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Abstract

Reliable verification of enhanced weathering as a carbon dioxide removal strategy
requires accurate quantification of feedstock dissolution in amended soils. However,
spatial heterogeneity introduces significant uncertainty, particularly in sampling de-
signs that rely on sparse sampling or repeated measurements at fixed locations. Here,
we develop a probabilistic framework to evaluate how spatial uncertainty in solid-phase
geochemical measurements influences the precision of feedstock dissolution estimates
derived from an element-element mixing model. We first quantify how variance in soil
compositions affects errors in modeled feedstock dissolution and apply distance-based
sensitivity analysis to identify the measurement variance thresholds required to achieve
desired uncertainty levels. Next, we simulate spatially heterogeneous soil conditions
and various composite sampling configurations to identify the optimal sampling strat-
egy likely to meet specified uncertainty criteria. Our findings underscore the necessity
of accurately estimating field-scale variance in baseline soil concentrations prior to de-
veloping sampling plans. Analysis of data from existing high-density soil sampling

campaigns indicates that geochemical variance is likely too high for element-element



mixing models to serve as effective near-term constraints on feedstock dissolution. The
framework presented here can be further extended to other solid- and multi-phase mea-

surement models for enhanced weathering verification.

Keywords: sensitivity analysis; Bayesian; carbon dioxide removal; CDR; soil-based;

monitoring, reporting, and verification; MRV solid-phase

Synopsis: This study addresses the need for standardized uncertainty analysis and

reporting in open-system carbon dioxide removal applications.

Introduction

Open-system carbon dioxide removal (CDR) technologies, such as enhanced weathering
(EW), are being evaluated as potential keystone climate mitigation strategies. For EW,
however, accurate and cost-effective verification remains a major obstacle to assessing large-
scale effectiveness [1-4]. EW involves amending soils, usually agricultural, with a reactive
"feedstock", such as basalt or Mg-silicate, to shift the alkalinity of the system and effec-
tively dissolve additional CO, |5, 6]. Global projections [7-9] anticipate removals of 0.5-4
Gt COy/yr through EW, but only a fraction of these removals may be resolvable due to the
geochemical “noise” inherent in soil systems [10, 11].

Quantifying CDR in soil systems is complicated by spatial heterogeneity across scales —
from mineral surfaces to landscapes [12, 13] — that hinders attribution of the geochemical
changes arising from EW activities. Verifying CDR through EW involves constraining both
the rate of feedstock dissolution and the attendant increase in alkalinity and dissolved inor-
ganic carbon (DIC) fluxes to the groundwater and stream network [14, 15]. While aqueous
measurements are critical for constraining dissolved fluxes [e.g., 16-18] and will thus consti-
tute a major portion of measurement and verification, complementary approaches based on
solid-phase mass balance [19] estimate cumulative feedstock dissolution using assumptions

about stoichiometry and baseline compositions to compute the net CDR [20-22]|. However,
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given the low initial enrichment of feedstock mass relative to native soil, confidently detecting
a dissolution signal beyond a spatially heterogeneous baseline becomes a challenging problem
[10], and accurately quantifying the magnitude of such signals can be even more challenging
[23, 24].

A common current approach [19] to constrain feedstock dissolution relies on ratios of
base cations to immobile elements in the solid phase. The resulting depletion and mixing
equations (Eq. 1-2; Supp. 1) require analysis of multiple soil samples in sequence, from soil
(baseline) to the initial mixture (soil + feedstock) to weathered compositions over multiple
time points [19, 25|. These measurements are used to estimate the true fraction of feedstock

dissolved (fy), calculated as

(M miz — [M]psin
A0, — (M @

mix

Ja=1-

0

where [M] is base cation concentration of the baseline (pg,), initial mixture (},;,), and weath-

ered mixture (). A multiplier, often related to the efficiency of DIC-increase relative to

alkalinity increase |20, 26, 27] is used to compute net CDR from f;, hence an accurate

estimate (f;) is the focus here. In this approach, [M]° . is calculated by measuring an
immobile tracer (") and using the following element-element mixing equation with baseline

and feedstock () endmembers,

([T]mm - [T]bsln>([M]fs — [M]blsn)
[T]fs - [T]bsln

[M]O = [M]bsln + (2)

Here, heterogeneity can violate the basic assumptions of the mixing model if samples
are not representative of the same geochemical “system” (Fig. 1). Uncertainty in these as-
sumptions was initially considered in the context of analytical variance [19|. Building on
this, Suhrhoff et al. (2024) evaluated how overall measurement variance, soil and feedstock
compositions, and application rate influence the detectability of 7" upon amendment, as well

as how the magnitude of f; affects the ability to detect changes in M. They concluded that



66

67

68

measurement variance in 7" and the contrast between soil and feedstock compositions deter-
mine whether EW signals can be detected. However, given the inherent spatial heterogeneity
in soils, it remains unclear whether scalable sampling plans can yield the low measurement
variances required. Moreover, the detection of changes in elemental abundances does not
guarantee accurate mixing calculations: even small measurement variances can yield appar-

ent mixtures that fall outside of the theoretical mixing space [28].
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Figure 1: Illustration of how spatial uncertainty introduces error into feedstock dissolution
calculations. The underlying mixing model assumes that baseline and mixture samples rep-
resent the same system or control volume. Given spatial heterogeneous soil compositions,
this assumption may be interrupted by positioning error, tillage, and erosion, as well as sam-
pling and preparation techniques and analytical precision. Composite sampling is commonly
employed to mitigate spatial uncertainty by reducing sample variance.

These concerns highlight the need for a systematic approach to account for spatial hetero-
geneity in the design of EW verification protocols. To address this, we present a framework

for incorporating spatial uncertainty into solid-phase measurements, starting with definition
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of overall uncertainty requirements (e.g., a maximum error and minimum confidence in fd),
followed by variance propagation and sensitivity analysis (SA) to help define corresponding
measurement variance requirements (e.g., a maximum measurement variance and minimum
confidence). We then use stochastic sampling simulations to infer a sampling approach that
minimally meets these requirements and conclude with estimate and uncertainty reporting.

This is detailed through the following steps:

1. Defining the uncertainty requirements and measurement model, the latter including
explicit relationships between input and output uncertainty using hierarchical Bayesian

principles.

2. Determining the maximum measurement variances that fulfill the overall uncertainty

requirements using variance propagation and SA.

3. Defining the measurement variance requirements and sampling model, the latter in-

volving stochastic simulation of spatial fields and composite sampling plans.

4. Designing a sampling plan that minimally meets the measurement variance require-
ments using the sampling model and SA; if infeasible, reconsider the overall uncertainty

requirements or measurement model.

5. Reporting the final estimate and overall uncertainty, with traceable and reproducible

uncertainty quantification.

Integrated Methods and Results

For EW, agricultural fields are typically chosen based on accessibility rather than a detailed
understanding of soil properties and heterogeneity. The goal for the project developer is to
perform minimal sampling while still accurately calculating the amount of dissolved feedstock

and resultant CDR.
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In this example, we illustrate how early characterization can be integral to EW site
selection and monitoring design to increase the likelihood of precisely quantifying CDR.
We assume deployment of a basaltic feedstock, though the approach is generalizable to
any amendment. For mixing-based solid-phase verification of EW, the measurement model
consists of equations (1) and (2), which are solved for f; based on the measured baseline and,
either the initial soil-feedstock mixture to determine application rates, or the mixture after
some weathering has occurred [19]. Field trials [27, 29-38] report feedstock application rates
ranging from 5 to 100 tons per hectare (ha), resulting in relatively low mass enrichment
of 0.1-3% after mixing within the upper 20 cm of soil (Supp. 2). Another important
consideration is the chemical differentiation between the feedstock and the baseline, which
we analyze using the feedstock-baseline ratio of mean cation concentration (,uﬁ:bsm) and
mean tracer concentration (u45"*").

The sampling model outlines the planned configuration for sampling, whether through
discrete point samples or carefully homogenized composite samples, which we stochastically
analyze to infer the measurement variance associated with different sampling strategies.
Because the measurement model depends on the baseline, the sampling plan is typically
fixed after the feedstock is applied, underscoring the need for a robust baseline sampling
strategy. The uncertainty requirements are defined by operational constraints, such as the

need to present a compensatory claim, and reflect the probability that the resulting estimate

will fall within a specified range of the true value.

1. Uncertainty requirements and measurement model

The goal of this first step is to define the problem mathematically to allow for rigorous
variance propagation and SA. In EW, the baseline variance in soil elemental abundances is
typically unknown prior to site selection, and recent work [10] suggests that variability in an
immobile tracer element tends to exceed that of base cations, thereby dominating the total

uncertainty. Consequently, the site-specific variance in these elements determines whether a
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given measurement approach is likely to fulfill the uncertainty requirements.

Uncertainty requirements

The uncertainty requirements are often defined by a standards development organization

and, here, encapsulate:

® €42, the maximum relative error in fd and thus CDR.

® Din, the minimum probability that the relative error in fd is less than €,,4;.

For instance, a quantification standard might require 90% confidence (pn;,, = 0.9) that
the reported CDR is within 10% of the true value (€0, = 0.1) [e.g., 39]. There is no a
priori guarantee, however, that any particular field deployment can meet these requirements
for a specific site, due to the inherent variability in measurement conditions and system
parameters.

We use ¢ to represent the outcome where the uncertainty requirements are fulfilled.

Formally:

p(E < emaa:) Z Pmin —> ¢7 p(ES Emaﬂﬁ) < Pmin —> 57 (3)

where ¢ indicates the requirements are not fulfilled.

Measurement model and parameter set

To calculate p(e < €,4,) for different measurement approaches, we define a measurement

model parameterized by 6. This model includes:

e a measurement function (e.g., feedstock dissolution calculation, Eq. 1-2)

e input parameters (e.g., M and T concentrations in the baseline, feedstock, and mixture)

the function response (e.g., fraction of feedstock dissolved, fy),

e measurement variance of each input parameter (e.g., spread of possible M and T

measurement values given the point or composite sampling scheme), and

7



e operational parameters (e.g., feedstock-baseline differentiation, application rate, true

fraction dissolved).

For this measurement function (Eq. 1-2), the input parameters are [M |psin, [M]ts, [M iz,
[T )osin, [T]fs, and [T]mie. Due to spatial heterogeneity, baseline and mixture measurements
may be highly variable, interrupting their assumed comparability (Fig. 2). To account for
the impact of spatial heterogeneity, we consider each input parameter to have a distribution
of possible measurement values, characterized by a mean (u) and relative variance (v), which
we will propagate through the measurement function in step 2. While measurement variance
represents aggregate spatial and analytical uncertainty, we only consider spatial uncertainty
in this study, as analytical uncertainty can be made negligible if necessary [19]. Accordingly,

we define p and v for the measurement distributions as follows:

bsin

beln and 53 (baseline means) as constants at the sim-

Measurement means: We set 137
ulation scale. We then specify feedstock-to-baseline ratios (5™, uf#**') to obtain mean
feedstock concentrations. A uniform application rate (74,,) and uniform fraction dissolved

(fa) together determine the mean mixture concentrations after amendment and weathering,.

This f; also serves as the “true” fraction against which estimation errors are calculated.

Measurement variances: We specify vy, and vy, the (relative) measurement variances for
baseline M and T'. Due to feedstock mass enrichments of < 3%, we assume the measurement
variances of the soil-feedstock mixture are equal to the baseline vy, and vy. The feedstock
itself is assumed homogeneous (negligible variance).

Collectively, these parameters form the set . Since we want to test the impact of dif-
ferent measurement distributions and operational parameters on fulfilling the uncertainty
requirements, we initially consider a wide range of possible values for each parameter. These
ranges are used as bounds for uniform cumulative density functions (CDFs), denoted F, and

F(0) is the multivariate CDF describing the entire parameter space (Table 1). The next step



169 involves random sampling of this parameter space to rigorously evaluate the individual and

170 joint impacts of each parameter on ¢.

[M]

Composite

Upm

7]

Probability density function of
measurement values

== Actual baseline at point or area
Il Baseline sample

@ Baseline comprising mixture sample

Figure 2: Illustration of how measurement variance (v) in cation (M) or tracer (T') con-
centrations may interrupt the assumed comparability of baseline and mixture samples to
differing degrees depending on sampling approach. The goal of step 2 is to calculate how

small vy, and vy must be, or how narrow each probability density function of measurement
values must be.
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2. Determining maximum measurement variances

With the measurement model and parameter ranges established, next we analyze the sensi-
tivity of the model and determine how small the measurement variances in M and T" must
be to meet the overall uncertainty requirements. This process involves propagating mea-
surement variances through the measurement model (step 2.1), quantifying the influence of
measurement variance on the accuracy of fd (step 2.2), and constraining operational param-

eters to set maximum measurement variances (Up,q.) for a specific deployment (step 2.3).

2.1 Propagating measurement variances through the measurement model

Here, we use nested Monte Carlo simulations to jointly vary the input means, measurement
variances, and operational parameters encompassed by 6 and, for each variation, compute
the resulting p(e < €q42). This process begins with generating 10* parameter realizations, or
samples of F (). F (0) is a uniform multivariate distribution, meaning each parameter range
in Table 1 is sampled from uniformly, and each realization represents a possible combination

of baseline means (u53", 15"), measurement variances (vys, vr), and operational parameters

(,uﬁ:bsm, ,Lészbsm, Tapps Jd)- ﬁ’(@) For a given parameter realization, we use these values to
construct Gaussian measurement distributions for [Mpsimn, [M]miz, [Tlpsin, and [T]miz, and
we sample from these distributions to generate 10* measurement realizations. For each
measurement realization, we compute f, and its relative error (€), such that p(e < €a,) for
each parameter realization is the fraction of its measurement realizations where € < €,,4..
Results of these simulations indicate that ¢ is highly dependent on keeping the measure-

ment variances below critical thresholds (Fig. 3), while other parameters, such as ;%" and

pbm ) have minimal impact. Specifically, the distribution of p(e < €,,4,) shows a clear divide
(Fig. 3A), indicating that while many realizations achieve ¢, a significant number fail. The
P1o-Poo grey-shaded regions in Fig. 3B illustrate the spread of simulation outcomes across

each parameter range—shaded regions that extend above p,,;, (red-dashed line) indicate

parameter values for the realizations that achieved ¢ in Fig. 3A. Conversely, the unshaded

11
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regions above p,, indicate that high vy, and vy and low r,y, values will likely not result in
0.

The correlations among the expected p(€ < €, )—black psg lines in Fig. 3B—and the in-
dividual parameters provide additional insight into sensitivities. Specifically, the conditional
distributions of p(e < €4, ) show a strong negative correlation with vy, and vy, meaning high
measurement variances make it unlikely to achieve < 10% error in fd (Fig. 3B). Intuitively,
,uﬁ:bsm, u{;&bsm, Tapp, and true f,; show moderate positive correlations with p(e < €mq4z), in-
dicating that greater values tend to increase the expected accuracy in fd. Overall, the wide

range of outcomes here emphasizes the importance of considering all possible outcomes early

in site selection and monitoring design.
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Figure 3: Exploratory SA of the influence of means (u), measurement variances (v), and
operational parameters on p(e < 0.1), the probability that the relative error in fd is no
greater than 10%, using the parameter ranges in Table 1. (A) shows the response across all
10* realizations, with a red-dashed line separating the realizations that do (¢) and do not

(¢) fulfill uncertainty requirements of p(e < 0.1) > 90% (pmin). (B) provides the conditional
response distribution for each parameter.
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2.2. Quantifying parameter influence on fulfilling the uncertainty requirements

To rigorously compare the sensitivity of ¢ to different parameters, we separate the 10* real-
izations of # into one group that does fulfill the uncertainty requirements and one group that
does not. This can be represented by partitioning F (f) into two conditional distributions,
F(0]¢) and F(A]@), and we can analyze the differences between these distributions to deter-
mine which parameters most significantly influence the outcome. A common way to quantify
such sensitivities [42-45] is to compute the "distance" between F(8|¢) and F(6]¢) for each
parameter (Fig. 4A), normalizing the parameter ranges to [—1, 1] so they do not influence
comparison of the distances. The resulting sensitivity rankings (Fig. 4B) highlight that ¢ is
fsibsln  fsbsin

most influenced by vy, and vy, and less so by 7o, iy, fy,, and true fg. Collectively,

this emphasizes the dominant role of measurement variances in determining success.
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Figure 4: Distance-based sensitivity calculations for the exploratory SA in Fig. 3. (A) shows
threshold-conditional CDFs (e.g., partitions of the entire set of realizations (grey-dashed line)
into realizations that did (green line) and did not (red line) fulfill uncertainty requirements,
with shaded areas to visualize distances between CDFs. (B) provides a ranking of the
parameters according to their influence on ¢ using this distance-based sensitivity metric.
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2.3. Applying deployment-specific constraints and identify measurement vari-

ance limits

In practice, PDs can constrain certain parameters in 6, such as feedstock-baseline differ-
entiation and application rate. For our theoretical deployment, we constrain ,uﬁ:bsm to 38
and 22" to 25 (midpoints from Table 1) and 74, to 40 tons/ha (median from Table 1).
Performing the SA with these constraints (Fig. 5) reveals that the expected, or median,
P(€ < €maa) €xceeds Py for In(vys) and In(vr) less than approximately -7 (Fig. 5B). In con-
trast, the conditional response distributions for other parameters do not show an expected
p(€ < €max) greater than p,,;,, as each distribution assumes values for all other parameters
are randomly chosen from their respective ranges, thus incorporating effects from the entire
ranges of vy, and vyp. While measurement variances are the primary control here, the true
fa will likely become significant after constraining vy, and vy (Fig. 5C). This suggests that
delaying intensive sampling, though also delaying return on investment to the PD, could be
a key feature of profitable operations.

To determine specific measurement variance limits, we need to account for potential
interactions between vy, and vy by analyzing their joint conditional distribution (Fig. 6).
It is also important to consider the entire F (#) when determining such limits. Using an
exploratory F'(f), this analysis shows almost no combinations of vy, and vy that achieve
¢ (Fig. 6A). Using the constrained F (0), however, indicates the expected outcome is ¢
when both In(vy,) and In(vr) are greater than approximately -6.5 (Fig. 6B). Since, for
this example, vy, and vp exert similar influences on ¢, we select a single v,,,, of e7%°.
The remaining analysis provides insight on combinations of inherent site characteristics and

sampling designs that could likely adhere to this maximum using stochastic simulations of

spatial variability and composite sampling.

14
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Figure 5: Deployment-specific SA where, relative to the exploratory SA in Fig. 3 and
Fig. 4 and parameter ranges in Table 1, we apply constraints to soil-feedstock differentiation
= 38, 1" = 25) and application rate (rq,, = 40 tons/ha). (A) shows the updated
response across all 10? realizations, (B) the updated conditional response distributions, and

(qus:bsln
M

(C) the updated ranking of the parameters according to their influence on ¢.
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Figure 6: Combinations of base cation measurement variance (vys) and immobile tracer
measurement variance (vr) that result in fulfilling uncertainty requirements (¢) of at least
90% likelihood of < 10% error in fd for (A) loosely constrained, exploratory parameter ranges
and (B) constrained parameter ranges for a theoretical deployment where pf5" = 38,

" = 925 and 14y, = 40 tons/ha.
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3. Measurement variance requirements and sampling model

With v,,4., we can simulate composite sampling to design a suitable sampling plan prior
to execution. To determine sufficient sampling plans, one would in theory need to know
the concentrations everywhere across the field site at high spatial resolution. Presumably,
this would reveal lenses and patches of similar material, as opposed to a completely random
distribution. Alternatively, we can create synthetic deployment fields based on models of
spatial variability, an approach similar to that used in contaminant remediation [46-49]
and measurement of soil organic carbon stocks [24, 50, 51|, and sample them to develop
measurement schemes that are robust across different types of spatial variability. In steps 3
and 4, the objective is to simulate spatial fields and composite sampling plans to determine
approaches for achieving a measurement variance lower than v,,.,, and then refine these
approaches to roughly minimize the number of samples.

Given that high-density sampling over large deployment areas is not feasible, we assume
identification of a representative 1-ha plot for high-density sampling with low-density sam-
pling still performed across the remainder of the area, similar to plot designs recommended
in quantification standards [e.g., 21|. Specifically, we are simulating 1 ha (10,000 m?) at
0.1-m resolution, thus using a 1,000 by 1,000 structured grid, which could analogously be
described as 100 ha at 1-m resolution or 10,000 ha at 10-m. Ideally the resolution or "sup-
port size" mimics physical sample collection, e.g., individual core area when simulating at

the sub-sampling scale, or compositing area if each sample is representative of a grid cell.

Measurement variance requirements

Since we have chosen the same vy, of e7%° for vy, and vy, we can generally denote both
[M] and [T] as an arbitrary spatial variable Z. Here, the measurement variance requirements

for Z are defined by:

® U4z, the maximum allowable measurement variance in 7,

17
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® Din, the minimum probability that the measurement variance in Z is below v,,4,.

For a given spatial field and sampling plan, p(v < v,,4,) is the likelihood that the resulting
measurement variance (v) will be less than the maximum measurement variance (v,,q,). The
measurement variance requirements are fulfilled when p(v < vy,4,) exceeds the probability

threshold p,,:n, and the corresponding outcome is denoted ¢,. Formally:

p(U S Uma:!:) Z Pmin - ¢Z7 p(U S Umaa:) < Pmin — 5Z' (4)

Sampling model and parameter set

To compute p(v < VUpg,) for different combinations of spatial field and sampling plan, we
first define a sampling model with parameter set 6, that encompasses stochastic simulation
of heterogeneous spatial fields and composite sampling plans.

A spatial field’s heterogeneity can be characterized by its spatial covariance, or strength
of correlation between values at different locations depending on the physical distances sep-
arating them, often analytically represented by a covariance or semivariogram function [52].
These functions involve distribution parameters, here g and CV expressed as natural loga-
rithms, and a correlation length, A, which describes how distant two locations can be and
still have correlated values, or the "size" of the heterogeneities (Fig. 7A). Different analytical
forms (e.g., exponential, circular, Gaussian) are distinguished by the "smoothness" of the
heterogeneities (Fig. 7B).

The parameter set ; encompasses these spatial field parameters, as well as parametriza-
tion of a composite sampling plan, including the number of composite samples (n) and
sub-samples (1), radius of each composite sample (74,,), and margin of error intrinsic to

the positioning device (ep,s) (Table 2).
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4. Designing a sufficient sampling plan

With the measurement variance requirements and sampling model established, we can now
stochastically analyze the model to determine a minimally sufficient sampling plan and
evaluate its feasibility. This involves quantifying the relative influence of spatial heterogeneity
and sampling parameters on fulfilling the variance requirements (step 4.1) then applying
deployment-specific constraints to identify sufficient sampling plans and refining them to a

specific plan (step 4.2).

4.1. Quantifying influence of spatial heterogeneity and sampling parameters on

fulfilling measurement variance requirements

To partition the parameter space F(05) into F(05|¢z) and F(04|¢,) for sensitivity anal-
ysis, we use nested Monte Carlo simulations to compute p(v < VUpq.) for 10? realizations
of ;. After first generating the spatial field, we choose random locations for the n com-
posite samples. For a single configuration of random locations, we simulate 100 rounds of
composite sampling, computing the mean Z each time, and v as the relative variance of
the 100 means. Considering a PD would only sample a handful of times throughout the
course of a deployment, these 100 rounds represent the theoretical variability introduced by
random positioning error and inconsistent orientation of sub-samples over a heterogeneous
field. In the context of solid-phase EW verification, this formulation assumes the sampling
plan is fixed with baseline sampling, and the f; calculation uses the mean of all n samples
rather than each sample individually. Altogether, for a single parameter realization of 6,
we simulate 100 different configurations of random locations, and p(v < vy, ) is the portion
of configurations where the inferred measurement variance is less than v,,,;.

Results of these nested simulations indicate that ¢ is determined by the relative field-
scale variance of Z (Fig. 8). Most realizations show an extremely low or extremely high
likelihood of achieving a sufficiently small v (Fig. 8A), and there is a clear In(CVy) thresh-
old between -4 and -5 that dictates this behavior (Fig. 8B). The exact In(CVy) threshold
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318

is dependent on the maximum number of samples considered in the SA, though additional
results show that increasing the maximum n from 30 to 100 still results in a threshold below
-4. Overall, this highlights that spatial heterogeneity not only needs to be accurately con-
strained before designing a sampling plan, but may also determine whether any monitoring

strategy can succeed.

A Response distribution | B Conditional response distributions
101f1 - PP T Pso T Pmin
= 81 i Mz CVy Dist
X 5 —~ Lo TrFa ] fi————3-
z ° | | 2
§ n i VI 0.5 |
g I = il
= i &O-O'TTT.TTT.T.T ] N ==
21 : 1 357 911 -8-7-6-5-4-3-2-1 normal lognormal
i In [mg/kg] In type
O + ——td
00 05 1.0 Cov Ay T,
P(V<Unmaz) |~ LOTE T H W EER —
g
C  Sensitivity of ¢ \?l 0.5
CV Cl
“ Y |
n 0.01 ! T
exp. cir.
)‘Z model
Nsub
n
r
‘ 1.0
epos g TN
Cov S
| 0.5
Kz
Dist —
ist. |
- - 0.0 W : 1, : :
0.0 0.5 151015202530 3 5 7 9111315 1 5.5 10
CDF distance samples sub-samples [m]

Figure 8: Exploratory SA of the influence of spatial heterogeneity and sampling plan on
p(v < e7%2), the probability (p) that the inferred measurement variance (v) is less than
a maximum measurement variance (Upq.) of ¢ %% using the parameter ranges in Table
2. (A) shows the response across all 10* realizations, with a red-dashed line separating
the realizations that do and do not fulfill requirements of at least 90% (pmin) likelihood of
measurement variance less than e, (B) provides the conditional response distribution for
each parameter. (C) provides the ranking of the parameters according to their influence on
¢z, using the distance-based metric illustrated in Fig. 4.
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4.2 Applying deployment-specific constraints and refine to a specific sampling

plan

To narrow down to a specific sampling plan, we first constrain relative field-scale variance, the
major control on ¢z. Though point sampling is typically necessary to capture the true CV,
such data are sparse for soil elemental composition at ha-scales. Comparison to field studies
[53-55| that have employed high-density point sampling of soil elemental concentrations (102-
104 samples/ha) show ha-scale variances of —3 < In(CV) < —1 for base cations (Ca, Mg, Na,
K) and select trace elements (Ti, Ni, Al, Fe) in temperate and semi-arid grassland, scrubland,
forested, and agricultural settings (Fig. 9). These values, if generally representative, would
not adhere to the threshold of -4 or -5 suggested by the analysis here (Fig. 9).

For a PD interested in constraining site-specific variance, further stochastic point-sampling
simulations indicate that, given observed ranges [53-55]|, only up to about 20 point samples
are needed to estimate CV to the nearest In with 90% confidence (Fig. 10). In theory, these
suggested sample sizes are directly applicable to larger scales, assuming correlation length
is scaled with grid resolution, and the random spatial fields tested here encompass patterns
observed at larger scales. Overall, this suggests it would be feasible to collect the preliminary
measurements needed to infer operational scalability for a robust array of potential empirical
constraints.

While lower than reported for soils to-date [53-55], we constrain In(CVy) to —5 for our
theoretical deployment and redo the SA (Fig. 11) to demonstrate next steps in monitoring
design for feasibility assessment. Given this constraint, ¢, becomes most sensitive to n,
indicating at least 11 composite samples will result in > 50% likelihood, 18 samples > 90%
likelihood, that v will be sufficiently small (Fig. 11B). It may be important to further
constrain A (Fig. 11C, Fig. 10), and alternative technologies, such as remote sensing 56|,
may be necessary to control costs.

Altogether, the analysis here indicates that spatial heterogeneity in soil concentrations

should be the foremost consideration when designing sampling plans for solid-phase ver-
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Figure 9: Relative variances of select soil elemental abundances in (A) scrubland in NW
Spain (n=203, 0.014 ha, 0-10 cm depth) [55], (B) grassland in NW Spain (n=186, 0.032 ha,
0-10 cm depth) [55], (C) agricultural land in N Africa (n=314, 0.32 ha, 0-20 cm depth) [53],
and (D) forested floodplain in NW Spain (n=220, 1 ha, 0-10 cm depth) [54], here shown
relative to the approximate field-scale variance threshold partitioning fields between those

that likely can (¢) and cannot (¢) fulfill the uncertainty requirements considered in this
study.
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Figure 10: Simulation-based estimates of sample sizes needed to capture the coefficient of
variation (CV) of a 1-ha (100 m x 100 m, 0.1-m resolution) lognormal spatial field to the
nearest integer natural log (In) with 90% confidence, considering different scales of spatial
correlation (A); errors bars represent the standard error across 10 spatial fields with different
means.
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346 ification of EW. Determining sufficient sampling plans requires preliminary constraints on
317 relevant field-scale variances, and even minimally sufficient plans may be operationally infea-
318 sible, pointing toward reconsideration of the overall uncertainty requirements or measurement

349 model.
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Figure 11: Deployment-specific SA where, relative to the exploratory SA in Fig. 8 and
parameter ranges in Table 2, we constrain relative field-scale variance (CVz) to €. (A)
shows the updated response across all 10 parameter realizations, (B) the updated condi-
tional response distributions, and (C) the updated ranking of parameters according to their
influence on ¢.
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5. Reporting the final estimate and uncertainty

In principle, reporting fd and its uncertainty is relatively straightforward following sample
collection and analysis, as we have predetermined the margin of error and confidence in the
calculation. However, transparency, reproducibility, and traceability are critical for both
scientific and compensatory applications. In particular, procedural compliance should be
separated from the inherent scientific and environmental uncertainty in evaluating whether
a project achieved a result within quantifiable confidence bounds. Thus, in addition to
providing the underlying measurement data and appropriate metadata, ideally including an
ISGN framework [57], the reporting framework should systematically capture key uncertainty
targets and measurement distributions as constrained with each sampling event. Supp. 3
provides an example reporting format, where all sources of uncertainty are documented,
including deviations from initial estimated field variance, and the final estimate is presented

with clearly defined error and confidence.

Discussion

The methodology we evaluate here emphasizes the importance of constructing a measurement
model that is directly informed by uncertainty requirements. This is in contrast to the way
EW field studies are traditionally designed, where the statistics are largely handled ex post.
The probabilistic framework is sequential in nature and demonstrates how input variability
propagates through a measurement model, unveiling the critical parameters influencing the
overall uncertainty (steps 1-2). For EW, the measurement variances of base cation and
tracer concentrations define the uncertainty in fd, indicating variance thresholds above which
the uncertainty requirements will not be met. Stochastic spatial simulations (steps 3-4)
inform composite sampling plans that adhere to the measurement variance thresholds, and
constrained sensitivity analysis points to a minimally sufficient plan that can be evaluated

for feasibility.
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Importance of spatial heterogeneity

Our results demonstrate that in the absence of a thorough assessment of spatial variance, even
well-composited samples may not adequately constrain measurement uncertainty, potentially
resulting in intensive data collection that fails to achieve the confidence needed to assign
CDR. To evaluate the scale of variability expected for agricultural and grassland soils, we
reviewed studies [53-55] involving high-density (102-10* samples/ha) sampling. The relative
variances in soil elemental abundances all exceed the maximum variance threshold identified
in our analysis, suggesting that baseline soil heterogeneity may be too large for a mixing-
model approach to produce reliable dissolution estimates (Fig. 9). While alternative solid-
phase models, such as isotope mixing or bulk cation stocks, may be less sensitive to spatial
heterogeneity, the analysis here poses an important consideration for EW, namely whether
soil property distributions, and our ability to capture them with measurements, will fall
within the requirements needed for verification frameworks.

Spatially coordinated field-scale solid-phase geochemical data is sparse in existing liter-
ature. Samples are usually collected in vertical configuration at single disperse sites, rather
than laterally across the surface in a spatially explicit configuration, making it difficult to
use the wealth of existing data to assess spatial variability. While the studies evaluated here
show consistent variances over four land types within a geographical region, high-density soil
data from other climates and geomorphic settings would be valuable in determining where
field-scale geochemical variances are low enough for accurate solid-phase verification of EW.
Spatial distributions of certain elements may also be correlated to textural parameters, such
as clay content, or reflected in aboveground biomass. Rigorous confirmation and ground-
truthing of potential proxies in early deployments could enable more efficient heterogeneity
estimates in later deployments and thus more precise baseline sampling strategies at scale.

Here, we assume that spatial variance is the main contributor to measurement variance,
though analytical uncertainty would be an additional factor for low-abundance chemical

tracers. To account for this, future implementations can subtract analytical variance from the
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maximum measurement variances identified in step 2, resulting in a lower target measurement
variance in the sampling simulations. We also assume heterogeneity with depth can be
implicitly captured in a 2-D representation of a sampling volume, which may not be true if
stratigraphic variations with depth are widely inconsistent over a field.

A related challenge is the identification of intensively measured plots—simulated here at
1 ha, but can be larger— that are representative of project areas spanning tens-of-thousands
of hectares. Quantifying the degree to which small-scale trials capture relevant spatial vari-

ability in larger landscapes remains a critical open question.

Implications

Collectively, simulating spatial variability and realistic sampling strategies can reduce logis-
tical inefficiencies for EW and minimize the risk of failing to meet uncertainty requirements
for CDR quantification. Effective verification of open-system CDR requires balancing stan-
dardized sampling guidelines with the flexibility to accommodate diverse field conditions,
as well as managing tradeoffs between measurement costs and the certainty of outcomes.
The proposed framework addresses these challenges by clearly defining uncertainty targets,
allowing sampling plans to be rigorously evaluated prior to intensive field deployment. This
transparent, multi-stage approach helps differentiate procedural compliance from the inher-

ent scientific and environmental uncertainties affecting removal performance.
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Supporting Information 1:
Derivation of measurement model (Eq. 1-2)

1 Notation

e [M] is solid-phase base cation elemental abundance

[T] is solid-phase immobile tracer elemental abundance
e ;s denotes feedstock endmember
® ;. denotes baseline soil endmember

Y .. denotes initial mixture between feedstock and baseline endmembers, i.e., soil following feedstock

amendment and tillage

® ..ir denotes weathered mixture, i.e., following some feedstock dissolution

2 Defining f;

The fraction of feedstock dissolved (f;) is defined here as the complement of the fraction of feedstock
remaining (f,):

fdzlffr

where f, is the portion of feedstock cations still remaining in the solid-phase:

[M]mm - [M]bsln

Ir=
[M]gnix - [M]bsln
yielding Eq. 1 in the manuscript:
M iz — [M
fd —1_ [ ]mzx [ ]bsln

[M]gnu, - [M]bSln
This formulation assumes negligible mass loss with feedstock dissolution, justified by relatively low
feedstock mass fractions of 0.1-3% relative to the baseline endmember in the initial and weathered mix-

tures.

3 Calculating [M]°

mix
Using an element-element mixing model with immobile tracer T, the increase in cation concentration can

be calculated [1]:
[M]fs — [M}bsln

[T]fs - [T]bsln
= [T]miz and solving for [M]2,.. vields Eq. 2 in the manuscript:

([M]fs - [M}bsln)([T}miw - [T}bsln)
[T]fs - [T]bsln

[M}O - [M]bsln - ([T](r)mm - [T]bsln)

such that assuming [T°

miz

[M]O = [M]bsln +

Reference: [1] Faure, G., & Mensing, T. M. (2005). Isotopes: Principles and Applications (3rd ed.).
Chapter 16. Hoboken, NJ: John Wiley & Sons.



Example reporting format for measurement and verification of enhanced weathering
Method: Solid-phase mass balance with element-element mixing model

Values in this example are based on a theoretical deployment;
links to relevant data could go here.

Sampling parameters:

Plotarea, 1 |ha # Sub-samples taken along circumference at
Compositing radius| 5 |m approximately equal intervals.
Sub-samples per sample| 5 |cores
Positioning error margin| 10 |m
Target uncertainty:
Maximum relative error| €max 10% # Overall uncertainty in CDR calculation.
Minimum confidence| Pmin 90%
Target input variances:
Measurement variance (In(v)) # See Steps 1-2 for determining baseline and mixture
Overall | Analytical | Sampling target variances, specifically Step 2.3 for calculating the
Baseline cation conc. | [M]psm -6.5 n/a -6.5 values entered here.
Baseline tracer conc. | [T]bsm -6.5 n/a -6.5 # Feedstock assumed perfectly homogeneous.
Mixture cation conc. | [M]mix -6.5 n/a -6.5 # Analytical variance assumed negligible, would be
Mixture tracer conc. | [T]mix -6.5 n/a -6.5 subtracted from Overall to determine Sampling variances.
Feedstock cation conc. | [M]fs n/a n/a n/a
Feedstock tracer conc.| [T]fs n/a n/a n/a

For spatially explicit input:

Plot-scale spatial variance (In(CV))

# See Steps 3-4 for determining minimum sample size,

Preliminary | Baseline Mixture specifically Step 4.2 for calculating the Baseline and
Baseline cation conc. | [M]psin -2 -1.8 -1.8 Mixture sample sizes entered here, as well as suggested
Baseline tracer conc. | [T]psmn -3 -3.3 -3.3 sample sizes for Preliminary point sampling.
Mixture cation conc. | [M]mix -2 -1.8 -1.9 # Plot-scale here is 1 hectare.
Mixture tracer conc. | [T ]mix -3 33 3.7 # Dashed outline indicates where spatial variances for
Sample size: 30 11 11 mixtures are assumed equal to baseline.
Expected value (mg/kg) # Dashed outline indicates where mixture values are
Preliminary | Baseline Mixture calculated using an ideal mixing model.
Baseline cation conc. | [M]psmn 3000 2645 2645
Baseline tracer conc. | [T]psm 30 32.12 32.12
Mixture cation conc. | [M]mix 3500 3142 3271
Mixture tracer conc. | [T]mix 35 36.11 34.21
For other input:
Expected value (mg/kg) # Likely add another section "For temporally explicit
feedstock cation conc.| [M]rs 50,000 input" for parameters with temporal variance.
feedstock tracer conc. | [T]rs 20,000

Output estimates:

fraction of feedstock
dissolved after 5 years

Expected value (fraction)
Predicted | Measured

fa 0.3

Maximum error:
Confidence:

0.27

10%
90%

# Error and confidence will not necessarily match target
uncertainty if heterogeneity estimates do not match initial
estimates.




