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Abstract1

Spatial heterogeneity introduces uncertainty when characterizing the Critical Zone,2

especially when sampling is sparse or requires repeated measurements at the same3

locations. Here, we layout a probabilistic sequential framework to systematically ac-4

count for spatial uncertainty when measuring Critical Zone transformations. First, we5

use measurement variance propagation and distance-based sensitivity analysis to deter-6

mine measurement variance criteria for meeting overall uncertainty requirements. We7

then stochastically simulate spatial fields and composite sampling to infer a minimally8

su!cient sampling plan that meets these criteria. Throughout the study, we apply9

this framework to solid-phase measurement of enhanced weathering, an open-system10

carbon dioxide removal strategy. Results indicate that field-scale variance in baseline11

soil concentrations must be accurately estimated before designing a sampling plan and,12

even then, such variance is likely too high for element-element mixing models to be ef-13

fective near-term constraints on enhanced weathering. We conclude with opportunities14

to extend this framework to other solid-phase mixing and stock models, multi-phase15

measurement models, and transient Critical Zone processes.16
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Synopsis: This study addresses the need for standardized uncertainty analysis and19

reporting in Critical Zone calculations, especially for open-system carbon dioxide re-20

moval applications.21

Introduction22

Earth’s Critical Zone (CZ) extends from the heights of vegetative canopies to the depths23

of weathering bedrock, encompassing a layer of regolith that interacts with the atmosphere24

and supports terrestrial and aquatic life [1–4]. The CZ thus embodies a complex system of25

physical and biogeochemical states, transformations, and fluxes that are subject to dynamic26

atmospheric and anthropogenic forcings, resulting in spatial and temporal heterogeneity that27

introduces significant uncertainty into empirical characterization [5–8]. Notwithstanding28

such complexity, a multitude of CZ descriptors need to be quantified for a broad range29

of applications, including contaminant monitoring and remediation, agronomic operations,30

ecosystem preservation, geotechnical engineering, and, increasingly, atmospheric greenhouse31

gas removal.32

Spatial uncertainty in certain physical and chemical measurements, such as hydraulic con-33

ductivity [9, 10] and soil compositions [11, 12], often exceeds their temporal variability. As34

such, spatial heterogeneity can be di!cult to constrain through point measurements, which35

are usually limited by logistical considerations combined with lack of predefined metrics to36

guide appropriate sampling [13]. Furthermore, application of existing geostatistical frame-37

works is not always straightforward for complex, high-dimensional CZ models. For example,38

calculation of both chemical depletion fractions and mixing between di"erent lithologies, us-39

ing concentrations or ratios, requires error propagation for multiple variables through linear40

and non-linear governing equations. Analytical propagation methods involve potentially un-41
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realizable assumptions of normality and linear and independent error [14]. High-dimensional,42

non-additive calculations thus warrant some application of non-parametric, bootstrapping,43

stochastic, hierarchical, and/or Bayesian methods.44

A current CZ application that relies on characterizing di"erent soil compositions is solid-45

phase measurement of enhanced weathering (EW) [15, 16]. EW involves amending soils,46

usually agricultural, with a reactive "feedstock", such as basalt or Mg-silicate, to shift the47

alkalinity of the system and e"ectively dissolve additional CO2 [17, 18]. Given the low48

initial enrichment of feedstock mass relative to native soil, detecting feedstock weathering49

beyond the “noise” of the baseline becomes a challenging problem [16], and a common current50

approach relies on the ratio of base cations to immobile elements to constrain this weathering.51

The resulting depletion and mixing equations (Eq. 1-2; Supp. 1) require analysis of multiple52

soil samples in sequence, from soil (baseline) to the initial mixture (soil + feedstock) to53

weathered compositions over multiple time points [19, 20]. These measurements are used54

to estimate the true fraction of feedstock dissolved (fd), a potential proxy for CO2 removal,55

calculated as56

fd = 1↑ [M ]mix ↑ [M ]bsln
[M ]0mix ↑ [M ]bsln

(1)

where [M ] is base cation concentration of the baseline (bsln), initial mixture (0mix), and weath-57

ered mixture (mix). A multiplier is used to compute gross carbon dioxide removal (CDR)58

from fd, hence an accurate estimate (f̂d) is the focus here. A common approach for calculat-59

ing [M ]0mix is to also measure an immobile tracer (T ) and use the following element-element60

mixing equation with baseline and feedstock (fs) endmembers,61

[M ]0mix = [M ]bsln +
([T ]mix ↑ [T ]bsln)([M ]fs ↑ [M ]blsn)

[T ]fs ↑ [T ]bsln
(2)

Here, heterogeneity can interrupt basic assumptions of the mixing model if samples are62

not representative of the same “system” (Fig. 1). Uncertainty in these assumptions was63
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initially considered in the context of analytical variance [20], and it has recently been demon-64

strated that such calculations are highly sensitive to spatially heterogeneous soil composi-65

tions [21, 22]. It is challenging, however, for standards development organizations (SDOs)66

to provide specific guidance to project developers (PDs) on constraining such uncertainty67

while also remaining logistically feasible and cost-e"ective, especially considering the broad68

experimentation with measurement approaches [15, 16].69

Figure 1: Illustration of how spatial uncertainty may introduce error into a feedstock dissolu-
tion calculation. In this example, the underlying mixing model relies on the assumption that
baseline and mixture samples are representative of the same system. Considering spatial
heterogeneity of soil compositions, this assumption may be interrupted by positioning error,
tillage, and erosion, as well as sampling and preparation techniques and analytical precision.
Composite sampling is commonly used to reduce the impact of spatial heterogeneity by re-
ducing sample variance.

Here, our goal is to provide a prescriptive and robust approach to account for spatial un-70

certainty in high-dimensional measurement models of CZ transformations. We describe this71
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approach in the context of solid-phase measurement of EW, though it can be extended to72

other parameters that need to be precisely defined, for open-system CDR or other environ-73

mental considerations, such as organic carbon stocks [23, 24] or isotope signatures [25, 26].74

The framework starts with definition of overall uncertainty requirements (e.g., a maximum75

error and minimum confidence in f̂d), followed by variance propagation and sensitivity anal-76

ysis (SA) to help define corresponding measurement variance requirements (e.g., a maximum77

measurement variance and minimum confidence). We then use stochastic sampling simula-78

tions to infer a sampling approach that minimally meets these requirements and conclude79

with estimate and uncertainty reporting. This is detailed through the following steps:80

1. Define the uncertainty requirements and measurement model, the latter in-81

cluding explicit relationships between input and output uncertainty using hierarchical82

Bayesian principles.83

2. Determine the maximum measurement variances that fulfill the overall uncer-84

tainty requirements using variance propagation and SA.85

3. Define the measurement variance requirements and sampling model, the86

latter involving stochastic simulation of spatial fields and composite sampling plans.87

4. Design a sampling plan that minimally meets the measurement variance require-88

ments using the sampling model and SA; if infeasible, reconsider the overall uncertainty89

requirements or measurement model.90

(Data collection)91

5. Report the final estimate and overall uncertainty, with traceable and repro-92

ducible uncertainty quantification.93
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Integrated Methods and Results94

For enhanced weathering, agricultural fields are typically chosen based on accessibility rather95

than a detailed understanding of soil properties and heterogeneity. The goal for the PD is to96

perform minimal sampling while still accurately calculating the amount of dissolved feedstock97

and attendant CDR.98

In this example, we illustrate how early characterization can be integral to EW site99

selection and monitoring design to increase the likelihood of precisely quantifying CDR.100

We assume deployment of a basaltic feedstock, though the approach is generalizable to101

any amendment. For solid-phase verification of EW, the measurement model consists of102

equations (1) and (2), which are solved for fd based on the measured baseline and, either103

the initial soil-feedstock mixture to determine application rates, or the mixture after some104

weathering has occurred [20]. Field trials [27–37] report feedstock application rates ranging105

from 5 to 100 tons per hectare (ha), resulting in relatively low mass enrichment of 0.1–3%106

after mixing within the upper 20 cm of soil (Supp. 2). Another important consideration107

is the chemical di"erentiation between the feedstock and the baseline, which we analyze108

using the feedstock-baseline ratio of mean cation concentration (µfs:bsln
M ) and mean tracer109

concentration (µfs:bsln
T ).110

The sampling model outlines the planned configuration for sampling—whether through111

discrete point samples or carefully homogenized composite samples—which we stochastically112

analyze to infer the measurement variance associated with di"erent sampling strategies.113

Because the measurement model depends on the baseline, the sampling plan is typically114

fixed after the feedstock is applied, underscoring the need for a robust baseline sampling115

strategy. The uncertainty requirements are defined by operational constraints (such as the116

need to present a compensatory claim) and reflect the probability that the resulting estimate117

will fall within a specified range of the true value.118
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1. Define the uncertainty requirements and measurement model119

The goal of this first step is to define the problem mathematically to allow for rigorous120

variance propagation and SA. In EW, the baseline variance in soil elemental abundances is121

typically unknown prior to site selection, and recent work [21] suggests that variability in an122

immobile tracer element tends to exceed that of base cations, thereby dominating the total123

uncertainty. Consequently, the site-specific variance in these elements determines whether a124

given measurement approach is likely to fulfill the uncertainty requirements.125

Uncertainty requirements126

The uncertainty requirements are often defined by an SDO and, here, encapsulate:127

• ωmax, the maximum relative error in f̂d and thus CDR.128

• pmin, the minimum probability that the relative error in f̂d is less than ωmax.129

For instance, an SDO specification might require 90% confidence (pmin = 0.9) that the re-130

ported CDR is within 10% of the true value (ωmax = 0.1) [e.g., 38]. There is no a priori131

guarantee, however, that any particular field deployment can meet these requirements for a132

specific site, due to the inherent variability in measurement conditions and system parame-133

ters.134

We use ε to represent the outcome where the uncertainty requirements are fulfilled.135

Formally:136

p(ω ↓ ωmax) ↔ pmin =↗ ε, p(ω ↓ ωmax) < pmin =↗ ε, (3)

where ε indicates the requirements are not fulfilled.137

Measurement model and parameter set138

To calculate p(ω ↓ ωmax) for di"erent measurement approaches, we define a measurement139

model parameterized by ϑ. This model includes:140
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• a measurement function (e.g., feedstock dissolution calculation, Eq. 1-2)141

• input parameters (e.g., M and T concentrations in the baseline, feedstock, and142

mixture)143

• the function response (e.g., fraction of feedstock dissolved, fd),144

• measurement variance of each input parameter (e.g., spread of possible M and T145

measurement values given the point or composite sampling scheme), and146

• operational parameters (e.g., feedstock-baseline di"erentiation, application rate,147

true fraction dissolved).148

For this measurement function (Eq. 1-2), the input parameters are [M ]bsln, [M ]fs, [M ]mix,149

[T ]bsln, [T ]fs, and [T ]mix. Due to spatial heterogeneity, baseline and mixture measurements150

may be highly variable, interrupting their assumed comparability (Fig. 2). To account for151

the impact of spatial heterogeneity, we consider each input parameter to have a distribution152

of possible measurement values—characterized by a mean (µ) and variance (ϖ)— which we153

will propagate through the measurement function in step 2. While measurement variance154

represents aggregate spatial and analytical uncertainty, we only consider spatial uncertainty155

in this study, as analytical uncertainty can be made negligible if necessary [20]. Accordingly,156

we define µ and ϖ for the measurement distributions as follows:157

Measurement means: We set µbsln
M and µbsln

T (baseline means) as constants at the sim-158

ulation scale. We then specify feedstock-to-baseline ratios (µfs:bsln
M , µfs:bsln

T ) to obtain mean159

feedstock concentrations. A uniform application rate (rapp) and uniform fraction dissolved160

(fd) together determine the mean mixture concentrations after amendment and weathering.161

This fd also serves as the “true” fraction against which estimation errors are calculated.162

Measurement variances: We specify ϖM and ϖT , the measurement variances for baseline163

M and T . Due to feedstock mass enrichments of < 3%, we assume the measurement variances164
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of the soil-feedstock mixture are equal to the baseline ϖM and ϖT . Also, since CZ parameters165

tend to span orders of magnitude, ϖM and ϖT are relative quantities (akin to coe!cients of166

variation, CV). The feedstock itself is assumed homogeneous (negligible variance).167

Collectively, these parameters form the set ϑ. Since we want to test the impact of di"er-168

ent means, measurement variances, and operational parameters on fulfilling the uncertainty169

requirements, we initially consider a wide range of possible values for each parameter. These170

ranges are used as bounds for uniform cumulative density functions (CDFs), denoted F̂ , and171

F̂ (ϑ) is the multivariate CDF describing the entire parameter space (Table 1). The next step172

involves random sampling of this parameter space to rigorously evaluate the individual and173

joint impacts of each parameter on ε.174

Figure 2: Illustration of how measurement variance (ϖ) in cation (M) or tracer (T ) con-
centrations may interrupt the assumed comparability of baseline and mixture samples to
di"ering degrees depending on sampling approach. The goal of step 2 is to calculate how
small ϖM and ϖT must be, or how narrow each probability density function of measurement
values must be.
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Table 1: Exploratory F̂ (ϑ), uniform distributions used for variance propagation and SA to determine measurement variance
requirements.

Parameter Symbol Units Range
(Transformation) Source

Mean baseline
concentrations

µbsln
M mg/kg [7, 11]

(ln[1100, 60000])
Lower and upper bound are lowest p10 and highest p90 of, for M , Ca,
Mg, Na, and K and, for T , Ti, Cr, and Ni concentrations in upper 5 cm
of CONUS soils [39].

µbsln
T mg/kg [1, 9]

(ln[2.72, 8100])

Measurement
variances

ωM - [↑9,↑3]
(ln[0.00012, 0.050])

Ranges chosen such that resulting variance propagation includes
significant amounts of realizations that do and do not fulfill the
uncertainty requirements.

ωT - [↑9,↑3]
(ln[0.00012, 0.050])

Feedstock-baseline
mean concentration

ratios

µfs:bsln
M - [1, 75] Ranges computed by dividing concentrations of selected elements in six

basalt compositions reported by Lewis et al. [40] by corresponding p10
and p90 CONUS soil concentrations [39].

µfs:bsln
T - [1, 49]

Application rate rapp tons/ha [2, 100] Annual rate of 5-100 t/ha across eleven EW field trials [27–37]; lower
bound extended to 2 t/ha based on conversations with EW PDs.

True fraction of
feedstock dissolved fd - [0.1, 0.3] Range chosen based on values reported by Beerling et al. [28], where

f̂d = 0.12 using Mg, 0.32 using Ca, four years after initial amendment.
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2. Determine the maximum measurement variances175

With the measurement model and parameter ranges established, the next step is to analyze176

the sensitivity of the model and determine how small the measurement variances in M and177

T must be to meet the overall uncertainty requirements. This process involves propagating178

measurement variances through the measurement model (step 2.1), quantifying the influence179

of measurement variance on the accuracy of f̂d (step 2.2), and constraining operational180

parameters to set maximum measurement variances (ϖmax) for a specific deployment (step181

2.3).182

2.1 Propagate measurement variances through the measurement model183

Here, we use nested Monte Carlo simulations to jointly vary the input means, measurement184

variances, and operational parameters encompassed by ϑ and, for each variation, compute185

the resulting p(ω ↓ ωmax). This process begins with generating 104 parameter realizations, or186

samples of F̂ (ϑ). F̂ (ϑ) is a uniform multivariate distribution, meaning each parameter range187

in Table 1 is sampled from uniformly, and each realization represents a possible combination188

of baseline means (µbsln
M , µbsln

T ), measurement variances (ϖM , ϖT ), and operational parameters189

(µfs:bsln
M , µfs:bsln

T , rapp, fd). F̂ (ϑ). For a given parameter realization, we use these values to190

construct Gaussian measurement distributions for [M ]bsln, [M ]mix, [T ]bsln, and [T ]mix, and191

we sample from these distributions to generate 104 measurement realizations. For each192

measurement realization, we compute f̂d and its relative error (ω), such that p(ω ↓ ωmax) for193

each parameter realization is the fraction of its measurement realizations where ω ↓ ωmax.194

Results of these simulations indicate that ε is highly dependent on keeping the measure-195

ment variances below critical thresholds (Fig. 3), while other parameters, such as µbsln
M and196

µbsln
T , have minimal impact. Specifically, the distribution of p(ω ↓ ωmax) shows a clear divide197

(Fig. 3A), indicating that while many realizations achieve ε, a significant number fail. The198

p10-p90 grey-shaded regions in Fig. 3B illustrate the spread of simulation outcomes across199

each parameter range—shaded regions that extend above pmin (red-dashed line) indicate pa-200
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rameter values for the realizations that achieved ε in Fig. 3A. Conversely, unshaded regions201

above pmin, most notable for high ϖM and ϖT and low rapp, correspond to parameter values202

that will not result in ε, e"ectively mapping the forbidden ranges for each parameter.203

The correlations among the expected p(ω ↓ ωmax)—black p50 lines in Fig. 3B—and204

the individual parameters provide additional insight into sensitivities. For example, the205

conditional distributions of p(ω ↓ ωmax) show a strong negative correlation with ϖM and206

ϖT , meaning high measurement variances make it unlikely to achieve ↓ 10% error in f̂d207

(Fig. 3B). Intuitively, µfs:bsln
M , µfs:bsln

T , rapp, and true fd show moderate positive correlations208

with p(ω ↓ ωmax), indicating that greater values tend to increase the expected accuracy in209

f̂d. Overall, the wide range of outcomes here emphasizes the importance of considering all210

possible outcomes early in site selection and monitoring design.211

Figure 3: Exploratory SA of the influence of means (µ), measurement variances (ϖ), and
operational parameters on p(ω ↓ 0.1), the probability that the relative error in f̂d is no
greater than 10%, using the parameter ranges in Table 1. (A) shows the response across all
104 realizations, with a red-dashed line separating the realizations that do (ε) and do not
(ε) fulfill uncertainty requirements of p(ω ↓ 0.1) ↔ 90% (pmin). (B) provides the conditional
response distribution for each parameter.
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2.2. Quantify parameter influence on fulfilling the uncertainty requirements212

To rigorously compare the sensitivity of ε to di"erent parameters, we separate the 104 real-213

izations of ϑ into one group that does fulfill the uncertainty requirements (ε) and one group214

that does not (ε). This can be represented by partitioning F̂ (ϑ) into two conditional distri-215

butions, F̂ (ϑ|ε) and F̂ (ϑ|ε), and we can analyze the di"erences between these distributions216

to determine which parameters most significantly influence the outcome. A common way to217

quantify such sensitivities [41–44] is to compute the "distance" between F̂ (ϑ|ε) and F̂ (ϑ|ε)218

for each parameter (Fig. 4A), normalizing the parameter ranges to [↑1, 1] so they do not219

influence comparison of the distances. The resulting sensitivity rankings (Fig. 4B) highlight220

that ε is most influenced by ϖM and ϖT , and less so by rapp, µfs:bsln
T , µfs:bsln

M , and true fd.221

Collectively, this emphasizes the dominant role of measurement variances in determining222

success.223

Figure 4: Distance-based sensitivity calculations for the exploratory SA in Fig. 3. (A) shows
threshold-conditional CDFs (e.g., partitions of the entire set of realizations (grey-dashed line)
into realizations that did (green line) and did not (red line) fulfill uncertainty requirements,
with shaded areas to visualize distances between CDFs. (B) provides a ranking of the
parameters according to their influence on ε using this distance-based sensitivity metric.
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2.3. Apply deployment-specific constraints and identify measurement variance224

limits225

In practice, PDs can constrain certain parameters in ϑ, such as feedstock-baseline di"er-226

entiation and application rate. For our theoretical deployment, we constrain µfs:bsln
M to 38227

and µfs:bsln
T to 25 (midpoints from Table 1) and rapp to 40 tons/ha (median from Table 1).228

Performing the SA with these constraints (Fig. 5) reveals that the expected, or median,229

p(ω ↓ ωmax) exceeds pmin for ln(ϖM) and ln(ϖT ) less than approximately -7 (Fig. 5B). In con-230

trast, the conditional response distributions for other parameters do not show an expected231

p(ω ↓ ωmax) greater than pmin, as each distribution assumes values for all other parameters232

are randomly chosen from their respective ranges, thus incorporating e"ects from the entire233

ranges of ϖM and ϖT . While measurement variances are the primary control here, the true234

fd will likely become significant after constraining ϖM and ϖT (Fig. 5C). This suggests that235

delaying intensive sampling, though also delaying return on investment to the PD, could be236

a key feature of profitable operations.237

To determine specific measurement variance limits, we need to account for potential238

interactions between ϖM and ϖT by analyzing their joint conditional distribution (Fig. 6).239

It is also important to consider the entire F̂ (ϑ) when determining such limits. For example,240

using a wide, exploratory F̂ (ϑ) results in almost no combinations of ϖM and ϖT that achieve241

ε (Fig. 6A). Using the constrained F̂ (ϑ), however, indicates the expected outcome is ε242

when both ln(ϖM) and ln(ϖT ) are greater than approximately -6.5 (Fig. 6B). Since, for this243

example, ϖM and ϖT exert similar influences on ε, we select a single ϖmax of e→6.5. The244

remaining analysis provides information on combinations of inherent site characteristics and245

sampling designs that could likely adhere to this maximum using stochastic simulations of246

spatial variability and composite sampling.247
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Figure 5: Deployment-specific SA where, relative to the exploratory SA in Fig. 3 and
Fig. 4 and parameter ranges in Table 1, we apply constraints to soil-feedstock di"erentiation
(µfs:bsln

M = 38, µfs:bsln
T = 25) and application rate (rapp = 40 tons/ha). (A) shows the updated

response across all 104 realizations, (B) the updated conditional response distributions, and
(C) the updated ranking of the parameters according to their influence on ε.
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Figure 6: Combinations of base cation measurement variance (ϖM) and immobile tracer
measurement variance (ϖT ) that result in fulfilling uncertainty requirements (ε) of at least
90% likelihood of ↓ 10% error in f̂d for (A) loosely constrained, exploratory parameter ranges
and (B) constrained parameter ranges for a theoretical deployment where µfs:bsln

M = 38,
µfs:bsln
T = 25, and rapp = 40 tons/ha.
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3. Define the measurement variance requirements and sampling248

model249

With ϖmax calculated, and before data collection, we need to design a suitable and e!cient250

sampling plan. To determine su!cient sampling plans, one would in theory need to know251

the concentrations everywhere across the field site at high spatial resolution. Presumably,252

this would reveal lenses and patches of similar material, as opposed to a completely random253

distribution. Alternatively, we can create synthetic deployment fields based on models of254

spatial variability, an approach similar to that used in hydrogeology [45, 46], and sample them255

to develop measurement schemes that are robust across di"erent types of spatial variability.256

In steps 3 and 4, the objective is to simulate spatial fields and composite sampling plans257

to determine approaches for achieving a measurement variance lower than ϖmax, and then258

refine these approaches to roughly minimize the number of samples.259

Given that high-density sampling over large deployment areas is not feasible, we assume260

identification of a representative 1-ha plot for high-density sampling with low-density sam-261

pling still performed across the remainder of the area, similar to plot designs recommended262

by SDOs [e.g., 47]. Specifically, we are simulating 1 ha (10,000 m2) at 0.1-m resolution, thus263

using a 1,000 by 1,000 structured grid, which could analogously be described as 100 ha at264

1-m resolution or 10,000 ha at 10-m. Ideally the resolution or "support size" mimics physical265

sample collection, e.g., individual core area when simulating at the sub-sampling scale, or266

compositing area if each sample is representative of a grid cell.267

Measurement variance requirements268

Since we have chosen the same ϖmax of e→6.5 for ϖM and ϖT , we can generally denote both269

[M ] and [T ] as an arbitrary spatial variable Z. Here, the measurement variance requirements270

for Z are defined by:271

• ϖmax, the maximum allowable measurement variance in Z,272
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• pmin, the minimum probability that the measurement variance in Z is below ϖmax.273

For a given spatial field and sampling plan, p(ϖ ↓ ϖmax) is the likelihood that the resulting274

measurement variance (ϖ) will be less than the maximum measurement variance (ϖmax). The275

measurement variance requirements are fulfilled when p(ϖ ↓ ϖmax) exceeds the probability276

threshold pmin, and the corresponding outcome is denoted εZ . Formally:277

p(ϖ ↓ ϖmax) ↔ pmin =↗ εZ , p(ϖ ↓ ϖmax) < pmin =↗ εZ . (4)

Sampling model and parameter set278

To compute p(ϖ ↓ ϖmax) for di"erent combinations of spatial field and sampling plan, we279

first define a sampling model with parameter set ϑZ that encompasses stochastic simulation280

of heterogeneous spatial fields and composite sampling plans.281

A spatial field’s heterogeneity can be characterized by its spatial covariance, or strength282

of correlation between values at di"erent locations depending on the physical distances sep-283

arating them, often analytically represented by a covariance or semivariogram function [48].284

These functions involve distribution parameters, here µ and CV expressed as natural loga-285

rithms, and a correlation length, ϱ, which describes how distant two locations can be and286

still have correlated values, or the "size" of the heterogeneities (Fig. 7A). Di"erent analytical287

forms (e.g., exponential, circular, Gaussian) are distinguished by the "smoothness" of the288

heterogeneities (Fig. 7B).289

The parameter set ϑZ encompasses these spatial field parameters, as well as parametriza-290

tion of a composite sampling plan, including the number of composite samples (n) and291

sub-samples (nsub), radius of each composite sample (rapp), and margin of error intrinsic to292

the positioning device (epos) (Table 2).293
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Figure 7: Examples of simulated 1-ha spatial fields with (A) increasing correlation lengths
and (B) di"erent analytical covariance models.
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Table 2: Exploratory F̂ (ϑZ), uniform distributions used in stochastic spatial sampling simulations and SA to determine combi-
nations of spatial field and sampling plan that result in measurement variances less than a target maximum.

Parameter Symbol Units Transform Range or Set

Spatial
field

True mean baseline concentra-
tion

µZ mg/kg ln {1, 2, ..., 11}

True baseline and mixture coe!-
cient of variation

CVZ - ln {↑8,↑4, ...,↑1}

Distribution type Dist. type - - {normal, lognormal}
Covariance model Cov. model - - {exponential, circular}
Correlation length εZ m - {0, 10, 25, 50, 100}

Sampling
plan

Radius of each composite sample rc m - [0.5, 5]

Number of randomly located
composite samples

n - - {1, 2, ..., 30}

Number of sub-samples, collected
at equal intervals along circum-
ference of composite area

nsub - - {3, 4, ..., 15}

Margin of error intrinsic to posi-
tioning device

epos m - [1, 10]
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4. Design the sampling plan294

With the measurement variance requirements and sampling model established, the next step295

is to stochastically analyze the model to determine a minimally su!cient sampling plan.296

This involves quantifying the relative influence of spatial heterogeneity and sampling pa-297

rameters on fulfilling the variance requirements (step 4.1) then applying deployment-specific298

constraints to identify su!cient sampling plans and refining them to a specific plan (step299

4.2).300

4.1. Quantify influence of spatial heterogeneity and sampling parameters on301

fulfilling measurement variance requirements302

To partition the parameter space F̂ (ϑZ) into F̂ (ϑZ |εZ) and F̂ (ϑZ |εZ) for sensitivity anal-303

ysis, we use nested Monte Carlo simulations to compute p(ϖ ↓ ϖmax) for 104 realizations304

of ϑZ . After first generating the spatial field, we choose random locations for the n com-305

posite samples. For a single configuration of random locations, we simulate 100 rounds of306

composite sampling, computing the mean Z each time, and ϖ as the relative variance of307

the 100 means. Considering a PD would only sample a handful of times throughout the308

course of a deployment, these 100 rounds represent the theoretical variability introduced by309

random positioning error and inconsistent orientation of sub-samples over a heterogeneous310

field. In the context of solid-phase EW verification, this formulation assumes the sampling311

plan is fixed with baseline sampling, and the fd calculation uses the mean of all n samples312

rather than each sample individually. Altogether, for a single parameter realization of ϑZ ,313

we simulate 100 di"erent configurations of random locations, and p(ϖ ↓ ϖmax) is the portion314

of configurations where the inferred measurement variance is less than ϖmax.315

Results of these nested simulations indicate that εZ is determined by the relative field-316

scale variance of Z, or coe!cient of variation (CVZ) (Fig. 8). Most realizations show an317

extremely low or extremely high likelihood of achieving a su!ciently small ϖ (Fig. 8A), and318

there is a clear ln(CVZ) threshold between -4 and -5 that dictates this behavior (Fig. 8B).319
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The exact ln(CVZ) threshold is dependent on the maximum number of samples considered320

in the SA, though additional results show that increasing the maximum n from 30 to 100 still321

results in a threshold below -4. Overall, this highlights that spatial heterogeneity not only322

needs to be accurately constrained before designing a sampling plan, but may also determine323

whether any monitoring strategy can succeed.324

Figure 8: Exploratory SA of the influence of spatial heterogeneity and sampling plan on
p(ϖ ↓ e→6.5), the probability (p) that the inferred measurement variance (ϖ) is less than
a maximum measurement variance (ϖmax) of e→6.5, using the parameter ranges in Table
2. (A) shows the response across all 104 realizations, with a red-dashed line separating
the realizations that do and do not fulfill requirements of at least 90% (pmin) likelihood of
measurement variance less than e→6.5. (B) provides the conditional response distribution for
each parameter. (C) provides the ranking of the parameters according to their influence on
εZ , using the distance-based metric illustrated in Fig. 4.
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4.2 Apply deployment-specific constraints and refine to a specific sampling plan325

To narrow down to a specific sampling plan, we first need to constrain relative field-scale326

variance, the major control on εZ . Though point sampling is typically necessary to capture327

the true CV, such data are sparse for soil elemental composition at ha-scales. A few field328

studies [49–52] that did involve high-density point sampling of soil elemental concentrations329

(102-104 samples/ha) reported ha-scale variances of ↑3 ↓ ln(CV) ↓ ↑1 for base cations (Ca,330

Mg, Na, K) and select trace elements (Ti, Ni, Al), which would not adhere to the threshold331

of -4 or -5 suggested by the analysis here (Fig. 9). For a PD interested in constraining site-332

specific variance, further stochastic point-sampling simulations indicate that, given observed333

ranges [49–52], only up to about 20 point samples are needed to estimate CV to the nearest334

ln with 90% confidence (Fig. 10). In theory, these suggested sample sizes are directly335

applicable to larger scales, assuming correlation length is scaled with grid resolution, and336

the random spatial fields tested here encompass patterns observed at larger scales. Overall,337

this suggests it would be feasible to collect the preliminary measurements needed to infer338

operational scalability for a robust array of potential empirical constraints.339

Figure 9: Relative variances of select soil elemental abundances reported across four studies
[49–52] involving high-density sampling (102-104 samples/ha) of agricultural, grassland, and
scrubland soils (upper 10 to 20 cm), here shown relative to the approximate field-scale
variance threshold partitioning fields between those that likely can (ε) and cannot (ε) fulfill
the uncertainty requirements considered in this study.
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Figure 10: Simulation-based estimates of sample sizes needed to capture the coe!cient of
variation (CV) of a 1-ha (100 m x 100 m, 0.1-m resolution) lognormal spatial field to the
nearest integer natural log (ln) with 90% confidence, considering di"erent scales of spatial
correlation (ϱ); errors bars represent the standard error across 10 spatial fields with di"erent
means.

While lower than reported for soils to-date [49–52], we constrain ln(CVZ) to ↑5 for our340

theoretical deployment and redo the SA (Fig. 11) to demonstrate next steps in monitoring341

design. Given this constraint, εZ becomes most sensitive to n, indicating at least 11 com-342

posite samples will result in > 50% likelihood, 18 samples > 90% likelihood, that ϖ will be343

su!ciently small (Fig. 11B). It may be important to further constrain ϱ (Fig. 11C, Fig.344

10), and alternative technologies, such as remote sensing [53], may be necessary to control345

costs.346

Altogether, the analysis here indicates that spatial heterogeneity in soil concentrations347

should be the foremost consideration when designing sampling plans for solid-phase ver-348

ification of EW. Determining su!cient sampling plans requires preliminary constraints on349

relevant field-scale variances, and even minimally su!cient plans may be operationally infea-350

sible, pointing toward reconsideration of the overall uncertainty requirements or measurement351

model.352
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Figure 11: Deployment-specific SA where, relative to the exploratory SA in Fig. 8 and
parameter ranges in Table 2, we constrain relative field-scale variance (CVZ) to e→5. (A)
shows the updated response across all 104 parameter realizations, (B) the updated condi-
tional response distributions, and (C) the updated ranking of parameters according to their
influence on εZ .
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5. Report the final estimate and uncertainty353

In principle, reporting f̂d and its uncertainty is relatively straightforward following sample354

collection and analysis, as we have predetermined the margin of error and confidence in the355

calculation. However, transparency, reproducibility, and traceability are critical for both356

scientific and compensatory applications. In particular, procedural compliance should be357

separated from the inherent scientific and environmental uncertainty in evaluating whether358

a project achieved a result within quantifiable confidence bounds. Thus, in addition to359

providing the underlying measurement data and appropriate metadata, ideally including an360

ISGN framework [54], the reporting framework should systematically capture key uncertainty361

targets and measurement distributions as constrained with each sampling event. Supp. 3362

provides an example reporting format, where all sources of uncertainty are documented,363

including deviations from initial estimated field variance, and the final estimate is presented364

with clearly defined error and confidence.365

Discussion366

The methodology we develop here emphasizes the importance of constructing a measurement367

model in the context of uncertainty requirements, which contrasts with the way field studies368

are commonly designed, where the statistics are largely handled ex post. The probabilistic369

framework presented here is sequential in nature and starts with assessment of how input370

variability propagates through a measurement model, allowing us to then identify the critical371

parameters influencing the overall uncertainty (steps 1-2). For the case of EW, the measure-372

ment variances of base cation and tracer concentrations are critical determinants of the373

uncertainty in f̂d, indicating variance thresholds above which the uncertainty requirements374

will not be met. Stochastic spatial simulations (steps 3-4) are then used to identify com-375

posite sampling plans that adhere to these measurement variance thresholds, and iterative376

sensitivity analysis is used to refine these plans to a minimally su!cient plan.377
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Importance of spatial heterogeneity378

This analysis further highlights that without the underlying assessment of spatial variance,379

even well-composited samples could lead to underestimation of the uncertainty, or worst-380

case, fail to achieve the minimum accuracy and confidence. Indeed, relative variances of381

soil elemental abundances from four studies [49–52] involving high-density sampling (102-104382

samples/ha) of agricultural and grassland soils all exceed the maximum variance threshold383

identified in our analysis, suggesting that soil heterogeneity is too large for this mixing-384

model approach to produce reliable dissolution estimates (Fig. 9). While other tracers (e.g.,385

isotope ratios) or bulk cation stocks may exhibit less heterogeneity, the analysis here poses an386

important consideration for EW, namely the extent to which soil property distributions, and387

our ability to capture them with measurements, fall within the necessary ranges identified388

through this framework.389

Here, we assume that spatial variance is the main contributor to measurement variance,390

though analytical uncertainty would be an additional factor for low-abundance chemical391

tracers. This could be directly incorporated into our framework by subtracting analytical392

variance from the maximum measurement variances identified in step 2, resulting in a lower393

target measurement variance in the sampling simulations. Another important gap to address394

is identification of intensively measured plots—simulated here at 1 ha, but can be larger—395

that are representative of up to tens-of-thousands of hectares. Collectively, simulating spatial396

variability and realistic sampling strategies can not only reduce logistical ine!ciencies for397

EW, but also minimize the risk of unmet uncertainty requirements for CDR quantification.398

Implications399

For open-system CDR verification, SDOs face the challenge of balancing prescriptive re-400

quirements with flexibility. The approach presented here allows an SDO to define clear401

uncertainty requirements and, given preliminary estimates of spatial heterogeneity from the402

PD, recommend a deployment-specific sampling plan likely to fulfill the requirements. Be-403
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cause empirical measurement is typically a significant portion of open-system CDR costs,404

such a framework can reduce risk for PDs—if they provide reasonably accurate estimates of405

heterogeneity and adhere to the recommended plan, the SDO can confirm whether the re-406

quirements are fulfilled. The SDO would not necessarily need to be prescriptive with respect407

to the measurement types themselves, but rather, as this framework describes, how to math-408

ematically relate the measurements and stochastically analyze their combined uncertainty.409

Transparent multi-stage reporting enables di"erentiation of procedural accountability and410

compliance from scientific and environmental uncertainties that a"ect removal performance.411

Through modular computational implementations, this framework could encompass a wide412

range of CZ processes and measurements while being tailored to soil systems and projects.413
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Supporting Information 1:

Derivation of measurement model (Eq. 1-2)

1 Notation

• [M ] is solid-phase base cation elemental abundance

• [T ] is solid-phase immobile tracer elemental abundance

• fs denotes feedstock endmember

• bsln denotes baseline soil endmember

• 0
mix denotes initial mixture between feedstock and baseline endmembers, i.e., soil following feedstock
amendment and tillage

• mix denotes weathered mixture, i.e., following some feedstock dissolution

2 Defining fd

The fraction of feedstock dissolved (fd) is defined here as the complement of the fraction of feedstock
remaining (fr):

fd = 1− fr

where fr is the portion of feedstock cations still remaining in the solid-phase:

fr =
[M ]mix − [M ]bsln
[M ]0mix − [M ]bsln

yielding Eq. 1 in the manuscript:

fd = 1− [M ]mix − [M ]bsln
[M ]0mix − [M ]bsln

This formulation assumes negligible mass loss with feedstock dissolution, justified by relatively low
feedstock mass fractions of 0.1-3% relative to the baseline endmember in the initial and weathered mix-
tures.

3 Calculating [M ]0mix

Using an element-element mixing model with immobile tracer T , the increase in cation concentration can
be calculated [1]:

[M ]0mix − [M ]bsln =
[M ]fs − [M ]bsln
[T ]fs − [T ]bsln

([T ]0mix − [T ]bsln)

such that assuming [T ]0mix = [T ]mix and solving for [M ]0mix yields Eq. 2 in the manuscript:

[M ]0mix = [M ]bsln +
([M ]fs − [M ]bsln)([T ]mix − [T ]bsln)

[T ]fs − [T ]bsln

Reference: [1] Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and Applications (3rd ed.).
Chapter 16. Hoboken, NJ: John Wiley & Sons.
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Plot area 1 ha
Compositing radius 5 m

Sub-samples per sample 5 cores
Positioning error margin 10 m

Maximum relative error 10%
Minimum confidence 90%

Overall Analytical Sampling
Baseline cation conc. -6.5 n/a -6.5
Baseline tracer conc. -6.5 n/a -6.5
Mixture cation conc. -6.5 n/a -6.5
Mixture tracer conc. -6.5 n/a -6.5

Feedstock cation conc. n/a n/a n/a
Feedstock tracer conc. n/a n/a n/a

Preliminary Baseline Mixture
Baseline cation conc. -2 -1.8 -1.8
Baseline tracer conc. -3 -3.3 -3.3
Mixture cation conc. -2 -1.8 -1.9
Mixture tracer conc. -3 -3.3 -3.7

30 11 11

Preliminary Baseline Mixture
Baseline cation conc. 3000 2645 2645
Baseline tracer conc. 30 32.12 32.12
Mixture cation conc. 3500 3142 3271
Mixture tracer conc. 35 36.11 34.21

feedstock cation conc.
feedstock tracer conc.

Predicted Measured

10%
90%

Example reporting format for measurement and verification of enhanced weathering
Method: Solid-phase mass balance with element-element mixing model

Sampling parameters:

Target input variances:

Target uncertainty:

For spatially explicit input:

Values in this example are based on a theoretical deployment;
links to relevant data could go here. 

# Sub-samples taken along circumference at 
approximately equal intervals.

# Overall uncertainty in CDR calculation.

Plot-scale spatial variance (ln(CV))

Sample size:

Confidence:

Expected value (fraction)

#  See Steps 3-4 for determining minimum sample size, 
specifically Step 4.2 for calculating the Baseline and 
Mixture  sample sizes entered here, as well as suggested 
sample sizes for Preliminary  point sampling.
# Plot-scale here is 1 hectare. 
#  Dashed outline indicates where spatial variances for 
mixtures are assumed equal to baseline.

#  Dashed outline indicates where mixture values are 
calculated using an ideal mixing model.

# Likely add another section "For temporally explicit 
input" for parameters with temporal variance. 

# Error and confidence will not necessarily match target 
uncertainty if heterogeneity estimates do not match initial 
estimates.

Expected value (mg/kg)
For other input:

Output estimates:

0.27fraction of feedstock
dissolved after 5 years

0.3

50,000

Measurement variance (ln(𝜐)) #  See Steps 1-2 for determining baseline and mixture 
target variances, specifically Step 2.3 for calculating the 
values entered here.
#  Feedstock assumed perfectly homogeneous.
#  Analytical  variance assumed negligible, would be 
subtracted from Overall  to determine Sampling  variances. 

Maximum error:

20,000

Expected value (mg/kg)
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