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Abstract1

Reliable verification of enhanced weathering as a carbon dioxide removal strategy2

requires accurate quantification of feedstock dissolution in amended soils. However,3

spatial heterogeneity introduces significant uncertainty, particularly in sampling de-4

signs that rely on sparse sampling or repeated measurements at fixed locations. Here,5

we develop a probabilistic framework to evaluate how spatial uncertainty in solid-phase6

geochemical measurements influences the precision of feedstock dissolution estimates7

derived from an element-element mixing model. We first quantify how variance in soil8

compositions a!ects errors in modeled feedstock dissolution and apply distance-based9

sensitivity analysis to identify the measurement variance thresholds required to achieve10

desired uncertainty levels. Next, we simulate spatially heterogeneous soil conditions11

and various composite sampling configurations to identify the optimal sampling strat-12

egy likely to meet specified uncertainty criteria. Our findings underscore the necessity13

of accurately estimating field-scale variance in baseline soil concentrations prior to de-14

veloping sampling plans. Analysis of data from existing high-density soil sampling15

campaigns indicates that geochemical variance is likely too high for element-element16
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mixing models to serve as e!ective near-term constraints on feedstock dissolution. The17

framework presented here can be further extended to other solid- and multi-phase mea-18

surement models for enhanced weathering verification.19

Keywords: sensitivity analysis; Bayesian; carbon dioxide removal; CDR; soil-based;20

monitoring, reporting, and verification; MRV; solid-phase21

Synopsis: This study addresses the need for standardized uncertainty analysis and22

reporting in open-system carbon dioxide removal applications.23

Introduction24

Open-system carbon dioxide removal (CDR) technologies, such as enhanced weathering25

(EW), are being evaluated as potential keystone climate mitigation strategies. For EW,26

however, accurate and cost-e!ective verification remains a major obstacle to assessing large-27

scale e!ectiveness [1–4]. EW involves amending soils, usually agricultural, with a reactive28

"feedstock", such as basalt or Mg-silicate, to shift the alkalinity of the system and e!ec-29

tively dissolve additional CO2 [5, 6]. Global projections [7–9] anticipate removals of 0.5-430

Gt CO2/yr through EW, but only a fraction of these removals may be resolvable due to the31

geochemical “noise” inherent in soil systems [10, 11].32

Quantifying CDR in soil systems is complicated by spatial heterogeneity across scales —33

from mineral surfaces to landscapes [12, 13] — that hinders attribution of the geochemical34

changes arising from EW activities. Verifying CDR through EW involves constraining both35

the rate of feedstock dissolution and the attendant increase in alkalinity and dissolved inor-36

ganic carbon (DIC) fluxes to the groundwater and stream network [14, 15]. While aqueous37

measurements are critical for constraining dissolved fluxes [e.g., 16–18] and will thus consti-38

tute a major portion of measurement and verification, complementary approaches based on39

solid-phase mass balance [19] estimate cumulative feedstock dissolution using assumptions40

about stoichiometry and baseline compositions to compute the net CDR [20–22]. However,41

2



given the low initial enrichment of feedstock mass relative to native soil, confidently detecting42

a dissolution signal beyond a spatially heterogeneous baseline becomes a challenging problem43

[10], and accurately quantifying the magnitude of such signals can be even more challenging44

[23, 24].45

A common current approach [19] to constrain feedstock dissolution relies on ratios of46

base cations to immobile elements in the solid phase. The resulting depletion and mixing47

equations (Eq. 1-2; Supp. 1) require analysis of multiple soil samples in sequence, from soil48

(baseline) to the initial mixture (soil + feedstock) to weathered compositions over multiple49

time points [19, 25]. These measurements are used to estimate the true fraction of feedstock50

dissolved (fd), calculated as51

fd = 1↑ [M ]mix ↑ [M ]bsln
[M ]0mix ↑ [M ]bsln

(1)

where [M ] is base cation concentration of the baseline (bsln), initial mixture (0mix), and weath-52

ered mixture (mix). A multiplier, often related to the e"ciency of DIC-increase relative to53

alkalinity increase [20, 26, 27] is used to compute net CDR from fd, hence an accurate54

estimate (f̂d) is the focus here. In this approach, [M ]0mix is calculated by measuring an55

immobile tracer (T ) and using the following element-element mixing equation with baseline56

and feedstock (fs) endmembers,57

[M ]0mix = [M ]bsln +
([T ]mix ↑ [T ]bsln)([M ]fs ↑ [M ]blsn)

[T ]fs ↑ [T ]bsln
(2)

Here, heterogeneity can violate the basic assumptions of the mixing model if samples58

are not representative of the same geochemical “system” (Fig. 1). Uncertainty in these as-59

sumptions was initially considered in the context of analytical variance [19]. Building on60

this, Suhrho! et al. (2024) evaluated how overall measurement variance, soil and feedstock61

compositions, and application rate influence the detectability of T upon amendment, as well62

as how the magnitude of fd a!ects the ability to detect changes in M . They concluded that63
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measurement variance in T and the contrast between soil and feedstock compositions deter-64

mine whether EW signals can be detected. However, given the inherent spatial heterogeneity65

in soils, it remains unclear whether scalable sampling plans can yield the low measurement66

variances required. Moreover, the detection of changes in elemental abundances does not67

guarantee accurate mixing calculations: even small measurement variances can yield appar-68

ent mixtures that fall outside of the theoretical mixing space [28].69

Figure 1: Illustration of how spatial uncertainty introduces error into feedstock dissolution
calculations. The underlying mixing model assumes that baseline and mixture samples rep-
resent the same system or control volume. Given spatial heterogeneous soil compositions,
this assumption may be interrupted by positioning error, tillage, and erosion, as well as sam-
pling and preparation techniques and analytical precision. Composite sampling is commonly
employed to mitigate spatial uncertainty by reducing sample variance.

These concerns highlight the need for a systematic approach to account for spatial hetero-70

geneity in the design of EW verification protocols. To address this, we present a framework71

for incorporating spatial uncertainty into solid-phase measurements, starting with definition72
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of overall uncertainty requirements (e.g., a maximum error and minimum confidence in f̂d),73

followed by variance propagation and sensitivity analysis (SA) to help define corresponding74

measurement variance requirements (e.g., a maximum measurement variance and minimum75

confidence). We then use stochastic sampling simulations to infer a sampling approach that76

minimally meets these requirements and conclude with estimate and uncertainty reporting.77

This is detailed through the following steps:78

1. Defining the uncertainty requirements and measurement model, the latter including79

explicit relationships between input and output uncertainty using hierarchical Bayesian80

principles.81

2. Determining the maximum measurement variances that fulfill the overall uncertainty82

requirements using variance propagation and SA.83

3. Defining the measurement variance requirements and sampling model, the latter in-84

volving stochastic simulation of spatial fields and composite sampling plans.85

4. Designing a sampling plan that minimally meets the measurement variance require-86

ments using the sampling model and SA; if infeasible, reconsider the overall uncertainty87

requirements or measurement model.88

5. Reporting the final estimate and overall uncertainty, with traceable and reproducible89

uncertainty quantification.90

Integrated Methods and Results91

For EW, agricultural fields are typically chosen based on accessibility rather than a detailed92

understanding of soil properties and heterogeneity. The goal for the project developer is to93

perform minimal sampling while still accurately calculating the amount of dissolved feedstock94

and resultant CDR.95
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In this example, we illustrate how early characterization can be integral to EW site96

selection and monitoring design to increase the likelihood of precisely quantifying CDR.97

We assume deployment of a basaltic feedstock, though the approach is generalizable to98

any amendment. For mixing-based solid-phase verification of EW, the measurement model99

consists of equations (1) and (2), which are solved for fd based on the measured baseline and,100

either the initial soil-feedstock mixture to determine application rates, or the mixture after101

some weathering has occurred [19]. Field trials [27, 29–38] report feedstock application rates102

ranging from 5 to 100 tons per hectare (ha), resulting in relatively low mass enrichment103

of 0.1–3% after mixing within the upper 20 cm of soil (Supp. 2). Another important104

consideration is the chemical di!erentiation between the feedstock and the baseline, which105

we analyze using the feedstock-baseline ratio of mean cation concentration (µfs:bsln
M ) and106

mean tracer concentration (µfs:bsln
T ).107

The sampling model outlines the planned configuration for sampling, whether through108

discrete point samples or carefully homogenized composite samples, which we stochastically109

analyze to infer the measurement variance associated with di!erent sampling strategies.110

Because the measurement model depends on the baseline, the sampling plan is typically111

fixed after the feedstock is applied, underscoring the need for a robust baseline sampling112

strategy. The uncertainty requirements are defined by operational constraints, such as the113

need to present a compensatory claim, and reflect the probability that the resulting estimate114

will fall within a specified range of the true value.115

1. Uncertainty requirements and measurement model116

The goal of this first step is to define the problem mathematically to allow for rigorous117

variance propagation and SA. In EW, the baseline variance in soil elemental abundances is118

typically unknown prior to site selection, and recent work [10] suggests that variability in an119

immobile tracer element tends to exceed that of base cations, thereby dominating the total120

uncertainty. Consequently, the site-specific variance in these elements determines whether a121
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given measurement approach is likely to fulfill the uncertainty requirements.122

Uncertainty requirements123

The uncertainty requirements are often defined by a standards development organization124

and, here, encapsulate:125

• ωmax, the maximum relative error in f̂d and thus CDR.126

• pmin, the minimum probability that the relative error in f̂d is less than ωmax.127

For instance, a quantification standard might require 90% confidence (pmin = 0.9) that128

the reported CDR is within 10% of the true value (ωmax = 0.1) [e.g., 39]. There is no a129

priori guarantee, however, that any particular field deployment can meet these requirements130

for a specific site, due to the inherent variability in measurement conditions and system131

parameters.132

We use ε to represent the outcome where the uncertainty requirements are fulfilled.133

Formally:134

p(ω ↓ ωmax) ↔ pmin =↗ ε, p(ω ↓ ωmax) < pmin =↗ ε, (3)

where ε indicates the requirements are not fulfilled.135

Measurement model and parameter set136

To calculate p(ω ↓ ωmax) for di!erent measurement approaches, we define a measurement137

model parameterized by ϑ. This model includes:138

• a measurement function (e.g., feedstock dissolution calculation, Eq. 1-2)139

• input parameters (e.g., M and T concentrations in the baseline, feedstock, and mixture)140

• the function response (e.g., fraction of feedstock dissolved, fd),141

• measurement variance of each input parameter (e.g., spread of possible M and T142

measurement values given the point or composite sampling scheme), and143
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• operational parameters (e.g., feedstock-baseline di!erentiation, application rate, true144

fraction dissolved).145

For this measurement function (Eq. 1-2), the input parameters are [M ]bsln, [M ]fs, [M ]mix,146

[T ]bsln, [T ]fs, and [T ]mix. Due to spatial heterogeneity, baseline and mixture measurements147

may be highly variable, interrupting their assumed comparability (Fig. 2). To account for148

the impact of spatial heterogeneity, we consider each input parameter to have a distribution149

of possible measurement values, characterized by a mean (µ) and relative variance (ϖ), which150

we will propagate through the measurement function in step 2. While measurement variance151

represents aggregate spatial and analytical uncertainty, we only consider spatial uncertainty152

in this study, as analytical uncertainty can be made negligible if necessary [19]. Accordingly,153

we define µ and ϖ for the measurement distributions as follows:154

Measurement means: We set µbsln
M and µbsln

T (baseline means) as constants at the sim-155

ulation scale. We then specify feedstock-to-baseline ratios (µfs:bsln
M , µfs:bsln

T ) to obtain mean156

feedstock concentrations. A uniform application rate (rapp) and uniform fraction dissolved157

(fd) together determine the mean mixture concentrations after amendment and weathering.158

This fd also serves as the “true” fraction against which estimation errors are calculated.159

Measurement variances: We specify ϖM and ϖT , the (relative) measurement variances for160

baseline M and T . Due to feedstock mass enrichments of < 3%, we assume the measurement161

variances of the soil-feedstock mixture are equal to the baseline ϖM and ϖT . The feedstock162

itself is assumed homogeneous (negligible variance).163

Collectively, these parameters form the set ϑ. Since we want to test the impact of dif-164

ferent measurement distributions and operational parameters on fulfilling the uncertainty165

requirements, we initially consider a wide range of possible values for each parameter. These166

ranges are used as bounds for uniform cumulative density functions (CDFs), denoted F̂ , and167

F̂ (ϑ) is the multivariate CDF describing the entire parameter space (Table 1). The next step168
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involves random sampling of this parameter space to rigorously evaluate the individual and169

joint impacts of each parameter on ε.170

Figure 2: Illustration of how measurement variance (ϖ) in cation (M) or tracer (T ) con-
centrations may interrupt the assumed comparability of baseline and mixture samples to
di!ering degrees depending on sampling approach. The goal of step 2 is to calculate how
small ϖM and ϖT must be, or how narrow each probability density function of measurement
values must be.
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2. Determining maximum measurement variances171

With the measurement model and parameter ranges established, next we analyze the sensi-172

tivity of the model and determine how small the measurement variances in M and T must173

be to meet the overall uncertainty requirements. This process involves propagating mea-174

surement variances through the measurement model (step 2.1), quantifying the influence of175

measurement variance on the accuracy of f̂d (step 2.2), and constraining operational param-176

eters to set maximum measurement variances (ϖmax) for a specific deployment (step 2.3).177

2.1 Propagating measurement variances through the measurement model178

Here, we use nested Monte Carlo simulations to jointly vary the input means, measurement179

variances, and operational parameters encompassed by ϑ and, for each variation, compute180

the resulting p(ω ↓ ωmax). This process begins with generating 104 parameter realizations, or181

samples of F̂ (ϑ). F̂ (ϑ) is a uniform multivariate distribution, meaning each parameter range182

in Table 1 is sampled from uniformly, and each realization represents a possible combination183

of baseline means (µbsln
M , µbsln

T ), measurement variances (ϖM , ϖT ), and operational parameters184

(µfs:bsln
M , µfs:bsln

T , rapp, fd). F̂ (ϑ). For a given parameter realization, we use these values to185

construct Gaussian measurement distributions for [M ]bsln, [M ]mix, [T ]bsln, and [T ]mix, and186

we sample from these distributions to generate 104 measurement realizations. For each187

measurement realization, we compute f̂d and its relative error (ω), such that p(ω ↓ ωmax) for188

each parameter realization is the fraction of its measurement realizations where ω ↓ ωmax.189

Results of these simulations indicate that ε is highly dependent on keeping the measure-190

ment variances below critical thresholds (Fig. 3), while other parameters, such as µbsln
M and191

µbsln
T , have minimal impact. Specifically, the distribution of p(ω ↓ ωmax) shows a clear divide192

(Fig. 3A), indicating that while many realizations achieve ε, a significant number fail. The193

p10-p90 grey-shaded regions in Fig. 3B illustrate the spread of simulation outcomes across194

each parameter range—shaded regions that extend above pmin (red-dashed line) indicate195

parameter values for the realizations that achieved ε in Fig. 3A. Conversely, the unshaded196
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regions above pmin indicate that high ϖM and ϖT and low rapp values will likely not result in197

ε.198

The correlations among the expected p(ω ↓ ωmax)—black p50 lines in Fig. 3B—and the in-199

dividual parameters provide additional insight into sensitivities. Specifically, the conditional200

distributions of p(ω ↓ ωmax) show a strong negative correlation with ϖM and ϖT , meaning high201

measurement variances make it unlikely to achieve ↓ 10% error in f̂d (Fig. 3B). Intuitively,202

µfs:bsln
M , µfs:bsln

T , rapp, and true fd show moderate positive correlations with p(ω ↓ ωmax), in-203

dicating that greater values tend to increase the expected accuracy in f̂d. Overall, the wide204

range of outcomes here emphasizes the importance of considering all possible outcomes early205

in site selection and monitoring design.206

Figure 3: Exploratory SA of the influence of means (µ), measurement variances (ϖ), and
operational parameters on p(ω ↓ 0.1), the probability that the relative error in f̂d is no
greater than 10%, using the parameter ranges in Table 1. (A) shows the response across all
104 realizations, with a red-dashed line separating the realizations that do (ε) and do not
(ε) fulfill uncertainty requirements of p(ω ↓ 0.1) ↔ 90% (pmin). (B) provides the conditional
response distribution for each parameter.
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2.2. Quantifying parameter influence on fulfilling the uncertainty requirements207

To rigorously compare the sensitivity of ε to di!erent parameters, we separate the 104 real-208

izations of ϑ into one group that does fulfill the uncertainty requirements and one group that209

does not. This can be represented by partitioning F̂ (ϑ) into two conditional distributions,210

F̂ (ϑ|ε) and F̂ (ϑ|ε), and we can analyze the di!erences between these distributions to deter-211

mine which parameters most significantly influence the outcome. A common way to quantify212

such sensitivities [42–45] is to compute the "distance" between F̂ (ϑ|ε) and F̂ (ϑ|ε) for each213

parameter (Fig. 4A), normalizing the parameter ranges to [↑1, 1] so they do not influence214

comparison of the distances. The resulting sensitivity rankings (Fig. 4B) highlight that ε is215

most influenced by ϖM and ϖT , and less so by rapp, µfs:bsln
T , µfs:bsln

M , and true fd. Collectively,216

this emphasizes the dominant role of measurement variances in determining success.217

Figure 4: Distance-based sensitivity calculations for the exploratory SA in Fig. 3. (A) shows
threshold-conditional CDFs (e.g., partitions of the entire set of realizations (grey-dashed line)
into realizations that did (green line) and did not (red line) fulfill uncertainty requirements,
with shaded areas to visualize distances between CDFs. (B) provides a ranking of the
parameters according to their influence on ε using this distance-based sensitivity metric.
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2.3. Applying deployment-specific constraints and identify measurement vari-218

ance limits219

In practice, PDs can constrain certain parameters in ϑ, such as feedstock-baseline di!er-220

entiation and application rate. For our theoretical deployment, we constrain µfs:bsln
M to 38221

and µfs:bsln
T to 25 (midpoints from Table 1) and rapp to 40 tons/ha (median from Table 1).222

Performing the SA with these constraints (Fig. 5) reveals that the expected, or median,223

p(ω ↓ ωmax) exceeds pmin for ln(ϖM) and ln(ϖT ) less than approximately -7 (Fig. 5B). In con-224

trast, the conditional response distributions for other parameters do not show an expected225

p(ω ↓ ωmax) greater than pmin, as each distribution assumes values for all other parameters226

are randomly chosen from their respective ranges, thus incorporating e!ects from the entire227

ranges of ϖM and ϖT . While measurement variances are the primary control here, the true228

fd will likely become significant after constraining ϖM and ϖT (Fig. 5C). This suggests that229

delaying intensive sampling, though also delaying return on investment to the PD, could be230

a key feature of profitable operations.231

To determine specific measurement variance limits, we need to account for potential232

interactions between ϖM and ϖT by analyzing their joint conditional distribution (Fig. 6).233

It is also important to consider the entire F̂ (ϑ) when determining such limits. Using an234

exploratory F̂ (ϑ), this analysis shows almost no combinations of ϖM and ϖT that achieve235

ε (Fig. 6A). Using the constrained F̂ (ϑ), however, indicates the expected outcome is ε236

when both ln(ϖM) and ln(ϖT ) are greater than approximately -6.5 (Fig. 6B). Since, for237

this example, ϖM and ϖT exert similar influences on ε, we select a single ϖmax of e→6.5.238

The remaining analysis provides insight on combinations of inherent site characteristics and239

sampling designs that could likely adhere to this maximum using stochastic simulations of240

spatial variability and composite sampling.241
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Figure 5: Deployment-specific SA where, relative to the exploratory SA in Fig. 3 and
Fig. 4 and parameter ranges in Table 1, we apply constraints to soil-feedstock di!erentiation
(µfs:bsln

M = 38, µfs:bsln
T = 25) and application rate (rapp = 40 tons/ha). (A) shows the updated

response across all 104 realizations, (B) the updated conditional response distributions, and
(C) the updated ranking of the parameters according to their influence on ε.
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Figure 6: Combinations of base cation measurement variance (ϖM) and immobile tracer
measurement variance (ϖT ) that result in fulfilling uncertainty requirements (ε) of at least
90% likelihood of ↓ 10% error in f̂d for (A) loosely constrained, exploratory parameter ranges
and (B) constrained parameter ranges for a theoretical deployment where µfs:bsln

M = 38,
µfs:bsln
T = 25, and rapp = 40 tons/ha.
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3. Measurement variance requirements and sampling model242

With ϖmax, we can simulate composite sampling to design a suitable sampling plan prior243

to execution. To determine su"cient sampling plans, one would in theory need to know244

the concentrations everywhere across the field site at high spatial resolution. Presumably,245

this would reveal lenses and patches of similar material, as opposed to a completely random246

distribution. Alternatively, we can create synthetic deployment fields based on models of247

spatial variability, an approach similar to that used in contaminant remediation [46–49]248

and measurement of soil organic carbon stocks [24, 50, 51], and sample them to develop249

measurement schemes that are robust across di!erent types of spatial variability. In steps 3250

and 4, the objective is to simulate spatial fields and composite sampling plans to determine251

approaches for achieving a measurement variance lower than ϖmax, and then refine these252

approaches to roughly minimize the number of samples.253

Given that high-density sampling over large deployment areas is not feasible, we assume254

identification of a representative 1-ha plot for high-density sampling with low-density sam-255

pling still performed across the remainder of the area, similar to plot designs recommended256

in quantification standards [e.g., 21]. Specifically, we are simulating 1 ha (10,000 m2) at257

0.1-m resolution, thus using a 1,000 by 1,000 structured grid, which could analogously be258

described as 100 ha at 1-m resolution or 10,000 ha at 10-m. Ideally the resolution or "sup-259

port size" mimics physical sample collection, e.g., individual core area when simulating at260

the sub-sampling scale, or compositing area if each sample is representative of a grid cell.261

Measurement variance requirements262

Since we have chosen the same ϖmax of e→6.5 for ϖM and ϖT , we can generally denote both263

[M ] and [T ] as an arbitrary spatial variable Z. Here, the measurement variance requirements264

for Z are defined by:265

• ϖmax, the maximum allowable measurement variance in Z,266
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• pmin, the minimum probability that the measurement variance in Z is below ϖmax.267

For a given spatial field and sampling plan, p(ϖ ↓ ϖmax) is the likelihood that the resulting268

measurement variance (ϖ) will be less than the maximum measurement variance (ϖmax). The269

measurement variance requirements are fulfilled when p(ϖ ↓ ϖmax) exceeds the probability270

threshold pmin, and the corresponding outcome is denoted εZ . Formally:271

p(ϖ ↓ ϖmax) ↔ pmin =↗ εZ , p(ϖ ↓ ϖmax) < pmin =↗ εZ . (4)

Sampling model and parameter set272

To compute p(ϖ ↓ ϖmax) for di!erent combinations of spatial field and sampling plan, we273

first define a sampling model with parameter set ϑZ that encompasses stochastic simulation274

of heterogeneous spatial fields and composite sampling plans.275

A spatial field’s heterogeneity can be characterized by its spatial covariance, or strength276

of correlation between values at di!erent locations depending on the physical distances sep-277

arating them, often analytically represented by a covariance or semivariogram function [52].278

These functions involve distribution parameters, here µ and CV expressed as natural loga-279

rithms, and a correlation length, ϱ, which describes how distant two locations can be and280

still have correlated values, or the "size" of the heterogeneities (Fig. 7A). Di!erent analytical281

forms (e.g., exponential, circular, Gaussian) are distinguished by the "smoothness" of the282

heterogeneities (Fig. 7B).283

The parameter set ϑZ encompasses these spatial field parameters, as well as parametriza-284

tion of a composite sampling plan, including the number of composite samples (n) and285

sub-samples (nsub), radius of each composite sample (rapp), and margin of error intrinsic to286

the positioning device (epos) (Table 2).287
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Figure 7: Examples of simulated 1-ha spatial fields with (A) increasing correlation lengths
and (B) di!erent analytical covariance models.
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4. Designing a su!cient sampling plan288

With the measurement variance requirements and sampling model established, we can now289

stochastically analyze the model to determine a minimally su"cient sampling plan and290

evaluate its feasibility. This involves quantifying the relative influence of spatial heterogeneity291

and sampling parameters on fulfilling the variance requirements (step 4.1) then applying292

deployment-specific constraints to identify su"cient sampling plans and refining them to a293

specific plan (step 4.2).294

4.1. Quantifying influence of spatial heterogeneity and sampling parameters on295

fulfilling measurement variance requirements296

To partition the parameter space F̂ (ϑZ) into F̂ (ϑZ |εZ) and F̂ (ϑZ |εZ) for sensitivity anal-297

ysis, we use nested Monte Carlo simulations to compute p(ϖ ↓ ϖmax) for 104 realizations298

of ϑZ . After first generating the spatial field, we choose random locations for the n com-299

posite samples. For a single configuration of random locations, we simulate 100 rounds of300

composite sampling, computing the mean Z each time, and ϖ as the relative variance of301

the 100 means. Considering a PD would only sample a handful of times throughout the302

course of a deployment, these 100 rounds represent the theoretical variability introduced by303

random positioning error and inconsistent orientation of sub-samples over a heterogeneous304

field. In the context of solid-phase EW verification, this formulation assumes the sampling305

plan is fixed with baseline sampling, and the fd calculation uses the mean of all n samples306

rather than each sample individually. Altogether, for a single parameter realization of ϑZ ,307

we simulate 100 di!erent configurations of random locations, and p(ϖ ↓ ϖmax) is the portion308

of configurations where the inferred measurement variance is less than ϖmax.309

Results of these nested simulations indicate that εZ is determined by the relative field-310

scale variance of Z (Fig. 8). Most realizations show an extremely low or extremely high311

likelihood of achieving a su"ciently small ϖ (Fig. 8A), and there is a clear ln(CVZ) thresh-312

old between -4 and -5 that dictates this behavior (Fig. 8B). The exact ln(CVZ) threshold313
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is dependent on the maximum number of samples considered in the SA, though additional314

results show that increasing the maximum n from 30 to 100 still results in a threshold below315

-4. Overall, this highlights that spatial heterogeneity not only needs to be accurately con-316

strained before designing a sampling plan, but may also determine whether any monitoring317

strategy can succeed.318

Figure 8: Exploratory SA of the influence of spatial heterogeneity and sampling plan on
p(ϖ ↓ e→6.5), the probability (p) that the inferred measurement variance (ϖ) is less than
a maximum measurement variance (ϖmax) of e→6.5, using the parameter ranges in Table
2. (A) shows the response across all 104 realizations, with a red-dashed line separating
the realizations that do and do not fulfill requirements of at least 90% (pmin) likelihood of
measurement variance less than e→6.5. (B) provides the conditional response distribution for
each parameter. (C) provides the ranking of the parameters according to their influence on
εZ , using the distance-based metric illustrated in Fig. 4.
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4.2 Applying deployment-specific constraints and refine to a specific sampling319

plan320

To narrow down to a specific sampling plan, we first constrain relative field-scale variance, the321

major control on εZ . Though point sampling is typically necessary to capture the true CV,322

such data are sparse for soil elemental composition at ha-scales. Comparison to field studies323

[53–55] that have employed high-density point sampling of soil elemental concentrations (102-324

104 samples/ha) show ha-scale variances of ↑3 ↓ ln(CV) ↓ ↑1 for base cations (Ca, Mg, Na,325

K) and select trace elements (Ti, Ni, Al, Fe) in temperate and semi-arid grassland, scrubland,326

forested, and agricultural settings (Fig. 9). These values, if generally representative, would327

not adhere to the threshold of -4 or -5 suggested by the analysis here (Fig. 9).328

For a PD interested in constraining site-specific variance, further stochastic point-sampling329

simulations indicate that, given observed ranges [53–55], only up to about 20 point samples330

are needed to estimate CV to the nearest ln with 90% confidence (Fig. 10). In theory, these331

suggested sample sizes are directly applicable to larger scales, assuming correlation length332

is scaled with grid resolution, and the random spatial fields tested here encompass patterns333

observed at larger scales. Overall, this suggests it would be feasible to collect the preliminary334

measurements needed to infer operational scalability for a robust array of potential empirical335

constraints.336

While lower than reported for soils to-date [53–55], we constrain ln(CVZ) to ↑5 for our337

theoretical deployment and redo the SA (Fig. 11) to demonstrate next steps in monitoring338

design for feasibility assessment. Given this constraint, εZ becomes most sensitive to n,339

indicating at least 11 composite samples will result in > 50% likelihood, 18 samples > 90%340

likelihood, that ϖ will be su"ciently small (Fig. 11B). It may be important to further341

constrain ϱ (Fig. 11C, Fig. 10), and alternative technologies, such as remote sensing [56],342

may be necessary to control costs.343

Altogether, the analysis here indicates that spatial heterogeneity in soil concentrations344

should be the foremost consideration when designing sampling plans for solid-phase ver-345
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Figure 9: Relative variances of select soil elemental abundances in (A) scrubland in NW
Spain (n=203, 0.014 ha, 0-10 cm depth) [55], (B) grassland in NW Spain (n=186, 0.032 ha,
0-10 cm depth) [55], (C) agricultural land in N Africa (n=314, 0.32 ha, 0-20 cm depth) [53],
and (D) forested floodplain in NW Spain (n=220, 1 ha, 0-10 cm depth) [54], here shown
relative to the approximate field-scale variance threshold partitioning fields between those
that likely can (ε) and cannot (ε) fulfill the uncertainty requirements considered in this
study.

Figure 10: Simulation-based estimates of sample sizes needed to capture the coe"cient of
variation (CV) of a 1-ha (100 m x 100 m, 0.1-m resolution) lognormal spatial field to the
nearest integer natural log (ln) with 90% confidence, considering di!erent scales of spatial
correlation (ϱ); errors bars represent the standard error across 10 spatial fields with di!erent
means.
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ification of EW. Determining su"cient sampling plans requires preliminary constraints on346

relevant field-scale variances, and even minimally su"cient plans may be operationally infea-347

sible, pointing toward reconsideration of the overall uncertainty requirements or measurement348

model.349

Figure 11: Deployment-specific SA where, relative to the exploratory SA in Fig. 8 and
parameter ranges in Table 2, we constrain relative field-scale variance (CVZ) to e→5. (A)
shows the updated response across all 104 parameter realizations, (B) the updated condi-
tional response distributions, and (C) the updated ranking of parameters according to their
influence on εZ .
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5. Reporting the final estimate and uncertainty350

In principle, reporting f̂d and its uncertainty is relatively straightforward following sample351

collection and analysis, as we have predetermined the margin of error and confidence in the352

calculation. However, transparency, reproducibility, and traceability are critical for both353

scientific and compensatory applications. In particular, procedural compliance should be354

separated from the inherent scientific and environmental uncertainty in evaluating whether355

a project achieved a result within quantifiable confidence bounds. Thus, in addition to356

providing the underlying measurement data and appropriate metadata, ideally including an357

ISGN framework [57], the reporting framework should systematically capture key uncertainty358

targets and measurement distributions as constrained with each sampling event. Supp. 3359

provides an example reporting format, where all sources of uncertainty are documented,360

including deviations from initial estimated field variance, and the final estimate is presented361

with clearly defined error and confidence.362

Discussion363

The methodology we evaluate here emphasizes the importance of constructing a measurement364

model that is directly informed by uncertainty requirements. This is in contrast to the way365

EW field studies are traditionally designed, where the statistics are largely handled ex post.366

The probabilistic framework is sequential in nature and demonstrates how input variability367

propagates through a measurement model, unveiling the critical parameters influencing the368

overall uncertainty (steps 1-2). For EW, the measurement variances of base cation and369

tracer concentrations define the uncertainty in f̂d, indicating variance thresholds above which370

the uncertainty requirements will not be met. Stochastic spatial simulations (steps 3-4)371

inform composite sampling plans that adhere to the measurement variance thresholds, and372

constrained sensitivity analysis points to a minimally su"cient plan that can be evaluated373

for feasibility.374
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Importance of spatial heterogeneity375

Our results demonstrate that in the absence of a thorough assessment of spatial variance, even376

well-composited samples may not adequately constrain measurement uncertainty, potentially377

resulting in intensive data collection that fails to achieve the confidence needed to assign378

CDR. To evaluate the scale of variability expected for agricultural and grassland soils, we379

reviewed studies [53–55] involving high-density (102-104 samples/ha) sampling. The relative380

variances in soil elemental abundances all exceed the maximum variance threshold identified381

in our analysis, suggesting that baseline soil heterogeneity may be too large for a mixing-382

model approach to produce reliable dissolution estimates (Fig. 9). While alternative solid-383

phase models, such as isotope mixing or bulk cation stocks, may be less sensitive to spatial384

heterogeneity, the analysis here poses an important consideration for EW, namely whether385

soil property distributions, and our ability to capture them with measurements, will fall386

within the requirements needed for verification frameworks.387

Spatially coordinated field-scale solid-phase geochemical data is sparse in existing liter-388

ature. Samples are usually collected in vertical configuration at single disperse sites, rather389

than laterally across the surface in a spatially explicit configuration, making it di"cult to390

use the wealth of existing data to assess spatial variability. While the studies evaluated here391

show consistent variances over four land types within a geographical region, high-density soil392

data from other climates and geomorphic settings would be valuable in determining where393

field-scale geochemical variances are low enough for accurate solid-phase verification of EW.394

Spatial distributions of certain elements may also be correlated to textural parameters, such395

as clay content, or reflected in aboveground biomass. Rigorous confirmation and ground-396

truthing of potential proxies in early deployments could enable more e"cient heterogeneity397

estimates in later deployments and thus more precise baseline sampling strategies at scale.398

Here, we assume that spatial variance is the main contributor to measurement variance,399

though analytical uncertainty would be an additional factor for low-abundance chemical400

tracers. To account for this, future implementations can subtract analytical variance from the401
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maximum measurement variances identified in step 2, resulting in a lower target measurement402

variance in the sampling simulations. We also assume heterogeneity with depth can be403

implicitly captured in a 2-D representation of a sampling volume, which may not be true if404

stratigraphic variations with depth are widely inconsistent over a field.405

A related challenge is the identification of intensively measured plots—simulated here at406

1 ha, but can be larger— that are representative of project areas spanning tens-of-thousands407

of hectares. Quantifying the degree to which small-scale trials capture relevant spatial vari-408

ability in larger landscapes remains a critical open question.409

Implications410

Collectively, simulating spatial variability and realistic sampling strategies can reduce logis-411

tical ine"ciencies for EW and minimize the risk of failing to meet uncertainty requirements412

for CDR quantification. E!ective verification of open-system CDR requires balancing stan-413

dardized sampling guidelines with the flexibility to accommodate diverse field conditions,414

as well as managing tradeo!s between measurement costs and the certainty of outcomes.415

The proposed framework addresses these challenges by clearly defining uncertainty targets,416

allowing sampling plans to be rigorously evaluated prior to intensive field deployment. This417

transparent, multi-stage approach helps di!erentiate procedural compliance from the inher-418

ent scientific and environmental uncertainties a!ecting removal performance.419
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Supporting Information 1:
Derivation of measurement model (Eq. 1-2)

1 Notation

• [M ] is solid-phase base cation elemental abundance

• [T ] is solid-phase immobile tracer elemental abundance

• fs denotes feedstock endmember

• bsln denotes baseline soil endmember

• 0
mix denotes initial mixture between feedstock and baseline endmembers, i.e., soil following feedstock
amendment and tillage

• mix denotes weathered mixture, i.e., following some feedstock dissolution

2 Defining fd

The fraction of feedstock dissolved (fd) is defined here as the complement of the fraction of feedstock

remaining (fr):

fd = 1→ fr

where fr is the portion of feedstock cations still remaining in the solid-phase:

fr =
[M ]mix → [M ]bsln

[M ]
0
mix → [M ]bsln

yielding Eq. 1 in the manuscript:

fd = 1→ [M ]mix → [M ]bsln

[M ]
0
mix → [M ]bsln

This formulation assumes negligible mass loss with feedstock dissolution, justified by relatively low

feedstock mass fractions of 0.1-3% relative to the baseline endmember in the initial and weathered mix-

tures.

3 Calculating [M ]0mix

Using an element-element mixing model with immobile tracer T , the increase in cation concentration can

be calculated [1]:

[M ]
0
mix → [M ]bsln =

[M ]fs → [M ]bsln

[T ]fs → [T ]bsln
([T ]0mix → [T ]bsln)

such that assuming [T ]0mix = [T ]mix and solving for [M ]
0
mix yields Eq. 2 in the manuscript:

[M ]
0
mix = [M ]bsln +

([M ]fs → [M ]bsln)([T ]mix → [T ]bsln)

[T ]fs → [T ]bsln

Reference: [1] Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and Applications (3rd ed.).

Chapter 16. Hoboken, NJ: John Wiley & Sons.
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Plot area 1 ha
Compositing radius 5 m

Sub-samples per sample 5 cores
Positioning error margin 10 m

Maximum relative error 10%
Minimum confidence 90%

Overall Analytical Sampling
Baseline cation conc. -6.5 n/a -6.5
Baseline tracer conc. -6.5 n/a -6.5
Mixture cation conc. -6.5 n/a -6.5
Mixture tracer conc. -6.5 n/a -6.5

Feedstock cation conc. n/a n/a n/a
Feedstock tracer conc. n/a n/a n/a

Preliminary Baseline Mixture
Baseline cation conc. -2 -1.8 -1.8
Baseline tracer conc. -3 -3.3 -3.3
Mixture cation conc. -2 -1.8 -1.9
Mixture tracer conc. -3 -3.3 -3.7

30 11 11

Preliminary Baseline Mixture
Baseline cation conc. 3000 2645 2645
Baseline tracer conc. 30 32.12 32.12
Mixture cation conc. 3500 3142 3271
Mixture tracer conc. 35 36.11 34.21

feedstock cation conc.
feedstock tracer conc.

Predicted Measured

10%
90%

Example reporting format for measurement and verification of enhanced weathering
Method: Solid-phase mass balance with element-element mixing model

Sampling parameters:

Target input variances:

Target uncertainty:

For spatially explicit input:

Values in this example are based on a theoretical deployment;
links to relevant data could go here. 

# Sub-samples taken along circumference at 
approximately equal intervals.

# Overall uncertainty in CDR calculation.

Plot-scale spatial variance (ln(CV))

Sample size:

Confidence:

Expected value (fraction)

#  See Steps 3-4 for determining minimum sample size, 
specifically Step 4.2 for calculating the Baseline and 
Mixture  sample sizes entered here, as well as suggested 
sample sizes for Preliminary  point sampling.
# Plot-scale here is 1 hectare. 
#  Dashed outline indicates where spatial variances for 
mixtures are assumed equal to baseline.

#  Dashed outline indicates where mixture values are 
calculated using an ideal mixing model.

# Likely add another section "For temporally explicit 
input" for parameters with temporal variance. 

# Error and confidence will not necessarily match target 
uncertainty if heterogeneity estimates do not match initial 
estimates.

Expected value (mg/kg)
For other input:

Output estimates:

0.27fraction of feedstock
dissolved after 5 years 0.3

50,000

Measurement variance (ln(!)) #  See Steps 1-2 for determining baseline and mixture 
target variances, specifically Step 2.3 for calculating the 
values entered here.
#  Feedstock assumed perfectly homogeneous.
#  Analytical  variance assumed negligible, would be 
subtracted from Overall  to determine Sampling  variances. 

Maximum error:

20,000

Expected value (mg/kg)
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