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Abstract

Spatial heterogeneity introduces uncertainty when characterizing the Critical Zone,
especially when sampling is sparse or requires repeated measurements at the same
locations. Here, we layout a probabilistic sequential framework to systematically ac-
count for spatial uncertainty when measuring Critical Zone transformations. First, we
use measurement variance propagation and distance-based sensitivity analysis to deter-
mine measurement variance criteria for meeting overall uncertainty requirements. We
then stochastically simulate spatial fields and composite sampling to infer a minimally
sufficient sampling plan that meets these criteria. Throughout the study, we apply
this framework to solid-phase measurement of enhanced weathering, an open-system
carbon dioxide removal strategy. Results indicate that field-scale variance in baseline
soil concentrations must be accurately estimated before designing a sampling plan and,
even then, such variance is likely too high for element-element mixing models to be ef-
fective near-term constraints on enhanced weathering. We conclude with opportunities
to extend this framework to other solid-phase mixing and stock models, multi-phase

measurement models, and transient Critical Zone processes.
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Synopsis: This study addresses the need for standardized uncertainty analysis and
reporting in Critical Zone calculations, especially for open-system carbon dioxide re-

moval applications.

Introduction

Earth’s Critical Zone (CZ) extends from the heights of vegetative canopies to the depths
of weathering bedrock, encompassing a layer of regolith that interacts with the atmosphere
and supports terrestrial and aquatic life [1-4]. The CZ thus embodies a complex system of
physical and biogeochemical states, transformations, and fluxes that are subject to dynamic
atmospheric and anthropogenic forcings, resulting in spatial and temporal heterogeneity that
introduces significant uncertainty into empirical characterization [5-8]. Notwithstanding
such complexity, a multitude of CZ descriptors need to be quantified for a broad range
of applications, including contaminant monitoring and remediation, agronomic operations,
ecosystem preservation, geotechnical engineering, and, increasingly, atmospheric greenhouse
gas removal.

Spatial uncertainty in certain physical and chemical measurements, such as hydraulic con-
ductivity [9, 10] and soil compositions [11, 12|, often exceeds their temporal variability. As
such, spatial heterogeneity can be difficult to constrain through point measurements, which
are usually limited by logistical considerations combined with lack of predefined metrics to
guide appropriate sampling [13|. Furthermore, application of existing geostatistical frame-
works is not always straightforward for complex, high-dimensional CZ models. For example,
calculation of both chemical depletion fractions and mixing between different lithologies, us-
ing concentrations or ratios, requires error propagation for multiple variables through linear

and non-linear governing equations. Analytical propagation methods involve potentially un-
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realizable assumptions of normality and linear and independent error [14|. High-dimensional,
non-additive calculations thus warrant some application of non-parametric, bootstrapping,
stochastic, hierarchical, and /or Bayesian methods.

A current CZ application that relies on characterizing different soil compositions is solid-
phase measurement of enhanced weathering (EW) [15, 16]. EW involves amending soils,
usually agricultural, with a reactive "feedstock", such as basalt or Mg-silicate, to shift the
alkalinity of the system and effectively dissolve additional COy [17, 18|. Given the low
initial enrichment of feedstock mass relative to native soil, detecting feedstock weathering
beyond the “noise” of the baseline becomes a challenging problem [16], and a common current
approach relies on the ratio of base cations to immobile elements to constrain this weathering.
The resulting depletion and mixing equations (Eq. 1-2; Supp. 1) require analysis of multiple
soil samples in sequence, from soil (baseline) to the initial mixture (soil + feedstock) to
weathered compositions over multiple time points [19, 20]. These measurements are used
to estimate the true fraction of feedstock dissolved (f;), a potential proxy for COy removal,

calculated as

(M miz — [M]psin
A0, — (M @

mix

Ja=1-

0

where [M] is base cation concentration of the baseline (455, ), initial mixture (;,;,), and weath-

ered mixture (). A multiplier is used to compute gross carbon dioxide removal (CDR)
from f4, hence an accurate estimate ( fd) is the focus here. A common approach for calculat-
ing [M]°. is to also measure an immobile tracer (T') and use the following element-element

mixing equation with baseline and feedstock (f5) endmembers,

([T)mic — [Tosin)([M] s — [M]y1sn)
[T]fs - [T]bsln

[M]O = [M]bsln + (2>

Here, heterogeneity can interrupt basic assumptions of the mixing model if samples are

not representative of the same “system” (Fig. 1). Uncertainty in these assumptions was
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initially considered in the context of analytical variance [20], and it has recently been demon-
strated that such calculations are highly sensitive to spatially heterogeneous soil composi-
tions [21, 22]. It is challenging, however, for standards development organizations (SDOs)
to provide specific guidance to project developers (PDs) on constraining such uncertainty
while also remaining logistically feasible and cost-effective, especially considering the broad

experimentation with measurement approaches [15, 16].

M Baseline sample W Actual baseline at point or area
® Mixture sample @ Actual mixture at point or area
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Figure 1: Illustration of how spatial uncertainty may introduce error into a feedstock dissolu-
tion calculation. In this example, the underlying mixing model relies on the assumption that
baseline and mixture samples are representative of the same system. Considering spatial
heterogeneity of soil compositions, this assumption may be interrupted by positioning error,
tillage, and erosion, as well as sampling and preparation techniques and analytical precision.
Composite sampling is commonly used to reduce the impact of spatial heterogeneity by re-
ducing sample variance.

Here, our goal is to provide a prescriptive and robust approach to account for spatial un-

certainty in high-dimensional measurement models of CZ transformations. We describe this
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approach in the context of solid-phase measurement of EW, though it can be extended to
other parameters that need to be precisely defined, for open-system CDR or other environ-
mental considerations, such as organic carbon stocks [23, 24| or isotope signatures |25, 26].
The framework starts with definition of overall uncertainty requirements (e.g., a maximum
error and minimum confidence in fd), followed by variance propagation and sensitivity anal-
ysis (SA) to help define corresponding measurement variance requirements (e.g., a maximum
measurement variance and minimum confidence). We then use stochastic sampling simula-
tions to infer a sampling approach that minimally meets these requirements and conclude

with estimate and uncertainty reporting. This is detailed through the following steps:

1. Define the uncertainty requirements and measurement model, the latter in-
cluding explicit relationships between input and output uncertainty using hierarchical

Bayesian principles.

2. Determine the maximum measurement variances that fulfill the overall uncer-

tainty requirements using variance propagation and SA.

3. Define the measurement variance requirements and sampling model, the

latter involving stochastic simulation of spatial fields and composite sampling plans.

4. Design a sampling plan that minimally meets the measurement variance require-
ments using the sampling model and SA; if infeasible, reconsider the overall uncertainty

requirements or measurement model.

(Data collection)

5. Report the final estimate and overall uncertainty, with traceable and repro-

ducible uncertainty quantification.
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Integrated Methods and Results

For enhanced weathering, agricultural fields are typically chosen based on accessibility rather
than a detailed understanding of soil properties and heterogeneity. The goal for the PD is to
perform minimal sampling while still accurately calculating the amount of dissolved feedstock
and attendant CDR.

In this example, we illustrate how early characterization can be integral to EW site
selection and monitoring design to increase the likelihood of precisely quantifying CDR.
We assume deployment of a basaltic feedstock, though the approach is generalizable to
any amendment. For solid-phase verification of EW, the measurement model consists of
equations (1) and (2), which are solved for f; based on the measured baseline and, either
the initial soil-feedstock mixture to determine application rates, or the mixture after some
weathering has occurred [20]. Field trials [27-37| report feedstock application rates ranging
from 5 to 100 tons per hectare (ha), resulting in relatively low mass enrichment of 0.1-3%
after mixing within the upper 20 cm of soil (Supp. 2). Another important consideration
is the chemical differentiation between the feedstock and the baseline, which we analyze

using the feedstock-baseline ratio of mean cation concentration (uﬁ:bsm) and mean tracer

concentration (ud"*").

The sampling model outlines the planned configuration for sampling—whether through
discrete point samples or carefully homogenized composite samples—which we stochastically
analyze to infer the measurement variance associated with different sampling strategies.
Because the measurement model depends on the baseline, the sampling plan is typically
fixed after the feedstock is applied, underscoring the need for a robust baseline sampling
strategy. The uncertainty requirements are defined by operational constraints (such as the

need to present a compensatory claim) and reflect the probability that the resulting estimate

will fall within a specified range of the true value.
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1. Define the uncertainty requirements and measurement model

The goal of this first step is to define the problem mathematically to allow for rigorous
variance propagation and SA. In EW, the baseline variance in soil elemental abundances is
typically unknown prior to site selection, and recent work [21] suggests that variability in an
immobile tracer element tends to exceed that of base cations, thereby dominating the total
uncertainty. Consequently, the site-specific variance in these elements determines whether a

given measurement approach is likely to fulfill the uncertainty requirements.

Uncertainty requirements

The uncertainty requirements are often defined by an SDO and, here, encapsulate:
® €,,4:, the maximum relative error in fd and thus CDR.
® Din, the minimum probability that the relative error in fd is less than €,,4;.

For instance, an SDO specification might require 90% confidence (p;, = 0.9) that the re-
ported CDR is within 10% of the true value (€4 = 0.1) |e.g., 38]. There is no a priori
guarantee, however, that any particular field deployment can meet these requirements for a
specific site, due to the inherent variability in measurement conditions and system parame-
ters.

We use ¢ to represent the outcome where the uncertainty requirements are fulfilled.

Formally:

p(ESEmax) > Pmin — (b: p(ESEmaz) < DPmin —> 57 (3)

where ¢ indicates the requirements are not fulfilled.

Measurement model and parameter set

To calculate p(e < €4,) for different measurement approaches, we define a measurement

model parameterized by €. This model includes:
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e a measurement function (e.g., feedstock dissolution calculation, Eq. 1-2)

e input parameters (e.g., M and T concentrations in the baseline, feedstock, and

mixture)
e the function response (e.g., fraction of feedstock dissolved, fy),

e measurement variance of each input parameter (e.g., spread of possible M and T

measurement values given the point or composite sampling scheme), and

e operational parameters (e.g., feedstock-baseline differentiation, application rate,

true fraction dissolved).

For this measurement function (Eq. 1-2), the input parameters are [M |psin, [M]rs, [M]mia,
(Tosins [T s, and [T)miz. Due to spatial heterogeneity, baseline and mixture measurements
may be highly variable, interrupting their assumed comparability (Fig. 2). To account for
the impact of spatial heterogeneity, we consider each input parameter to have a distribution
of possible measurement values—characterized by a mean (x) and variance (v)— which we
will propagate through the measurement function in step 2. While measurement variance
represents aggregate spatial and analytical uncertainty, we only consider spatial uncertainty
in this study, as analytical uncertainty can be made negligible if necessary [20]. Accordingly,

we define p and v for the measurement distributions as follows:

bsln

bsln and pbs™ (baseline means) as constants at the sim-

Measurement means: We set p;;
ulation scale. We then specify feedstock-to-baseline ratios (uﬁ:bsm, ,u{ps:bsm) to obtain mean
feedstock concentrations. A uniform application rate (74,) and uniform fraction dissolved

(fa) together determine the mean mixture concentrations after amendment and weathering,.

This f; also serves as the “true” fraction against which estimation errors are calculated.

Measurement variances: We specify vy, and vy, the measurement variances for baseline

M and T'. Due to feedstock mass enrichments of < 3%, we assume the measurement variances



of the soil-feedstock mixture are equal to the baseline vy; and vy. Also, since CZ parameters
tend to span orders of magnitude, vy, and vy are relative quantities (akin to coefficients of
variation, CV). The feedstock itself is assumed homogeneous (negligible variance).
Collectively, these parameters form the set 6. Since we want to test the impact of differ-
ent means, measurement variances, and operational parameters on fulfilling the uncertainty
requirements, we initially consider a wide range of possible values for each parameter. These
ranges are used as bounds for uniform cumulative density functions (CDFs), denoted F', and
a (0) is the multivariate CDF describing the entire parameter space (Table 1). The next step
involves random sampling of this parameter space to rigorously evaluate the individual and

joint impacts of each parameter on ¢.

Upm

Probability density function of
measurement values

== Actual baseline at point or area
Il Baseline sample

@ Baseline comprising mixture sample

Figure 2: Illustration of how measurement variance (v) in cation (M) or tracer (T') con-
centrations may interrupt the assumed comparability of baseline and mixture samples to
differing degrees depending on sampling approach. The goal of step 2 is to calculate how
small vy, and vy must be, or how narrow each probability density function of measurement
values must be.
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Table 1: Exploratory F (0), uniform distributions used for variance propagation and SA to determine measurement variance

requirements.
Parameter Symbol Units Range Source
Y (Transformation)
Mean baseline ,ul]’\jl” mg/kg | 11[5(’)%% 000 Lower and upper bound are lowest p1g and highest pgg of, for M, Ca,
. (In . ) Mg, Na, and K and, for 7', Ti, Cr, and Ni concentrations in upper 5 cm
concentrations .
bsln mg/k [1,9] of CONUS soils [39].
a 858 (In[2.72,8100])
Meastrement v - Inlo ([)Bgi;?g 050 Ranges chosen such that resulting variance propagation includes
vATiAnCes (In[0. ,0.050)) significant amounts of realizations that do and do not fulfill the
[—9, —3] uncertainty requirements.
vr " (In[0.00012, 0.050))
Feedstock-baseline Mﬁ:b‘gl" - [1,75] Ranges computed by dividing concentrations of selected elements in six
mean concentration basalt compositions reported by Lewis et al. [40] by corresponding p1g
ratios Fs:bsin and pgg CONUS soil concentrations [39].
Hr - [17 49}
Application rate Tapp tons/ha [2,100] Annual rate of 5-100 t/ha across eleven EW field trials [27-37]; lower
bound extended to 2 t/ha based on conversations with EW PDs.
True fraction of .
fa - [0.1,0.3] Range chosen based on values reported by Beerling et al. [28], where

feedstock dissolved

fa = 0.12 using Mg, 0.32 using Ca, four years after initial amendment.




184

185

186

187

188

192

193

194

2. Determine the maximum measurement variances

With the measurement model and parameter ranges established, the next step is to analyze
the sensitivity of the model and determine how small the measurement variances in M and
T must be to meet the overall uncertainty requirements. This process involves propagating
measurement variances through the measurement model (step 2.1), quantifying the influence
of measurement variance on the accuracy of fd (step 2.2), and constraining operational
parameters to set maximum measurement variances (Unq.) for a specific deployment (step

2.3).

2.1 Propagate measurement variances through the measurement model

Here, we use nested Monte Carlo simulations to jointly vary the input means, measurement
variances, and operational parameters encompassed by 6 and, for each variation, compute
the resulting p(e < €q2). This process begins with generating 10* parameter realizations, or
samples of F' (). F (0) is a uniform multivariate distribution, meaning each parameter range
in Table 1 is sampled from uniformly, and each realization represents a possible combination

of baseline means (15", p53'"), measurement variances (vys, vr), and operational parameters

(,uj\cj:bsz", ,ul_;&bsm, Tapps fd)- F (0). For a given parameter realization, we use these values to
construct Gaussian measurement distributions for [Mpsim, [M]miz, [Tlpsin, and [T]miz, and
we sample from these distributions to generate 10* measurement realizations. For each
measurement realization, we compute f, and its relative error (¢), such that p(e < €mnqq) for
each parameter realization is the fraction of its measurement realizations where € < €,,4..
Results of these simulations indicate that ¢ is highly dependent on keeping the measure-

ment variances below critical thresholds (Fig. 3), while other parameters, such as p%" and

pbs have minimal impact. Specifically, the distribution of p(e < €,,4,) shows a clear divide
(Fig. 3A), indicating that while many realizations achieve ¢, a significant number fail. The

P1o-Poo grey-shaded regions in Fig. 3B illustrate the spread of simulation outcomes across

each parameter range—shaded regions that extend above p,,;;, (red-dashed line) indicate pa-

11
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rameter values for the realizations that achieved ¢ in Fig. 3A. Conversely, unshaded regions
above Py, most notable for high vy, and vy and low 7,4y, correspond to parameter values
that will not result in ¢, effectively mapping the forbidden ranges for each parameter.

The correlations among the expected p(e < €,4.)—black pso lines in Fig. 3B—and
the individual parameters provide additional insight into sensitivities. For example, the

conditional distributions of p(e < €,,,,) show a strong negative correlation with v,; and

v, meaning high measurement variances make it unlikely to achieve < 10% error in fy

fs:bsln

(Fig. 3B). Intuitively, u); fs:bsin

W, Tapp, and true fg show moderate positive correlations

with p(€ < €n4z), indicating that greater values tend to increase the expected accuracy in
fd. Overall, the wide range of outcomes here emphasizes the importance of considering all

possible outcomes early in site selection and monitoring design.

A Response distribution | B Conditional response distributions
5 Qb P10-P90 Dso T Pmin
bsln [s:bsln
i /J’]\; " Um Mg Tapp
'm 1.0
3.51 : < (| MR ] T
1 I~
i S
I w
3.0 ! vl 091 ‘ W ' M\f
— n ! w AN WAV
= | ! =
S 2.5 : 001 | ]
= | 7 9 11 -9 -6 -3 1 38 75 2 51 100
g 2.01(L i In [mg k] In ratio [tons/ha]
(5} 1
=] ] ] s 1 bsl
g 1.5 i M%sln vr %s sln fd
s : 1.0
1.0 I N == N
H S
| S
05 b O'S-A’\/A/\/\M/VA //V\N\/\/\AN MW
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0.0 - S
0.0 0.5 1.0 0.0, - L " Hoh v -k " ;
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Figure 3: Exploratory SA of the influence of means (u), measurement variances (v), and

~

operational parameters on p(e < 0.1), the probability that the relative error in f; is no
greater than 10%, using the parameter ranges in Table 1. (A) shows the response across all
194 realizations, with a red-dashed line separating the realizations that do (¢) and do not

(¢) fulfill uncertainty requirements of p(e < 0.1) > 90% (Pmin). (B) provides the conditional
response distribution for each parameter.

12
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2.2. Quantify parameter influence on fulfilling the uncertainty requirements

To rigorously compare the sensitivity of ¢ to different parameters, we separate the 10* real-
izations of 6 into one group that does fulfill the uncertainty requirements (¢) and one group
that does not (¢). This can be represented by partitioning F (0) into two conditional distri-
butions, F'(0|¢) and F(0|¢), and we can analyze the differences between these distributions
to determine which parameters most significantly influence the outcome. A common way to
quantify such sensitivities [41-44] is to compute the "distance" between F(0|¢) and F(6|¢)
for each parameter (Fig. 4A), normalizing the parameter ranges to [—1, 1] so they do not
influence comparison of the distances. The resulting sensitivity rankings (Fig. 4B) highlight
fsbsin  fs:bsin

that ¢ is most influenced by vy, and vy, and less so by rapp, 5ty and true fy.

Collectively, this emphasizes the dominant role of measurement variances in determining

SUcCcCess.
A Threshold-conditional CDF's B Sensitivity of ¢
----- o6 —— oo — 0p )
bsln s:bsln
:u’J\; " Um Har Tapp 4
1.04 ] ]
Um
z
2] i
g’ 05 Tapp
0.0 1 | L . . ) . . %s:bsln
7 9 11 1 38 75 2 51 100
In [mg/kg] ratio [tons/ha] ]\f; :bsln
bsln fs:bsln
H 2
1.0 % e — a Ja
2 bsln
'Z 051 Kt
5 bsln
Har
1 5 9 1 25 49 01 02 03 0.0 0.5
In [mg/kg] ratio fraction CDF distance

Figure 4: Distance-based sensitivity calculations for the exploratory SA in Fig. 3. (A) shows
threshold-conditional CDFs (e.g., partitions of the entire set of realizations (grey-dashed line)
into realizations that did (green line) and did not (red line) fulfill uncertainty requirements,
with shaded areas to visualize distances between CDFs. (B) provides a ranking of the
parameters according to their influence on ¢ using this distance-based sensitivity metric.

13



241

242

243

244

2.3. Apply deployment-specific constraints and identify measurement variance
limits

In practice, PDs can constrain certain parameters in 6, such as feedstock-baseline differ-
entiation and application rate. For our theoretical deployment, we constrain ,uﬁ:bsm to 38
and 22" to 25 (midpoints from Table 1) and 74, to 40 tons/ha (median from Table 1).
Performing the SA with these constraints (Fig. 5) reveals that the expected, or median,
P(€ < €maa) €xceeds Py for In(vys) and In(vr) less than approximately -7 (Fig. 5B). In con-
trast, the conditional response distributions for other parameters do not show an expected
p(€ < €max) greater than p,,;,, as each distribution assumes values for all other parameters
are randomly chosen from their respective ranges, thus incorporating effects from the entire
ranges of vy, and vyp. While measurement variances are the primary control here, the true
fa will likely become significant after constraining vy, and vy (Fig. 5C). This suggests that
delaying intensive sampling, though also delaying return on investment to the PD, could be
a key feature of profitable operations.

To determine specific measurement variance limits, we need to account for potential
interactions between vy, and vy by analyzing their joint conditional distribution (Fig. 6).
It is also important to consider the entire F (#) when determining such limits. For example,
using a wide, exploratory F'(A) results in almost no combinations of vy, and vy that achieve
¢ (Fig. 6A). Using the constrained F (0), however, indicates the expected outcome is ¢
when both In(vys) and In(vy) are greater than approximately -6.5 (Fig. 6B). Since, for this
example, vy, and vp exert similar influences on ¢, we select a single v,,q, of € %°. The
remaining analysis provides information on combinations of inherent site characteristics and
sampling designs that could likely adhere to this maximum using stochastic simulations of

spatial variability and composite sampling.

14
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Figure 5: Deployment-specific SA where, relative to the exploratory SA in Fig. 3 and
Fig. 4 and parameter ranges in Table 1, we apply constraints to soil-feedstock differentiation
= 38, 1" = 25) and application rate (rq,, = 40 tons/ha). (A) shows the updated
response across all 10? realizations, (B) the updated conditional response distributions, and

(qus:bsln
M

(C) the updated ranking of the parameters according to their influence on ¢.
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Figure 6: Combinations of base cation measurement variance (vys) and immobile tracer
measurement variance (vr) that result in fulfilling uncertainty requirements (¢) of at least
90% likelihood of < 10% error in fd for (A) loosely constrained, exploratory parameter ranges
and (B) constrained parameter ranges for a theoretical deployment where pf5" = 38,

" = 925 and 14y, = 40 tons/ha.
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3. Define the measurement variance requirements and sampling

model

With v,,4. calculated, and before data collection, we need to design a suitable and efficient
sampling plan. To determine sufficient sampling plans, one would in theory need to know
the concentrations everywhere across the field site at high spatial resolution. Presumably,
this would reveal lenses and patches of similar material, as opposed to a completely random
distribution. Alternatively, we can create synthetic deployment fields based on models of
spatial variability, an approach similar to that used in hydrogeology [45, 46|, and sample them
to develop measurement schemes that are robust across different types of spatial variability.
In steps 3 and 4, the objective is to simulate spatial fields and composite sampling plans
to determine approaches for achieving a measurement variance lower than v,,,,;, and then
refine these approaches to roughly minimize the number of samples.

Given that high-density sampling over large deployment areas is not feasible, we assume
identification of a representative 1-ha plot for high-density sampling with low-density sam-
pling still performed across the remainder of the area, similar to plot designs recommended
by SDOs |e.g., 47|. Specifically, we are simulating 1 ha (10,000 m?) at 0.1-m resolution, thus
using a 1,000 by 1,000 structured grid, which could analogously be described as 100 ha at
1-m resolution or 10,000 ha at 10-m. Ideally the resolution or "support size" mimics physical
sample collection, e.g., individual core area when simulating at the sub-sampling scale, or

compositing area if each sample is representative of a grid cell.

Measurement variance requirements

Since we have chosen the same vy, of e7%° for vy, and vy, we can generally denote both
[M] and [T as an arbitrary spatial variable Z. Here, the measurement variance requirements

for Z are defined by:

® Uz, the maximum allowable measurement variance in Z,

17
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® Din, the minimum probability that the measurement variance in Z is below v,,4,.

For a given spatial field and sampling plan, p(v < v,,4,) is the likelihood that the resulting
measurement variance (v) will be less than the maximum measurement variance (v,,q,). The
measurement variance requirements are fulfilled when p(v < vy,4,) exceeds the probability

threshold p,,:n, and the corresponding outcome is denoted ¢,. Formally:

p(U S Uma:!:) Z Pmin - ¢Z7 p(U S Umaa:) < Pmin — 5Z' (4)

Sampling model and parameter set

To compute p(v < VUpg,) for different combinations of spatial field and sampling plan, we
first define a sampling model with parameter set 6, that encompasses stochastic simulation
of heterogeneous spatial fields and composite sampling plans.

A spatial field’s heterogeneity can be characterized by its spatial covariance, or strength
of correlation between values at different locations depending on the physical distances sep-
arating them, often analytically represented by a covariance or semivariogram function [48].
These functions involve distribution parameters, here g and CV expressed as natural loga-
rithms, and a correlation length, A, which describes how distant two locations can be and
still have correlated values, or the "size" of the heterogeneities (Fig. 7A). Different analytical
forms (e.g., exponential, circular, Gaussian) are distinguished by the "smoothness" of the
heterogeneities (Fig. 7B).

The parameter set ; encompasses these spatial field parameters, as well as parametriza-
tion of a composite sampling plan, including the number of composite samples (n) and
sub-samples (1), radius of each composite sample (74,,), and margin of error intrinsic to

the positioning device (ep,s) (Table 2).

18
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and (B) different analytical covariance models.
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Table 2: Exploratory F (07), uniform distributions used in stochastic spatial sampling simulations and SA to determine combi-
nations of spatial field and sampling plan that result in measurement variances less than a target maximum.

Parameter Symbol Units Transform Range or Set
True mean baseline concentra- Wz mg/kg In {1,2,...,11}
tion
Spatial  Tpye baseline and mixture coeffi- CVy - In {-8,—4,..,—1}
field cient of variation
Distribution type Dist. type - - {normal, lognormal}
Covariance model Cov. model - - {exponential, circular}
Correlation length Az m - {0, 10, 25, 50, 100}
Radius of each composite sample Te m - [0.5, 5]
Sampling Number of randomly located n - - {1,2,...,30}
plan composite samples
Number of sub-samples, collected Tsub - - {3,4,...,15}

at equal intervals along circum-
ference of composite area

Margin of error intrinsic to posi- €pos m - [1,10]
tioning device
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4. Design the sampling plan

With the measurement variance requirements and sampling model established, the next step
is to stochastically analyze the model to determine a minimally sufficient sampling plan.
This involves quantifying the relative influence of spatial heterogeneity and sampling pa-
rameters on fulfilling the variance requirements (step 4.1) then applying deployment-specific
constraints to identify sufficient sampling plans and refining them to a specific plan (step

42).

4.1. Quantify influence of spatial heterogeneity and sampling parameters on

fulfilling measurement variance requirements

To partition the parameter space F(05) into F(05|¢z) and F(04|¢,) for sensitivity anal-
ysis, we use nested Monte Carlo simulations to compute p(v < VUpq.) for 10? realizations
of ;. After first generating the spatial field, we choose random locations for the n com-
posite samples. For a single configuration of random locations, we simulate 100 rounds of
composite sampling, computing the mean Z each time, and v as the relative variance of
the 100 means. Considering a PD would only sample a handful of times throughout the
course of a deployment, these 100 rounds represent the theoretical variability introduced by
random positioning error and inconsistent orientation of sub-samples over a heterogeneous
field. In the context of solid-phase EW verification, this formulation assumes the sampling
plan is fixed with baseline sampling, and the f; calculation uses the mean of all n samples
rather than each sample individually. Altogether, for a single parameter realization of 6,
we simulate 100 different configurations of random locations, and p(v < vy, ) is the portion
of configurations where the inferred measurement variance is less than v,,,;.

Results of these nested simulations indicate that ¢ is determined by the relative field-
scale variance of Z, or coefficient of variation (CVy) (Fig. 8). Most realizations show an
extremely low or extremely high likelihood of achieving a sufficiently small v (Fig. 8A), and

there is a clear In(CVy) threshold between -4 and -5 that dictates this behavior (Fig. 8B).
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The exact In(CVy) threshold is dependent on the maximum number of samples considered
in the SA, though additional results show that increasing the maximum n from 30 to 100 still
results in a threshold below -4. Overall, this highlights that spatial heterogeneity not only
needs to be accurately constrained before designing a sampling plan, but may also determine

whether any monitoring strategy can succeed.

A Response distribution | B Conditional response distributions
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Figure 8: Exploratory SA of the influence of spatial heterogeneity and sampling plan on
p(v < e7%2), the probability (p) that the inferred measurement variance (v) is less than
a maximum measurement variance (Upq.) of ¢ %% using the parameter ranges in Table
2. (A) shows the response across all 10* realizations, with a red-dashed line separating
the realizations that do and do not fulfill requirements of at least 90% (pmin) likelihood of
measurement variance less than e, (B) provides the conditional response distribution for
each parameter. (C) provides the ranking of the parameters according to their influence on
¢z, using the distance-based metric illustrated in Fig. 4.
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4.2 Apply deployment-specific constraints and refine to a specific sampling plan

To narrow down to a specific sampling plan, we first need to constrain relative field-scale
variance, the major control on ¢;. Though point sampling is typically necessary to capture
the true CV, such data are sparse for soil elemental composition at ha-scales. A few field
studies [49-52| that did involve high-density point sampling of soil elemental concentrations
(102-10* samples/ha) reported ha-scale variances of —3 < In(CV) < —1 for base cations (Ca,
Mg, Na, K) and select trace elements (Ti, Ni, Al), which would not adhere to the threshold
of -4 or -5 suggested by the analysis here (Fig. 9). For a PD interested in constraining site-
specific variance, further stochastic point-sampling simulations indicate that, given observed
ranges [49-52|, only up to about 20 point samples are needed to estimate CV to the nearest
In with 90% confidence (Fig. 10). In theory, these suggested sample sizes are directly
applicable to larger scales, assuming correlation length is scaled with grid resolution, and
the random spatial fields tested here encompass patterns observed at larger scales. Overall,
this suggests it would be feasible to collect the preliminary measurements needed to infer

operational scalability for a robust array of potential empirical constraints.

Relative variances in soil components

0_
[ )
_1-

) : ; [ ] g/[a
=2 ® ® Mg
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—_— [ ) Tl
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0.01 0.1 1
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Figure 9: Relative variances of select soil elemental abundances reported across four studies
[49-52] involving high-density sampling (10%-10* samples/ha) of agricultural, grassland, and
scrubland soils (upper 10 to 20 cm), here shown relative to the approximate field-scale

variance threshold partitioning fields between those that likely can (¢) and cannot (¢) fulfill
the uncertainty requirements considered in this study.
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Figure 10: Simulation-based estimates of sample sizes needed to capture the coefficient of
variation (CV) of a 1-ha (100 m x 100 m, 0.1-m resolution) lognormal spatial field to the
nearest integer natural log (In) with 90% confidence, considering different scales of spatial
correlation (A); errors bars represent the standard error across 10 spatial fields with different
means.

While lower than reported for soils to-date [49-52], we constrain In(CVy) to —5 for our
theoretical deployment and redo the SA (Fig. 11) to demonstrate next steps in monitoring
design. Given this constraint, ¢z becomes most sensitive to n, indicating at least 11 com-
posite samples will result in > 50% likelihood, 18 samples > 90% likelihood, that v will be
sufficiently small (Fig. 11B). It may be important to further constrain A (Fig. 11C, Fig.
10), and alternative technologies, such as remote sensing [53], may be necessary to control
costs.

Altogether, the analysis here indicates that spatial heterogeneity in soil concentrations
should be the foremost consideration when designing sampling plans for solid-phase ver-
ification of EW. Determining sufficient sampling plans requires preliminary constraints on
relevant field-scale variances, and even minimally sufficient plans may be operationally infea-
sible, pointing toward reconsideration of the overall uncertainty requirements or measurement

model.
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Figure 11: Deployment-specific SA where, relative to the exploratory SA in Fig. 8 and
parameter ranges in Table 2, we constrain relative field-scale variance (CVy) to e ®. (A)
shows the updated response across all 10 parameter realizations, (B) the updated condi-
tional response distributions, and (C) the updated ranking of parameters according to their
influence on ¢.
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5. Report the final estimate and uncertainty

In principle, reporting fd and its uncertainty is relatively straightforward following sample
collection and analysis, as we have predetermined the margin of error and confidence in the
calculation. However, transparency, reproducibility, and traceability are critical for both
scientific and compensatory applications. In particular, procedural compliance should be
separated from the inherent scientific and environmental uncertainty in evaluating whether
a project achieved a result within quantifiable confidence bounds. Thus, in addition to
providing the underlying measurement data and appropriate metadata, ideally including an
ISGN framework [54], the reporting framework should systematically capture key uncertainty
targets and measurement distributions as constrained with each sampling event. Supp. 3
provides an example reporting format, where all sources of uncertainty are documented,
including deviations from initial estimated field variance, and the final estimate is presented

with clearly defined error and confidence.

Discussion

The methodology we develop here emphasizes the importance of constructing a measurement
model in the context of uncertainty requirements, which contrasts with the way field studies
are commonly designed, where the statistics are largely handled ez post. The probabilistic
framework presented here is sequential in nature and starts with assessment of how input
variability propagates through a measurement model, allowing us to then identify the critical
parameters influencing the overall uncertainty (steps 1-2). For the case of EW, the measure-
ment variances of base cation and tracer concentrations are critical determinants of the
uncertainty in fd, indicating variance thresholds above which the uncertainty requirements
will not be met. Stochastic spatial simulations (steps 3-4) are then used to identify com-
posite sampling plans that adhere to these measurement variance thresholds, and iterative

sensitivity analysis is used to refine these plans to a minimally sufficient plan.
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Importance of spatial heterogeneity

This analysis further highlights that without the underlying assessment of spatial variance,
even well-composited samples could lead to underestimation of the uncertainty, or worst-
case, fail to achieve the minimum accuracy and confidence. Indeed, relative variances of
soil elemental abundances from four studies [49-52] involving high-density sampling (10%-10%
samples/ha) of agricultural and grassland soils all exceed the maximum variance threshold
identified in our analysis, suggesting that soil heterogeneity is too large for this mixing-
model approach to produce reliable dissolution estimates (Fig. 9). While other tracers (e.g.,
isotope ratios) or bulk cation stocks may exhibit less heterogeneity, the analysis here poses an
important consideration for EW, namely the extent to which soil property distributions, and
our ability to capture them with measurements, fall within the necessary ranges identified
through this framework.

Here, we assume that spatial variance is the main contributor to measurement variance,
though analytical uncertainty would be an additional factor for low-abundance chemical
tracers. This could be directly incorporated into our framework by subtracting analytical
variance from the maximum measurement variances identified in step 2, resulting in a lower
target measurement variance in the sampling simulations. Another important gap to address
is identification of intensively measured plots—simulated here at 1 ha, but can be larger—
that are representative of up to tens-of-thousands of hectares. Collectively, simulating spatial
variability and realistic sampling strategies can not only reduce logistical inefficiencies for

EW, but also minimize the risk of unmet uncertainty requirements for CDR quantification.

Implications

For open-system CDR verification, SDOs face the challenge of balancing prescriptive re-
quirements with flexibility. The approach presented here allows an SDO to define clear
uncertainty requirements and, given preliminary estimates of spatial heterogeneity from the

PD, recommend a deployment-specific sampling plan likely to fulfill the requirements. Be-
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cause empirical measurement is typically a significant portion of open-system CDR costs,
such a framework can reduce risk for PDs—if they provide reasonably accurate estimates of
heterogeneity and adhere to the recommended plan, the SDO can confirm whether the re-
quirements are fulfilled. The SDO would not necessarily need to be prescriptive with respect
to the measurement types themselves, but rather, as this framework describes, how to math-
ematically relate the measurements and stochastically analyze their combined uncertainty.
Transparent multi-stage reporting enables differentiation of procedural accountability and
compliance from scientific and environmental uncertainties that affect removal performance.
Through modular computational implementations, this framework could encompass a wide

range of CZ processes and measurements while being tailored to soil systems and projects.
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Supporting Information 1:
Derivation of measurement model (Eq. 1-2)

1 Notation

e [M] is solid-phase base cation elemental abundance

[T] is solid-phase immobile tracer elemental abundance
e ;s denotes feedstock endmember
® ;. denotes baseline soil endmember

Y .. denotes initial mixture between feedstock and baseline endmembers, i.e., soil following feedstock

amendment and tillage

e ..ir denotes weathered mixture, i.e., following some feedstock dissolution

2 Defining f;

The fraction of feedstock dissolved (f;) is defined here as the complement of the fraction of feedstock
remaining (f,):

fdzlffr

where f, is the portion of feedstock cations still remaining in the solid-phase:

[M]mm - [M]bsln

Ir=
[M]gnix - [M]bsln
yielding Eq. 1 in the manuscript:
M iz — [M
fd —1_ [ ]mzx [ ]bsln

[M]gnu, - [M]bSln
This formulation assumes negligible mass loss with feedstock dissolution, justified by relatively low
feedstock mass fractions of 0.1-3% relative to the baseline endmember in the initial and weathered mix-

tures.

3 Calculating [M]°

mix
Using an element-element mixing model with immobile tracer T, the increase in cation concentration can

be calculated [1]:
[M]fs — [M}bsln

[T]fs - [T]bsln
= [T]miz and solving for [M]2,.. vields Eq. 2 in the manuscript:

([M]fs - [M}bsln)([T}miw - [T}bsln)
[T]fs - [T]bsln

[M}O - [M]bsln - ([T](T)nl'r - [T]bsln)

such that assuming [T°

miz

[M]O = [M]bsln +

Reference: [1] Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and Applications (3rd ed.).
Chapter 16. Hoboken, NJ: John Wiley & Sons.



Example reporting format for measurement and verification of enhanced weathering
Method: Solid-phase mass balance with element-element mixing model

Values in this example are based on a theoretical deployment;
links to relevant data could go here.

Sampling parameters:

Plotarea, 1 |ha # Sub-samples taken along circumference at
Compositing radius| 5 |m approximately equal intervals.
Sub-samples per sample| 5 |cores
Positioning error margin| 10 |m
Target uncertainty:
Maximum relative error| €max 10% # Overall uncertainty in CDR calculation.
Minimum confidence| Pmin 90%
Target input variances:
Measurement variance (In(v)) # See Steps 1-2 for determining baseline and mixture
Overall | Analytical | Sampling target variances, specifically Step 2.3 for calculating the
Baseline cation conc. | [M]psm -6.5 n/a -6.5 values entered here.
Baseline tracer conc. | [T]bsm -6.5 n/a -6.5 # Feedstock assumed perfectly homogeneous.
Mixture cation conc. | [M]mix -6.5 n/a -6.5 # Analytical variance assumed negligible, would be
Mixture tracer conc. | [T]mix -6.5 n/a -6.5 subtracted from Overall to determine Sampling variances.
Feedstock cation conc. | [M]fs n/a n/a n/a
Feedstock tracer conc.| [T]fs n/a n/a n/a

For spatially explicit input:

Plot-scale spatial variance (In(CV))

# See Steps 3-4 for determining minimum sample size,

Preliminary | Baseline Mixture specifically Step 4.2 for calculating the Baseline and
Baseline cation conc. | [M]psin -2 -1.8 -1.8 Mixture sample sizes entered here, as well as suggested
Baseline tracer conc. | [T]psmn -3 -3.3 -3.3 sample sizes for Preliminary point sampling.
Mixture cation conc. | [M]mix -2 -1.8 -1.9 # Plot-scale here is 1 hectare.
Mixture tracer conc. | [T ]mix -3 33 3.7 # Dashed outline indicates where spatial variances for
Sample size: 30 11 11 mixtures are assumed equal to baseline.
Expected value (mg/kg) # Dashed outline indicates where mixture values are
Preliminary | Baseline Mixture calculated using an ideal mixing model.
Baseline cation conc. | [M]psmn 3000 2645 2645
Baseline tracer conc. | [T]psm 30 32.12 32.12
Mixture cation conc. | [M]mix 3500 3142 3271
Mixture tracer conc. | [T]mix 35 36.11 34.21
For other input:
Expected value (mg/kg) # Likely add another section "For temporally explicit
feedstock cation conc.| [M]rs 50,000 input" for parameters with temporal variance.
feedstock tracer conc. | [T]rs 20,000

Output estimates:

fraction of feedstock
dissolved after 5 years

Expected value (fraction)
Predicted | Measured

fa 0.3

Maximum error:
Confidence:

0.27

10%
90%

# Error and confidence will not necessarily match target
uncertainty if heterogeneity estimates do not match initial
estimates.




