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Abstract 11 

It is becoming increasingly accepted that annual gigatonne-scale CO2 removal, in conjunction with rapid 12 

decarbonization, is necessary to meet international climate goals and limit global warming below 2°C. This is going 13 

to require the development and rapid scaling of new forms of carbon management. When developing new CDR 14 

techniques, it is essential to ensure that there is complete accounting of how the process affects greenhouse gas 15 

fluxes. Enhanced weathering (EW), the spreading of finely ground weatherable, cation-rich crushed rocks to soils, 16 

has the potential to sequester significant amounts of CO2 while improving soil health. However, the effect of EW 17 

affiliated increases in soil pH on soil organic carbon (SOC) decomposition and CO2 efflux from soils remain 18 

debated. It has been proposed that increasing soil pH can lead to enhanced SOC remineralization. To move forward 19 

this debate, we present CO2 flux and soil carbon pool data from a greenhouse study in large mesocosms. We focused 20 

on mildly acidic soil in which, on short time scales, cations from weathering quantitively move into the 21 

exchangeable fraction in soils. Therefore, gas fluxes changes should be largely linked to changes in SOC stores. We 22 

find no significant correlation between CO2 fluxes and soil pH and no significant correlation between CO2 fluxes 23 

and rock application. Although this does not rule out a link between soil pH and SOC remineralization rates, the 24 

effect is small relative to other factors, like temperature and soil moisture. Although minor increases in total 25 

inorganic carbon were observed in basalt-amended soils, these increases did not support a direct link between soil 26 

pH and increased CO2 emissions. We observed a small increase in soil total organic carbon stocks in basalt amended 27 

mesocosms, but this change was also not significant enough to drive a shift in observed soil CO2 fluxes.  28 
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Introduction 31 

Combatting climate change will require carbon dioxide removal (CDR) strategies in addition to aggressive and 32 

rapid  emissions reductions to meet climate goals (1). Pathways suggest that we need annual gigatonne-scale CO2 33 

removal to limit our average global warming to below 2°C even with optimistic emissions reduction scenarios (1–3). 34 

However, there are still real shortcomings in our ability to evaluate the effects and the effectiveness of most forms of 35 

CDR — especially open system interventions. Therefore there is an obvious impetus to improve our understanding of 36 

potentially promising pathways of CDR (4–7). 37 

Enhanced weathering (EW) is one such CDR technology that has seen a recent upswing in interest, basic research, 38 

and commercialization. EW, the application of finely ground cation-rich rocks or minerals to soils, captures CO2 as 39 

the minerals dissolve (7–11). This strategy has been proposed to be capable of capturing 0.5-2 gigatonnes of CO2 per 40 

year (12) — although from a geochemical standpoint, this number could be much higher (13–15). Much of the recent 41 

interest has been upon finely ground silicate minerals - however a wide range of feedstocks, including carbonates, 42 

slag, and cement waste, could, in theory, be utilized (12,16–19). Upon dissolution, alkaline minerals consume protons 43 

and release base cations, which increases the pH of the soil system. Limestone application to soils is a widely accepted 44 

soil management strategy that raises the soil’s pH, and it can act as a source or a sink of CO2 depending on the system 45 

(20). Decreasing soil acidification commonly improves soil conditions for crop growth and nutrient bioavailability 46 

(9,11). Depending on the feedstock used, EW can also release micronutrients such as calcium, magnesium, potassium, 47 

phosphorus, silicon, copper, zinc, manganese, and iron that can improve soil health and crop yield (21–27). 48 

There has been debate about a potential negative compounding effect of EW—whether or not EW, by increasing 49 

soil pH, may stimulate the rate of decomposition of soil organic carbon (SOC), thereby increasing the release of CO2 50 

from soils. Some liming studies have found that pH significantly alters net carbon mineralization and primes carbon 51 

by altering soil microbiota (28); however, this enhancement of SOC mineralization may be temporary and is often 52 

followed by increases in SOC stocks (29). Small scale mesocosms (10L) have suggested that basalt can drive a 53 

temporary initial CO2 release — presumably from increased SOC decay as soil pH increases, and this varies by soil 54 

type (30). A wollastonite mesocosm study indicates that EW increases SOC mineralization and therefore CO2 efflux, 55 

potentially by increasing the availability of nutrients that stimulate microbial decomposition via release of silicon 56 

and/or by increasing soil pH (31). However, this is contrasted by another mesocosm study, in which there was no 57 

difference in CO2 respiration between control and olivine amended incubated soils (32).  Several studies have also 58 



suggested that EW may stabilize SOC, as they found increases in mineral-associated organic matter in EW treated 59 

soils (33,34). The variability in findings regarding SOC and CO2 flux responses to changes in pH underscores the need 60 

for further investigation into whether EW alters SOC dynamics in order to better understand its implications for CDR. 61 

However, there are very limited studies that generate continuous or highly monitored agricultural CO2 flux data as it 62 

relates to soil pH, and the high spatial and temporal variability of these fluxes, as well as their sensitivity to different 63 

parameters, reveals an obvious need for high resolution measurements under a wide range of different soil types.  64 

SOC pools are a continuum, with varying levels of recalcitrance, and therefore have different sensitivities to levers 65 

on decomposition, such as temperature dependence of enzymes, soil moisture, soil mineralogy, and soil structural 66 

stability and aggregates (35–37). Decomposition pathways are sensitive to each soil system (36). There is agreement 67 

that temperature influences the rate of organic decay by stimulating microbial activity and respiration (35,38). 68 

However, the rates of decay of recalcitrant SOC pools may be more sensitive to temperature than those of more labile 69 

forms of SOC (35). Soil moisture also plays a large role in carbon cycling as increases in soil moisture (particularly 70 

after rewetting events) tend to increase microbial activity, and therefore respiration (39). However, the relationship 71 

between SOC and soil moisture is nuanced, variable, and still debated (40). There are likely confounding effects 72 

between soil moisture and its effect on the temperature coefficient (Q10) for SOC decomposition (40,41). Organic 73 

matter is more protected within aggregates, and perturbations to the soil structure, such as tillage, will therefore alter 74 

SOC remineralization rates (37,42–45). Simultaneously controlling all these variables while mimicking field 75 

conditions presents a challenge for experimental work monitoring SOC decomposition rates. 76 

Experiments under controlled conditions—greenhouse and growth chamber experiments—provide one way to 77 

facilitate a controlled, well monitored system where it is possible to try to interrogate the links between organic carbon 78 

remineralization rates, soil pH and EW (46–48). However, reproducible experiments in controlled systems can be hard 79 

to be generate. It is therefore important to consider all the below variables when designing a mesocosm study to ensure 80 

results are not caused by artifacts in the study area.  81 

Temperature can vary widely between mesocosms even in well maintained greenhouses due to uneven overhead 82 

lighting and air circulation; these differences may alter the relative humidity and evapotranspiration rates in each 83 

container (46–48). Humidity can dramatically alter photosynthesis rates by influencing the aperture of stomata and 84 

their conductance (49–52). Randomizing the experimental layout to evenly distribute the unwanted variation can 85 

decrease erroneous positive correlation between groups (46–48).  86 



Smaller column style experiments are not ideally suited for EW SOC analyses because they are subject to artifacts 87 

and edge effects (i.e., sidewall flow, particularly in unsaturated columns but also in packed columns (53)) and are 88 

more variable to changes in soil moisture and temperature. Smaller pots can also restrict plant growth, particularly if 89 

roots are impacted, which can hamper plant uptake of water and nutrients (54). It is also important to source soil for 90 

these experiments scientifically responsibly — soil microbial communities vary by plant type, soil chemistry, and 91 

spatial location, and soil sourced from a location that is not representative of the desired system may behave differently 92 

than a more optimal choice (54,55). This is particularly important for experiments investigating variables that are 93 

heavily influenced by microbial activity (i.e., SOC decomposition). As SOC is sensitive to soil texture, using natural 94 

soils is preferred to potting soils, that aren’t representative of natural microbial communities, don’t have characteristic 95 

soil structure, and don’t retain nutrients as well as do natural soils (54). Building from this foundation, we conducted 96 

large mesocosm experiments, designed to explore the role that basalt addition will have on SOC dynamics.  97 

Specifically, here we present carbon stock and CO2 flux data generated from a series of EW experiments performed 98 

in large mesocosms in a greenhouse (56). We used large 121-liter mesocosms to minimize edge effects and to ensure 99 

adequate volume of soil for corn root depth. We use roughly an order of magnitude more soil (sourced from an organic 100 

working farm) than in previous EW studies (26,31,57–60) to minimize edge effects and other previously highlighted 101 

problems of mesocosms (46–48,53–55). We performed continuous monitoring of multiple environmental factors. We 102 

also intentionally designed the layout of the containers to decrease unintentional spatial correlations (Supplementary 103 

Figure 1). We conducted experiments in an acidic soil where the short term CO2 removal flux from weathering will 104 

be delayed due to cation sorption (61). This allows us to provide another perspective on whether EW increases, 105 

maintains, or decreases the rate of SOC remineralization, CO2 efflux, and size of SOC stocks.   106 

Methods 107 

In two sequential mesocosm experiments (Run 1 and Run 2), we grew maize (zea mays, Reid’s Yellow Dent Open 108 

Pollinated Corn Seed, Bradley Seed Brand) in control soils (n=5) and soils that had been amended with fine-grained, 109 

weakly-carbonated basalt (n=5) in a research greenhouse, as used in (56). The experimental design was previously 110 

described by (56) and therefore is only summarized in Supplementary Table 1. Feedstock characterization can be 111 

found in (56) and additional data on the feedstock mineralogy is shown in Supplementary Table 2. Feedstock 112 

mineralogy was determined by XRD. The containers in these two experiments had the feedstock tilled into the soil at 113 



the beginning of Run 1; after harvesting, we began Run 2 by planting maize on the same soil, thereby treating Run 2 114 

as a second growth season on a previously amended “field”. We chose to use a rate of 12.3553 tonnes rock dust/hectare 115 

to reach an appropriate change in pH suitable for crop growth. A key point of the experimental design was that this 116 

research greenhouse was equipped with an automated watering system to ensure that all pots received the same amount 117 

of water at the same time. The greenhouse was set to a specific day (28°C) and night (17°C) temperature and contained 118 

fan coil units to evenly distribute the air in the room. Furthermore, the treatments were distributed throughout the 119 

room to minimize artifacts from temperature and humidity gradients (Supplementary Figure 1). The lights in the 120 

greenhouse were set to their maximum value of 325 μmol/m2s. The chosen containers were specifically selected to be 121 

deep enough for corn roots for the duration of the experiment (62), and also abide by the minimum recommended 122 

diameter to length ratio (1:4) for good column experiment practices put forth by (53). 123 

Throughout the duration of these experiments, we took weekly measurements of topsoil pH, topsoil buffer pH 124 

(using the Sikora buffer), as well as pore water alkalinity (using Rhizon samplers) and soil moisture with a Spectrum 125 

Technologies TDR 150 soil moisture meter (accuracy of ±3.0% VWC) at three depths (15 cm, 35 cm, and 50 cm) 126 

(56). Alkalinity was calculated using 0.0501N HCl as a titrant and a Thermo Scientific Orion Star T920 redox titrator 127 

which was determined to have an error of 1.4% based on the 4mL sample size (56). We also continuously measured 128 

CO2 fluxes and temperature at soil surface using Eosense automated soil flux chambers paired with a G2508 Picarro 129 

Cavity Ringdown Spectrometer (63–65). The 1σ precision for CO2 measurements is <600 ppb + 0.05% of reading. 130 

The flux chambers encompassed the surface of the entire mesocosm, including the maize plants. 131 

We also measured total carbon (TC) and total inorganic carbon (TIC) from soil samples that were scooped from 132 

the surface (between 0-4cm). These samples were stored frozen at -20°C and then dried at 65°C then ground via mortar 133 

and pestle to achieve a fine powder prior to analysis. To determine the carbon stocks, we performed combustion in an 134 

induction furnace (TC) and acid dissolution (TIC) followed by measurement of released carbon dioxide on an Eltra 135 

CS 580 Carbon Sulfur Determinator. The feedstock was measured for TIC with the same method. Total organic carbon 136 

(TOC) was calculated by subtracting TIC from TC. This instrument measured standards to within 1.55% of the 137 

measured TC standard (Eltra GmbH 90817, 2.05% carbon) and within 1.75% of the measured TIC standard (Alpha 138 

Resources AR4029, 4.93% carbon).  139 

All data analysis followed the methods used in (56). In summary, the flux measurements were integrated in Python 140 

to calculate total emissions, and a two-tailed t-test function was used to test for the difference between means of 141 



cumulative emissions. In R, a random forest algorithm (using 75% of the data on the training dataset, and 25% on 142 

the test dataset) followed by the permutation method was used to ensure that all necessary variables were measured 143 

to successfully predict the CO2 flux and to assess the relative importance of each variable (pH, buffer pH, 144 

temperature, soil moisture (at each depth), photosynthetically active radiation (PAR), and time) on the CO2 flux. All 145 

standard deviations of the group represent 1σ precision. We opted to use a rolling 48-hour average for temperature 146 

to avoid confounding effects of diurnal temperature and PAR as the climate was set to have cooler temperatures at 147 

night when the lights were set to be off (and hotter temperatures during the day when the lights were on).  148 

Results 149 

1.1 Run 1 150 

The experiment duration for Run 1 was 24 days. In Run 1, the basalt amended containers on average had higher 151 

CO2 emissions than the control containers, but there was no statistically significant difference between them (Figure 152 

1, Table 1, Table 2). The CO2 flux results from Run 1 did not reject the null hypothesis (i.e., there was no difference 153 

between the control and treatment). As described in (56), both the buffer pH and the soil pH were higher (0.46 and 154 

1.1 pH units higher, respectively, Supplementary Figure 2, Supplementary Figure 3) in the feedstock amended 155 

containers than the control containers, and both temperature and soil moisture varied between containers. The changes 156 

in alkalinity were not statistically significant, however, the amended containers had higher alkalinity values on average 157 

at all depths measured (with differences of 134 μmol/L, 31 μmol/L, and 305 μmol/L at 15 cm, 35 cm, and 50 cm, 158 

respectively) (56). Despite the climate control of the greenhouse and the automated watering system, the containers 159 

experienced consistent differences in temperature due to spatial heterogeneity in the greenhouse, and unpredictable 160 

differences in soil moisture (Supplementary Figure 4 and Supplementary Figure 5).  161 

When performed on the results from Run 1, the machine learning framework yielded an R2 of 0.99 for the training 162 

data and 0.91 for the test data (Supplementary Figure 6). The permutation importance technique indicated that the 163 

strongest levers on CO2 fluxes were time and amount of PAR (Supplementary Figure 7b); they were negatively 164 

correlated with CO2 flux (Supplementary Figure 7a) likely due to more plant growth as time goes on and with more 165 

light. Soil moisture at the middle of the column (35cm) was the next strongest lever on CO2 fluxes, then soil moisture 166 

at depth (50cm), soil pH, buffer pH, 48-hour average temperature, and lastly surface soil moisture (15cm) 167 

(Supplementary Figure 7b). There were no obvious correlations between CO2 flux and pH (Figure 1), however, based 168 



on the Spearman’s rank correlation, pH had a slightly negative correlation with CO2 fluxes (Supplementary Figure 169 

7a). 170 

 171 

Iteration Application Mean cumulative CO2 

emissions (mmol/m2) 

Standard deviation (1σ) 

Run 1 5 tons basalt/acre 2909.68 1052.43 

Control 2569.34 751.82 

Run 2 5 tons basalt/acre 2205.08 1023.46 

Control 2662.89 392.37 

Table 1: Cumulative Average CO2 Emissions from Run 1 and Run 2 172 

 173 

Iteration Group 1 Group 2 t-value p-value 

Run 1 Basalt Control 0.526 0.613 

Run 2 Basalt Control -0.835 0.428 

Table 2: Comparison of Means from Run 1 and Run 2 with a t-test 174 



 175 

Figure 1: (a, c, e) CO2 fluxes (μmol/m2/s) and (b, d, f) cumulative CO2 emissions (mmol/m2) relative to days (from 176 

start of Run 1) color coded by (a, b) pH, (c, d) temperature (K), and (e, f) top soil moisture (%VWC). The dashed lines 177 

represent control containers, and the solid lines represent basalt amended containers. 178 

 179 

 180 

 181 



1.2 Run 2 182 

The experiment duration for Run 2 was 29 days. In Run 2, the amended containers had lower CO2 emissions than 183 

the control containers, but there was no statistically significant difference between them (Figure 2, Table 1, Table 2).  184 

Both the buffer pH and the soil pH remained higher in the amended containers than the control containers, and both 185 

temperature and soil moisture varied between containers (Supplementary Figure 3, Supplementary Figure 5) (56).  186 

The machine learning framework yielded an R2 of 0.99 for the training data and 0.93 for the test data on Run 2 187 

(Supplementary Figure 8). For this run, the permutation importance technique indicated that the strongest lever on 188 

CO2 fluxes was the amount of PAR; this was again negatively correlated with CO2 flux (Supplementary Figure 9). 189 

Soil moisture at the middle of the column (35cm) was indicated as the next strongest lever on CO2 fluxes and was 190 

positively correlated (Supplementary Figure 9). Time, then surface soil moisture (15cm), buffer pH, soil pH, soil 191 

moisture at depth (50cm), and finally 48-hour average temperature were the next strongest levers on CO2 fluxes 192 

(Supplementary Figure 9b). Again, pH had a slightly negative correlation with CO2 fluxes, based on the Spearman’s 193 

rank correlation (Supplementary Figure 9a). 194 

 195 



 196 

Figure 2: (a, c, e) CO2 fluxes (μmol/m2/s) and (b, d, f) cumulative CO2 emissions (mmol/m2) relative to days (from 197 

start of Run 2) color coded by (a, b) pH, (c, d) temperature (K), and (e, f) top soil moisture (%VWC). The dashed lines 198 

represent control containers, and the solid lines represent basalt amended containers. The 2.5-day gap in measurements 199 

between early on Day 9 to midday on Day 11 was caused by a software crash. 200 

 201 

 202 



1.3 Runs 1 and 2 Data Compared and Combined 203 

Between the two iterations of the experiment, the average CO2 flux switched from being higher to lower (when 204 

feedstock amended mesocosms are compared to control mesocosms), and, in neither of these cases was this difference 205 

statistically significant based on a t-test (Figure 3a, Figure 3c, Table 1, Table 2). The standard deviation of these 206 

measurements was between 14% and 46% of the average values. We also saw no obvious correlation between CO2 207 

flux and soil pH; when a linear regression was performed on the combined data from Run 1 and Run 2, it revealed an 208 

R2 of 0.00 (Figure 4). 209 

When performed on the data from Run 1 and then Run 2, a bootstrap resampling (n=1000) indicated a switch in 210 

which type of container had a higher CO2 flux. There was no overlap of the basalt and control peaks within 95% 211 

confidence intervals in either run, and the average value fell within each respective 95% confidence interval (Figure 212 

3b, Figure 3d). We then performed bootstrap resampling analysis on the combined datasets of Run 1 and Run 2; this 213 

showed overlaps in the confidence intervals between the two distributions meaning that there was no difference 214 

between the distributions when combined (Figure 3e, Figure 3f).  215 

We then ran the combined data from Run 1 and Run 2 on the machine learning framework. It yielded an R2 of 0.99 216 

for the training data and 0.93 on the test data (Supplementary Figure 10). For the combined runs, the permutation 217 

importance technique indicated that the strongest lever on CO2 fluxes was time and then the amount of PAR (Figure 218 

5). The next strongest lever on CO2 fluxes was soil moisture at the middle of the column (35cm) (Figure 5). The other 219 

levers on CO2 fluxes are listed in order of decreasing importance: buffer pH, soil moisture at depth (50cm), surface 220 

soil moisture (15cm), soil pH, and lastly 48-hour average temperature (Figure 5). The minimal influence of soil pH 221 

on CO2 fluxes is further supported by the random forest machine learning framework, which identified time, PAR, 222 

and soil moisture as more significant factors affecting CO2 flux compared to soil pH in both iterations of the 223 

experiment. Because plants grow with time, and perform more photosynthesis with more PAR, it makes sense that 224 

these were the dominant levers on CO2 fluxes. Temperature was identified as the least important variable, however, 225 

that is likely because we purposefully explored a small temperature range as possible. 226 

 227 



 228 

Figure 3: Histogram showing the frequency of CO2 fluxes (μmol/m2/s) of control (red) vs. basalt (blue) in (a) Run 229 

1 and (c) Run 2 (e) Runs 1 and 2 combined. Histogram showing the distribution of bootstrap resampled means 230 

(n=1000) for CO2 fluxes (μmol/m2/s) from control (red) vs. basalt (blue) samples in (b) Run 1 (d) Run 2 (f) Runs 1 231 

and 2 combined. 232 



 233 

 234 

Figure 4: Crossplot showing all CO2 fluxes (μmol/m2/s) as a function of soil pH for Run 1 (light blue) and Run 2 235 

(dark blue). A linear regression is shown in black for the combined data (y = -0.07x + 1.66, R2 = 0.00).  236 

 237 

 238 

 239 

Figure 5: (a) Spearman’s rank correlation plot for each measurement (from Runs 1 and 2 combined). (b) 240 

Permutation importance figure showing the relative importance of levers on CO2 fluxes revealed by the RF framework. 241 

 242 

1.4 Effects of Data Pruning 243 



To assess the effects of more intermittent sampling, we randomly removed 50% and 90% of the data from the 244 

combined dataset of Runs 1 and 2 and took the average of those values 100 times. We show the distribution of 245 

differences between the control and basalt average CO2 flux value for each of these re-samplings in Figure 6. We 246 

found that this can cause shifts in the sign of the difference in flux (i.e., whether the control or the basalt amended 247 

mesocosms had higher CO2 fluxes). While there is no statistically significant difference between these two 248 

distributions (p-value = 0.80), and the true mean overall difference between control and basalt (0.02 μmol/m2s) falls 249 

between the 95% confidence intervals of both these distributions, both the range and the 95% confidence intervals are 250 

much wider in the 90% removed distribution than the 50% removed distribution (Supplementary Table 3). This 251 

highlights the need for continuous or high frequency sampling as lower frequency sampling may obscure the signal 252 

and lead to incorrect conclusions about relative gas flux magnitudes. 253 

 254 

Figure 6: The distribution of differences in average CO2 flux between control and basalt amended containers (i.e., 255 

average CO2 fluxcontrol – average CO2 fluxbasalt) when a) 90% of samples are removed and b) 50% of samples are 256 

removed. n=100 resamplings.  257 



 258 

1.5 Soil Carbon Stocks 259 

Run 1 and Run 2 are combined to create a time series of the soil carbon stocks through time, and the values from 260 

control and basalt amended containers are compared (Figure 7). In all cases, the feedstock amended containers had 261 

higher average TOC than the control containers (Table 3, Figure 7).  However, this was only statistically significant 262 

on date 08/01/2022, and when all post-amendment timestamps (all dates except 07/27/2022) are clustered (Table 5).  263 

With respect to TIC, basalt amended containers had on average more than control containers on all dates post 264 

application (Supplementary Table 4, Figure 7). This was statistically significant for all post application dates and the 265 

combined post application dates (Table 5). Pre-application-of-basalt, all containers had TIC values below detection 266 

limits, indicating that a small amount of carbonate precipitation occurred during the experiment due to the rise in the 267 

soil pH as EW occurred (Supplementary Table 4), supporting the findings of (66).  268 

Basalt amended containers had on average more TC than control containers on all dates (Table 4, Figure 7). This 269 

was statistically significant only for the date 08/01/2022 and for the combined post-amendment timestamps (Table 5). 270 

  271 

Date 07/27/22 08/01/22 08/29/22 10/10/22 All post-

amendment time 

Average TOC (%) 

Basalt  

2.39 2.61 2.46 2.55 2.54 

Average TOC (%) 

Control 

2.58 2.33 2.30 2.47 2.37 

 

Stdev TOC (%) Basalt 

(1σ) 

0.32 0.18 0.13 0.22 0.19 

Stdev TOC (%) 

Control (1σ) 

0.20 0.16 0.17 0.10 0.17 

 

Table 3: Average TOC content (weight %) of control and basalt amended containers over time.   272 

 273 



Date 07/27/22 08/01/22 08/29/22 10/10/22 All post-

amendment time 

Average TC (%) 

Basalt 

2.39 2.64 2.49 2.56 2.54 

Average TC (%) 

Control 

2.58 2.33 2.30 2.47 2.37 

Stdev TC (%) Basalt 

(1σ) 

0.32 0.18 0.12 0.22 0.19 

Stdev TC (%) 

Control (1σ) 

0.20 0.16 0.17 0.10 0.17 

Table 4: Average total carbon (TC) content (weight %) of control and basalt amended containers over time.   274 

 275 

 7/27/2022 8/1/2022 8/29/2022 10/10/2022 All post-amendment time 

TOC 0.348 0.049 0.175 0.565 0.018 

TIC 0.347 0.004 0.014 0.026 0.000 

TC 0.348 0.035 0.102 0.483 0.007 

Table 5: p-values from t-test of differences of means in percent carbon stocks by weight between control and basalt 276 

amended containers. Bolded values are statistically significant (p-value below 0.05). 277 

 278 



 279 

Figure 7: A bar graph showing the average carbon stock values: (a) TOC and (b) TIC for basalt vs. control at the 280 

four timesteps (t0 = 7/27/22, t1 = 8/1/22, t2 = 8/29/22, t3 = 10/10/22). Basalt is shown in blue, and control is shown 281 

in red. Error bars indicate standard deviation from the mean (1σ). 282 

 283 

Discussion 284 

Although there is a signal for a significant pH shift with the carbonated basalt addition, there was no sign of a 285 

significant shift in the CO2 fluxes in modified mesocosms. Given there was no significant evidence for increased 286 

alkalinity fluxes in this system, the cations released during weathering—needed to drive the observed soil pH shift—287 

must be moving on exchange sites in the soil column and/or being consumed as carbonates precipitate (as evidenced 288 

by the small but statistically significant increase in TIC in amended containers).  Given strong effects of cation 289 

sorption, despite weathering, gas fluxes can be assumed to be controlled by SOC fluxes. Therefore, this work provides 290 

no support for the hypothesis that, in typical agronomic conditions (not extremely acidic soils), EW will increase SOC 291 

degradation rates. This is noteworthy given that these are large mesocosms in a controlled setting with continuous 292 

CO2 monitoring that provide one of the more comprehensive looks at this process.  293 

However, this work also stresses the difficulty of using soil CO2 fluxes to accurately track SOC remineralization.  294 

Our factor analysis suggests multiple parameters (e.g., soil moisture) play a more important role in controlling CO2 295 



fluxes than pH. In multiple iterations of the same experiment, there was a switch in which treatment emitted more 296 

cumulative CO2 emissions on average, caution should be exercised when linking flux to pH.  Taken alone, each 297 

iteration of the experiment can lead to the drawing of opposite conclusions. Although these trends are not significant, 298 

this is an indication of difficulty of tracking carbon fluxes with CO2 fluxes.  Nonetheless, our results could be 299 

consistent with the soil priming findings of (28–30), we observed a higher CO2 flux in basalt amended containers in 300 

Run 1 of the experiment, but lower CO2 fluxes from basalt amended containers in Run 2 of the experiment.  301 

This study benefits from continuous monitoring of levers and fluxes, and yet, the high variability in CO2 fluxes 302 

within each treatment on homogeneous soil compositions demonstrates the difficulty of accurately measuring changes 303 

in CO2 flux. These fluxes are incredibly variable and sensitive, resulting in a low signal to noise ratio. Non-continuous 304 

sampling will be even less representative of the system. This suggests that periodic gas flux sampling (particularly for 305 

gases with small magnitudes of fluxes or with small signal to noise ratios) is unlikely to yield meaningful data on the 306 

effects of EW on carbon fluxes. We hope that these results can be used to help design experiments that depend on 307 

intermittent bottle fluxes.  308 

Furthermore, this work suggests that if conclusions are going to be drawn about changes in CO2 efflux, it is critical 309 

that all relevant variables are monitored. Without synchronized data on soil moisture, which is spatially heterogeneous 310 

even in a highly controlled environment, it is impossible to make meaningful inferences about CO2 data. It is evident 311 

from prior studies that soil moisture and soil texture are key players in CO2 flux and SOC remineralization (35–312 

37,39,40,42–45,67), and these two levers are heavily influenced by agricultural practices. These factors, along with 313 

soil structure, will be difficult to constrain in many experimental settings. In particular, in smaller mesocosms that are 314 

subject to edge effects and irregular soil packing, these effects will likely be difficult to control. It is also well 315 

documented that soil moisture levels are highly variable across a field and with depth in different regions of a field 316 

(68–71). However, randomized design plots may help remedy these differences in field trials. 317 

We found statistically higher TOC and TIC (and therefore, TC) values in amended containers post-amendment. In 318 

particular, the minor increase in TOC (between 0.08 and 0.28% higher) could indicate a co-benefit of EW causing an 319 

increase in SOC storage. We attribute the slight increase in TIC to carbonate precipitation. These two fluxes’ changes 320 

would offset each other from a gas flux perspective—as carbonate precipitation will foster CO2 evasion. However, 321 

caution is needed in any conclusions about soil TOC and TIC values, given we are measuring carbon stocks from 322 

surface level samples.  323 



Conclusions 324 

Greenhouse studies, such as this one, can remove variability that is present in field conditions to perform a closer 325 

examination of relationships between perturbations in soil systems. We present results from an experiment designed 326 

to allow for dissolution of carbonated basalt feedstock but limited transport of weathering products from the system. 327 

There is clear evidence of weathering — foremost in strong increases in soil pH and percent base saturation. However, 328 

there is no evidence for increased alkalinity fluxes from the system. Therefore, in these experiments, the gas fluxes 329 

from the top of the soil column are controlled by shifts in organic matter storage. We did not observe any significant 330 

changes in CO2 fluxes between basalt amended and control mesocosms.  This clashes with the idea that the baseline 331 

assumption should be that EW and increases in soil pH will lead to loss of SOC.  332 
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