Valett, H. M. Exploring the mismatch between the
400	theory and application of photosynthetic quotients in aquatic ecosystems. Limnology
401	and Oceanography Letters 8 , 565–579 (2023).
402	45. Downing, J. A. et al. Global abundance and size distribution of streams and rivers.
403	Inland Waters 2 , 229–236 (2012).
404	46. McManamay, R. A. & DeRolph, C. R. A stream classification system for the
405	conterminous United States. Sci Data 6 , 190017 (2019).
406	47. Puro Earth. Enhanced Rock Weathering Methodology for CO2 Removal. (2024).
407	48. Oh, NH. & Raymond, P. A. Contribution of agricultural liming to riverine bicarbonate
408	export and CO2 sequestration in the Ohio River basin. Global Biogeochemical Cycles
409	20 , (2006).

410	49. Temporetti, P., Beamud, G., Nichela, D., Baffico, G. & Pedrozo, F. The effect of pH on
411	phosphorus sorbed from sediments in a river with a natural pH gradient. Chemosphere
412	228 , 287–299 (2019).
413	50. Barnes, R. T. & Raymond, P. A. The contribution of agricultural and urban activities to
414	inorganic carbon fluxes within temperate watersheds. Chemical Geology 266 , 318–327
415	(2009).