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Key Points: 

• Cation storage in soils can temporarily undo the carbon dioxide removal that occurs during the 
enhanced weathering process. 

• Lags in carbon removal after carbonate or silicate weathering can vary from years to many 
decades. 

• Carbon removal lags should be quantified in enhanced weathering deployments through rigorous 
validation of models with real-world data. 

 
Plain Language Summary: Adding rock powder to agricultural lands - a process called enhanced 
weathering - can potentially remove carbon dioxide from Earth's atmosphere and help to mitigate 
the impacts of climate change. However, agricultural soils can also store the products of enhanced 
weathering, which could delay carbon removal for years or even decades. Climate mitigation 
strategies that involve enhanced weathering must incorporate this lag effect in order to be robust. 
 
Abstract: Significant interest and resources are currently being channeled into techniques for 
durable carbon dioxide removal (CDR) from Earth’s atmosphere. A particular class of these 
approaches — referred to as enhanced weathering — seeks to modify the surface alkalinity budget 
to store CO2 as dissolved inorganic carbon species. Here, we use a reaction-transport model 
designed to simulate enhanced weathering in managed lands to evaluate the throughput and storage 
timescales of anthropogenic alkalinity in agricultural soils in the coterminous U.S. We find that 
lag times between alkalinity modification and carbon removal can span from years to many 
decades depending on region. Background soil cation exchange capacity, agronomic target pH, 
and fluid infiltration all impact the timescales of CDR relative to the timing of alkalinity input, 
suggesting there is scope for optimization of alkalinity transport through variation in land 
management practice. However, shifting practices to reduce lag times may decrease total CDR 
from weathering and lead to non-optimal nutrient use efficiencies and soil nitrous oxide (N2O) 
fluxes. Our results indicate that there may be a large temporal disconnect between deployment of 
enhanced weathering and climate-relevant CDR, with important implications for monitoring, 
reporting, and verifying carbon removal through enhanced weathering. 
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1. Introduction 
Efforts to limit the extent of future anthropogenic climate disruption will likely require significant 
amounts of net carbon dioxide removal (CDR) from Earth’s atmosphere. Even optimistic scenarios 
for decarbonization of energy systems, transport, and industry in the coming decades still require 
roughly 1-10 gigatons (Gt = 109 tons) of carbon dioxide to be removed from the atmosphere each 
year by the end of the century to achieve net carbon neutrality [1, 2]. The current supply of durable 
CDR — defined as carbon removal that is durable on timescales similar to or greater than the 
residence time of CO2 in the atmosphere (~102 years) — is many orders of magnitude below this 
[3]. There is thus strong impetus for developing promising durable CDR approaches, and 
significant amounts of private and public funding flowing into efforts to develop the basic science 
underlying durable CDR pathways and bring them to scale. 

Enhanced weathering (EW) is one promising geochemical approach toward durable CDR [4-10]. 
This practice involves adding fine-grained cation-rich rock feedstocks (basalt, olivine, 
wollastonite, or steel slag) to soils, where they dissolve in the presence of elevated soil CO2 to 
yield bicarbonate (HCO3-). This bicarbonate can be transported by river/stream systems to the 
oceans, where much of it will remain stored on timescales on the order of 104 years [9, 11, 12]. 
Carbonate (limestone) weathering – currently in widespread use as an agricultural practice for soil 
pH management – can also lead to alkalinity export and CDR. However, the dynamics of this 
process are dependent in part on the pH at which weathering occurs, because bicarbonate produced 
from weathering reactions is unstable at relatively low soil pH  [13, 14]. In any case, because EW 
has the potential to leverage extensive existing agricultural infrastructure, requires relatively little 
energy beyond that required to transport feedstock, and may have a range of agronomic and 
socioeconomic co-benefits, it has attracted considerable interest as a durable, cost-effective CDR 
pathway that has the potential to scale rapidly [5, 10, 15, 16]. 

However, there is a range of possible fates for cations released from EW feedstocks, including 
calcium carbonate or secondary clay mineral formation in terrestrial settings [17, 18], re-
equilibration of the carbonic acid system in rivers and streams [8, 19, 20], and storage of cations 
on exchange sites within soils and in the lower critical zone [21-23]. In the case of secondary 
mineral formation, CO2 can be permanently released back to the atmosphere, undoing the initial 
CDR. In the case of cation storage on exchange sites within soils CDR is instead delayed. In most 
instances cation sorption will drive conversion of HCO3- to CO2 due to release of exchangeable 
acidity from the soil (Fig. 1), which is then rebalanced by HCO3- production once reversibly sorbed 
cations are released from the soil exchange complex when soils re-acidify. 

Methods are currently being developed for tracking the initial release of cations from EW 
feedstocks [e.g., 24, 25, 26], and these approaches can provide an estimate of the “potential CDR” 
at the initial point of feedstock dissolution. However, the timescales over which this CDR potential 
will be realized are poorly known [16, 27]. This is critical for the technoeconomics of EW, because 
a ton of carbon removed immediately has more value than a ton of carbon removed in the future 
[e.g., 28, 29-31]. As a result, offset purchase contracts using EW as a pathway should either 
accurately discount lagged carbon removal ex-ante or have ex-post guardrails for empirically 
verifying cation fluxes through the system over time. In either case, timescales of cation lag that 
are sufficiently long could potentially render project finance for EW deployments less favorable 
for conventional voluntary carbon markets. 
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Here, we use a reaction-transport code [32, 33] designed to simulate enhanced weathering (EW) 
in managed lands to evaluate the throughput and storage timescales of anthropogenic alkalinity in 
agricultural soils. Through a series of idealized alkalinity flux simulations, we explore the main 
controls on cation storage and export from surface soils in key U.S. agricultural regions. We find 
that carbon removal lags induced by transient cation storage in soils can range from years to many 
decades — varying significantly across key agricultural regions of the U.S. — and suggest that 
carbon removal lags due to cation storage need to be considered in future EW research and 
deployment efforts. Lastly, we discuss the implications of these results for implementation of EW 
within carbon markets and suggest potential strategies through which background soil 
characteristics and deployment practice can both be leveraged to shorten carbon removal lags. 
 
2. Materials and Methods 

2.1 A gridded dataset for simulated alkalinity modification in U.S. agricultural regions 
We focus here on key agricultural regions of the coterminous United States, basing our analysis 
on areas with a cropland fraction greater than 10% and gridded at a resolution of 1ºx1º. As 
boundary conditions for the initialization and spin-up of our reaction-transport code we use a series 
of gridded data products for runoff (defined as the sum of quick-flow runoff, recharge, and 
irrigation as in [34]), mean annual air temperature (MAT), soil moisture, aboveground net primary 
productivity (NPP), soil organic matter (SOM), fertilization rate, topsoil pH, soil cation exchange 
capacity (CEC), and soil base saturation (Fig. 2). All observational data are from the sources shown 
in Table 1, and are either derived from the uppermost soil layer (0 to 20 or 30 cm, depending on 
the database) or averaged over the top 30 cm when depth-resolved at higher resolution. Data 
products are at a native resolution of 1ºx1º or higher, with high-resolution data area-weighted and 
re-gridded to 1ºx1º. The partial pressure of CO2 in the soil (pCO2) was calculated as a function of 
net primary production (NPP) and temperature according to the method of Gwiazda and Broecker 
[35], as adapted and modified by Goddéris et al. [36], Gaillardet et al. [37], and Zeng et al. [38].  

The reaction-transport model used here is designed to track feedstock-specific alkalinity release 
and cation/carbon biogeochemistry in managed soils [32, 33]. We adopt a model configuration 
that is essentially the same as that described in [32], which consists of two solid species (bulk soil 
phase plus soil organic matter), one gaseous species (CO2), and an inclusive range of aqueous 
species for evaluating charge balance and soil acid-base balance [33]. We use four tuning 
parameters to initialize the soil column in each grid cell: (1) an aggregate cation exchange 
parameter (KH/Na), which is then used to scale exchange parameters for all other cations; (2) a 
dissolved Ca2+ concentration at the upper boundary of the soil column, which essentially represents 
background carbonate weathering and historical agricultural liming; (3) an input flux of organic 
carbon (OC) to the soil; and (4) a time constant for organic carbon turnover (Fig. 3). These 
parameters are tuned to match the observed values for soil pH, base saturation, soil organic matter 
content, and estimated soil pCO2 (Fig. 2), with the soil column in each grid cell being spun up for 
105 years prior to alkalinity modification. Comparison of our baseline tuned parameter set (Fig. 3) 
with a range of observational data is provided in the Supporting Information. 

Following spinup and initialization, we conduct alkalinity modification experiments in which an 
alkaline feedstock is added at a rate is iteratively tuned to reach a specified agronomic target pH 
(pHt = 7.0) at the end of each year for 100 years. We implement two alkalinity sources — a default 
CaO feedstock, which is characterized by extremely rapid dissolution kinetics and simple cation 
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stoichiometry, and an “instantaneous” basalt feedstock, which has the stoichiometry of the 
idealized glassy basalt used by [32] but is specified to dissolve with the same speed as the CaO 
feedstock. This approach is designed to remove the time-dependent uncertainty in feedstock 
dissolution rates and to isolate the effects of cation exchange on the timescales of CDR. In the 
simulations shown here, feedstock is added continuously for each year and mixed homogeneously 
down to a depth of 25cm. In-silico agronomic soil pH is calculated by the method described in 
[32]. The model domain for all simulations is 50 cm, which for our purposes is expected to yield 
a conservative (i.e., lower-bound) estimate of cation travel times through the soil column given 
that in the field cations will generally need to travel longer distances before being exported.  

The boundary conditions of the reactive transport model are described in [33] and [32]. Briefly, 
the lower boundary is a parent rock composition for the solid phase and a zero-flux boundary for 
aqueous and gaseous phases. The upper boundary is a fixed composition for aqueous and gaseous 
species. The model allows for transport of solid, aqueous, and gaseous phases through advection 
and mixing, advection and diffusion/dispersion, and diffusion, respectively. Here, advection of 
solids and fluids is constrained respectively from USDA soil erosion rate data and runoff [34], 
while soil moisture impacts gaseous phase transport by modifying the soil tortuosity and diffusivity. 
The reaction kinetics are simulated for heterogeneous decomposition/formation of solid phases 
and redox reactions [33] and equilibrium is assumed for aqueous speciation and cation exchange 
[32, 33]. We also conduct control experiments branched from the same initialization/spinup as that 
of the alkalinity modification experiments with identical boundary conditions other than the 
addition of alkaline feedstock. 
 
2.2 CDR calculation methods  
We evaluate CDR over time in the simulated soil column using three metrics, each of which is 
designed to correspond to a distinct set of techniques for measurement, reporting, and verification 
(MRV) of CDR in enhanced weathering deployments. The first is scaled to the fraction of 
feedstock that dissolves in the soil (CDRdiss): 

𝐶𝐷𝑅!"## =
∑ 𝛾$∆𝐽$!"##$

∑ 𝛾$∆𝐽$
%&&!

$
 ,                                                                    (1) 

where γθ is the molar ratio of potential CO2 capture per unit dissolution of feedstock θ (e.g., γCaO = 
2), Jqfeed and Jqdiss are deployment (spreading) and dissolution fluxes of feedstock θ (mol m−2 y−1), 
respectively, and Δ denotes the flux difference between scenarios with and without feedstock 
deployment. Mechanistically, this metric corresponds to time-integrated solid-phase approaches 
for tracking on-field rates of CDR [4, 24, 25, 39, 40], which rely on measuring mobile cations and 
immobile elements in soil before and after feedstock application and using these measurements to 
estimate loss of base cations from applied feedstock. 

The second CDR metric employed here is scaled to the reduction of gaseous CO2 exchange 
between the soil column and the atmosphere (CDRdiff):  

𝐶𝐷𝑅!"%% =
∆𝐽'(! − ∆𝐽)('
∑ 𝛾$∆𝐽$

%&&!
$

 ,                                                                    (2) 

where γθ, Jqfeed, and Δ are defined as above and JCO2 and JSOC are the soil-atmosphere flux of CO2 
(mol m−2 y−1) and the decomposition flux (mol m−2 y−1) of soil organic carbon (SOC), respectively. 
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Mechanistically, this metric reflects a decrease in the flux of CO2 from the soil column to the 
atmosphere due to HCO3- production in the soil, and could in principle be measured through CO2 
gas fluxes from treated and control soils via eddy flux towers [41], flux chambers [42], or gas-
phase CO2 sensors [43]. In contrast to the solid-phase metric shown by Eq. (1), this metric tracks 
CDR directly and reflects additional HCO3- production (and a corresponding reduction of the soil-
atmosphere CO2 flux) due to soil management. 

Lastly, we can scale CDR efficiency to the increase in advective fluxes of aqueous dissolved 
inorganic carbon species through the soil column (CDRadv): 

𝐶𝐷𝑅*!+ =
∆𝐽,-' − ∆𝐽)-'
∑ 𝛾$∆𝐽$

%&&!
$

 ,                                                                    (3) 

where γθ, Jqfeed, and Δ are defined as above and JSIC and JDIC represent the flux (mol m−2 y−1) of 
soil inorganic carbon (i.e., mineral carbonates) dissolving into the soil system and total dissolved 
inorganic carbon (i.e., aqueous CO2, HCO3-, and CO32-) advected out of soil column, respectively. 
Mechanistically, this metric reflects additional HCO3- production and advection out of the system 
due to feedstock application and could in principle be determined by an aqueous measurement at 
the field scale (e.g., alkalinity fluxes using a lysimeter [44]), point-collected dissolved solute 
measurements at the catchment scale [45] , or possibly at larger scales through measurements of 
solute composition in stream/river systems [e.g., 13]. Similar to Eq. (2), this metric directly tracks 
net CDR in the soil column rather than gross alkalinity release.  

Note that these metrics for CDR efficiency are referenced to the maximum potential CDR (e.g., 
∑ 𝛾$∆𝐽$

%&&!
$ ), which assumes that all base cations released from feedstock θ are leached 

immediately upon deployment and charge-balanced only by production of bicarbonate ions. At 
steady state, the reduction in soil-atmosphere CO2 flux should be equivalent to the increase in 
bicarbonate advection (CDRdiff ~ CDRadv). In the case of negligible cation sinks (e.g., secondary 
carbonate or silicate mineral phases) and on arbitrarily long timescales, CDRdiss ~ CDRdiff ~ 
CDRadv. However, transient cation storage could result in lag periods for which CDRdiff (or 
CDRadv) < CDRdiss. This allows us to isolate and quantify cation storage lags through time-
dependent offsets between CDRdiss and CDRdiff/CDRadv.  
 
3. Results 
We first examine timescales of alkalinity release, cation exchange, and carbon removal in four 
representative sites across key agricultural regions in the U.S.: (1) Site 128, located in the Northern 
Plains region; (2) Site 311, located in the Corn Belt; (3) Site 161, located in the Southern Plains 
region; and (4) Site 411, located in the Southeast (Fig. 2, 3). Alkalinity release into the system is 
specified to be effectively instantaneous across all sites (Fig. 4), with dissolution-based CDR 
(CDRdiss) matching effective CDR potential (CDReff) on a timescale of days to weeks. However, 
most of the alkalinity released from feedstock is initially stored as exchangeable calcium (Caexch) 
and is only gradually released back into the system as an advective cation flux (Caadv) over 
timescales ranging from years to decades (Fig. 4). This causes a significant lag in carbon removal 
relative to alkalinity input because it is only when the exchangeable calcium is released into the 
advective flux and charge balanced by HCO3- production that CDR can occur.  
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Although there is often a slight offset between carbon removal based on soil-atmosphere CO2 
exchange (CDRdiff) and advection of new DIC (CDRadv) in the first decade, they track each other 
closely. However, actual carbon removal (tracked by both CDRdiff and CDRadv) occurs over 
significantly longer timescales than those of alkalinity release (tracked by CDRdiss, here set to be  
effectively instantanous) across all sites (Fig. 4). For example, for our deployment in the Corn Belt 
CDRdiff and CDRadv reach less than 50% of the effective CDR potential after 10 years, with a 
timescale of over 50 years required to reach 80% of effective carbon removal (Fig. 4b). In contrast, 
realized CDR reaches nearly 80% of its potential within the first decade after deployment in the 
Southeast regional site (Fig. 4d). 

Because the timescale required to achieve a particular CDR potential varies by region, we 
geospatially aggregate and weight carbon removal lags by overall alkalinity flux across key 
agricultural regions in the U.S. (Fig. 5). There are relatively few sites that show any tangible carbon 
removal in the first year despite instantaneous cation and alkalinity inputs, and these are generally 
restricted to scattered locations in the southeastern U.S. (Alabama, Georgia, and Florida; Fig. 
5a,e). Many of the regions examined here show widespread areas that are below 50% of effective 
CDR potential after 5 years, and in some regions (the Corn Belt and Great Plains) it takes well 
over 10 years after instantaneous alkalinity input for carbon removal to occur locally (Fig. 5d,h). 
We find that instantaneous basalt simulations result in greater CDR at any given time, locally 
approaching nearly 10% of additional CDR capacity relative to the feedstock potential (Fig. 5i-l). 
This is due to the more complex cation stoichiometry of basalt, which in addition to Ca2+ contains 
a small amount of Na+ that flushes through the system rapidly. This effect is most significant within 
the first ~5 years of simulated deployment (Fig. 5j), but we would expect the magnitude and time 
dynamics of this effect to vary as a function of major cation chemistry of silicate feedstocks. 

Although local CDR lags induced by cation storage can be high, in many cases regionally 
aggregated and flux-weighted CDR lags are much shorter. For instance, for key agricultural 
regions in the Midwest, Southeast, and Pacific regions flux-weighted CDR lags on achieving 50% 
CDR capacity are roughly 10, 3, and 7 years, respectively (Fig. 6). For CONUS croplands as a 
whole the flux-weighted lag times to achieve 25%, 50%, and 75% of CDR capacity are, 
respectively, 5, 8, and 22 years (Fig. 6). Lags on CDR induced by soil cation storage are thus 
expected to vary by orders of magnitude across scales, both at the field scale and when regionally 
aggregated, but in general our analysis suggests that over 50% of CDR capacity should be 
achievable within a decade of alkalinity release across all of the regions analyzed here. 

The magnitude of cation lag should vary as a function of background soil characteristics. This is 
evident, for example, in the Southeast sites which, on average, show significantly shorter lag times 
overall because of very low cation exchange capacities and high water fluxes (Fig. 2h, 5a,e, 6b). 
Cation lag times should also be impacted by soil management practice — particularly the soil pH 
targeted for a given crop rotation or soil tilling style. For example, we find that higher target pH 
values can result in significantly higher CDR efficiency across the first few decades of increasing 
soil base saturation (Fig. 7) because of more rapid cation loading on the soil exchange complex. 
The impact of this can be significant – at Site 411, for instance, a target pH value of 5.5 results in 
an advective CDR efficiency of ~30% after ten years, while the same CDR efficiency can be 
achieved in only ~3 years at a target soil pH value of 7 (Fig. 7). The aggregate impacts of this will 
depend on the intersection between EW deployment strategy and agronomic practice, as target pH 
will depend on cash crop — many staple crops in the U.S. do well at soil pH values up to ~7, while 
some forage and specialty crops prefer more acidic pH [46]. 
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4. Discussion  
Our results suggest that carbon dioxide removal lags induced by cation exchange in agricultural 
soils can be significant, and in some cases can last multiple decades, adding to a robust evidence 
base for the following key conclusions: (1) cation sorption in soils with low base saturation (the 
ratio of cations to protons and aluminum in soil sorption sites) will delay climate-relevant CO2 
removal in EW deployments; (2) this lag time can be multiple years or even several decades 
locally; and (3) these lag times will vary geographically as a result of soil composition and 
climatology. Although we stress that although these basic conclusions are very likely robust, we 
do not currently have firm constraints on the uncertainty in lag times for any individual region or 
deployment protocol, and there is a pressing need to validate model estimates of carbon removal 
lag against real-world observations. As a result, we suggest that given the current state of 
knowledge reaction-transport models are not equipped to provide robust estimates of CDR lag for 
ready inclusion in carbon accounting schemes [e.g., 47]. 

One implication of the results presented here is that solid-phase tracers of cation release from EW 
feedstocks do not represent actual CDR at any time point, but rather a “potential” CDR that may 
or may not be realized over a wide range of time horizons. Specifically, the condition that CDRdiss 
>> CDRadv is ubiquitous spatially and persists for extended periods of time throughout the regions 
explored by our model ensemble. This supports a view articulated in previous attempts to use soil-
based tracers of cation flux in the field that these tracers are tracking an idealized CDR potential 
rather than carbon removal itself [4, 24, 25]. Even if the idealized carbon removal potential of a 
particular feedstock is ultimately realized over a relatively short timescale, we argue that it is 
important to be as precise as possible when discussing the parameters that a given approach toward 
field-based MRV is tracking. This is particularly true for for-profit actors making compensatory 
claims on fossil fuel emissions. 

There may be scope for optimizing the efficiency of alkalinity transport through soils via both 
deployment siting and land management practice. For instance, continuously managing soil pH at 
a uniform optimal agronomic value is unlikely to be pursued in practice. Instead, pulsed alkalinity 
addition followed by cation flushing with strong acid from fertilizer application may increase the 
efficiency of alkalinity transport in managed soils. On the other hand, this approach may lead to 
lower time-integrated CDR overall. In addition, soil pH is a key driver of soil N2O emissions 
through both direct impacts on microbial metabolism and ecosystem structure [48, 49] and through 
changes to crop nutrient use efficiency [NUE; 50, 51, 52]. As a result, intentional cation flushing 
could potentially increase time-integrated N2O emissions, as this practice would be expected to 
result in extended periods of non-optimal soil pH for crop uptake and more acidic soil pH values 
overall, both of which could enhance soil N2O emissions. Optimizing agricultural systems for 
overall mitigation of CO2-equivalent emissions (considering both CO2 removal and N2O emissions 
reduction) is an important topic for future work. 

From a project siting perspective, regions with relatively low CEC values, large fluid infiltration 
rates, and increased pH and base cation abundance in the exchange complex at depth [e.g., 53] 
should all favor more rapid alkalinity export. Our simulations suggest that these conditions are 
particularly widespread in the Southeastern U.S. However, the tradeoffs between local/regional 
soil characteristics, optimal agronomic pH for a given local crop rotation, and the counteracting 
impacts of soil pH on the effectiveness of alkalinity export and initial feedstock dissolution are 
likely to be complex in practice. In addition, our simulation design intentionally neglects transient 
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or permanent removal of base cations in deeper soils or during transport to the ocean in order to 
isolate the impacts of the soil exchange complex. Moving forward, there is significant scope for 
end-to-end analysis of base cation transport efficiency including these additional impacts, and a 
pressing need for systematic model intercomparison and data-model validation.  

An extended carbon removal lag after weathering induced by soil cation exchange has several 
significant implications for deployment of EW in a market framework. Most importantly, the 
economic value of carbon removal is time-varying, which means that EW deployments that aim 
to sell carbon offsets on a voluntary market should be able to accurately quantify the timing of 
climate-relevant CDR across timescales. One reasonable conclusion might be that suppliers of 
EW-based offsets on a voluntary market should be expected to either confront the technical 
challenge of quantifying carbon removal lags prior to deployment or the challenges to project 
finance associated with empirically verifying carbon removal over extended timescales prior to 
receiving revenue for offset production. Regardless, our results suggest that cation storage is 
ubiquitous, highly variable, and should be considered in EW deployments. 

Perhaps most importantly, our results highlight the need for more empirical constraints on cation 
and alkalinity throughput in managed lands across scales. Accurate representation of the soil 
exchange complex in process-based models such as that explored here is challenging, and there is 
currently significant uncertainty in the dynamics of cation breakthrough in managed soils that are 
well out of steady state. Moving forward, the production of large datasets that can constrain cation 
fluxes and carbon removal lag times, some of which could be produced by private-sector suppliers 
of carbon removal through EW, would represent a major step forward in our ability to accurately 
quantify cation storage across a range of scenarios and deployment strategies. There is a pressing 
need for these data to be rigorously and transparently evaluated, and for the results to be leveraged 
in the development of process-based models of time-dependent soil cation exchange  
 
5. Conclusions 
Soil biogeochemical modeling suggests that cation exchange dynamics in agricultural soils can 
lead to significant lags between alkalinity input from EW feedstocks and climate-relevant CDR. 
Lag times can vary locally from less than a year to many decades and will be controlled by 
background soil characteristics, land management practice, and land use history. In some cases, 
carbon removal lags can be reduced through thoughtful site selection and/or optimized soil pH 
management. However, carbon removal lags induced by soil cation storage should be ubiquitous 
in the field, and EW deployments that commodify carbon removal through charge balance must 
take storage-induced removal lags into account. In the near-term, this will require rigorous and 
transparent validation of reaction-transport models against real-world observations of alkalinity 
throughput in managed lands.  
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fraction [60], net primary production [61]. The model code used here (SCEPTER-v1.0) is publicly 
available in  [32]. 
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TABLES 
 
Table 1. Sources of observational data for model spin-up and tuning. 

Parameter Observational Dataset 
Temperature [54] 
Soil moisture [55] 

Runoff/infiltration [34] 
Soil pH [53] 

Soil organic matter [53] 
Cation exchange capacity [56] 

Nitrification rate [57] 
Base saturation [62] 

Soil erosion [58] 
Soil porosity [59] 

Cropland fraction [60] 
Net primary production (NPP) [61] 
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FIGURES: 
 

 
 
Figure 1. Schematic depiction of cation exchange dynamics that can lead to lag in carbon dioxide removal 
(CDR) following alkaline feedstock dissolution. In this case, wollastonite (CaSiO3) is dissolved by carbonic 
acid in the soil, releasing calcium (Ca2+) that is charge balanced by the production of bicarbonate (HCO3

-). 
Exchange of dissolved Ca2+ onto the soil exchange complex then displaces an equivalent charge of protons 
(H+). These protons then react with HCO3

-, driving CO2 production and undoing the initial CDR. It is only 
when the Ca2+ released from feedstock dissolution is exchanged back into solution that CDR will occur. 
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Figure 2. Gridded input data and boundary conditions from the coterminous U.S. used in our reaction-
transport model. Key input parameters include runoff (a), mean annual air temperature (MAT; b), soil 
moisture (c), above ground net primary production (NPP; d), soil organic matter (SOM; e), fertilization rate 
(f), initial soil pH (g), soil cation exchange capacity (CEC; h), and soil base saturation (i). Also shown are 
the four site locations discussed in the text (open circles), labelled by site number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Main Text | Kanzaki et al. | Manuscript accepted to Environmental Research Letters | 2025.05.06 

 17 

 

 
 
Figure 3. Results for gridded tuned parameters obtained during model spinup. Shown are soil cation 
exchange coefficients (KH/Na; a), soil surface dissolved calcium concentrations ([Ca]; b), organic carbon 
fluxes to the soil surface (Jorg; c), and turnover times for soil organic carbon (torg; d). Also shown are the 
four site locations discussed in the text (open circles), labelled by site number. See Supporting Information 
for validation of individual tuned model parameters. 
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Figure 4. Time-dependent cation and CO2 removal dynamics for the four sites discussed in the text. The 
upper panel for each site shows the relative distribution of calcium (Ca), the primary cation tracer in our 
simulations, between dissolved porewater Ca (Capw), exchangeable Ca (Caexch), and Ca advecting through 
the soil column (Caadv). Values are column-integrated across the 0.5-m model domain, and are normalized 
relative to corresponding control simulations. The lower panel for each site shows the carbon dioxide 
removal efficiency relative to perfect (stoichiometric) removal (CDReff) according to three CDR metrics — 
tracking dissolution of the solid phase (CDRdiss), tracking changes in soil CO2 diffusion (CDRdiff), and 
tracking advection of dissolved inorganic carbon (DIC) out of the model domain (CDRadv). Note the non-
linear x-axis scaling. 
 
 
 
 
 
 
 
 
 
 
 



Main Text | Kanzaki et al. | Manuscript accepted to Environmental Research Letters | 2025.05.06 

 19 

 
 
Figure 5. Regional variability in carbon dioxide removal efficiency relative to stoichiometric removal 
(CDReff) over time for the default (CaO) and “instantaneous” basalt cases (see text). Shown from left to 
right are cumulative CDReff values for time horizons of 1, 5, 10, and 50 years from the start of feedstock 
application. (a-d) CDReff values relative to changes in the advection of dissolved inorganic carbon (DIC) 
out of the model domain (CDRadv) for the default case with CaO as a feedstock; (e-h) CDReff values relative 
to changes in the advection of dissolved inorganic carbon (DIC) out of the model domain (CDRadv) using 
instantaneously dissolving basalt as a feedstock. (i-l) difference between CaO and instantaneous basalt 
cases in the advection of dissolved inorganic carbon (DIC) out of the model domain (∆CDRadv). 
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Figure 6. Aggregated regional lag times to achieve 25, 50, and 75% CO2 removal efficiency (CDReff) 
relative to changes in CO2 diffusion for the CaO deployment scenario. Regional lag times (bottom) are 
calculated as the average of lag times at all sites within each region (top) weighted by CaO deployment 
fluxes at each individual site.  
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Figure 7. Example simulations from Site 411 (Southeast region) showing the impact of target soil pH on 
advective CDR efficiency (CDRadv). Results are shown for various time horizons (t) after initial alkalinity 
modification. Increasing steady-state soil pH results in more rapid shift in base saturation of the soil 
exchange complex, reducing the timescale required to achieve a given CDR efficiency. This effect is 
particularly strong on sub-decadal timescales. 
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Text S1 – Model spinup and tuning 

We initialize the model by tuning four key unknown parameters: (1) a reference soil cation 
exchange coefficient (KH\Na; Main Text Fig. 3a); (2) a dissolved Ca2+ concentration at the upper 
boundary (e.g., specifying a background/historical alkalinity flux associated with carbonate 
weathering and agricultural liming; Main Text Fig. 3b); (3) input of soil organic carbon (Jorg; Main 
Text Fig. 3c); and (4) SOC turnover time (torg; Main Text Fig. 3d). These values are tuned to 
reproduce four site-specific observational parameters while the model is forced by the other 
boundary conditions shown in Main Text Fig. 2: (1) soil pH (Main Text Fig. 2g); (2) soil base 
saturation (Main Text Fig. 2i); (3) soil organic carbon (SOC) content (Main Text Fig. 2e); and (4) 
soil pCO2, which is estimated from soil temperature (Main Text Fig. 2b) and net primary 
productivity (NPP; Main Text Fig. 2d) according to [1]. It is important to note that the model does 
not currently include a process-based representation of SOC and mineral interactions, so we 
cannot draw conclusions regarding the impact of cations on the temporary or long-term 
storage of SOC in soils. In order to evaluate our parameterization of Ca storage and transport 
through the soil column we compare our simulations to field observations of (1) cation 
exchange coefficients (Text S2, Fig. S1a); and (2) Ca retardation factors – a metric for the 
transport times of Ca through a system relative to the fluid transport timescale (Text S3, Fig. 
S1b). To evaluate the tuned boundary Ca concentrations, we used gridded soil inorganic carbon 
(SIC) data to estimate site-specific background carbonate weathering, then compare the 
residual boundary Ca flux with available constraints on agricultural liming in the U.S. (Text S4, 
Fig. S2). Finally, we compare our tuned soil organic carbon turnover times with observed values 
for CONUS and with those from the land models of the Coupled Model Intercomparison Project 
Phase 6 (CMIP6; Text S5, Fig. S3).  

Text S2 – Soil cation exchange coefficients 
The formulation of cation exchange in SCEPTER is described in detail in [2]. Briefly, SCEPTER 
includes cation exchange with solid surfaces for H+, Na+, K+, Ca2+, Mg2+, and Al3+, with all cation 
exchange reactions assumed to be at equilibrium. In the model, the thermodynamic constants 
for cation exchange for K+, Ca2+, Mg2+, and Al3+ are scaled to the (tuned) exchange coefficient for 
H-Na exchange (KH\Na), according to logKY/Na = 1.1, 0.507, 0.665, and 0.41 for Y = K, Mg, Ca, and Al, 
respectively [3, 4]. In order to facilitate comparison of our tuned KH/Na values with observations, 
we define an apparent thermodynamic constant for H-Na exchange as: 

 , (S1) 

where f(H-X) and f(Na-X) are the charge-fractions of H+ and Na+ occupying exchangeable sites, 
respectively, and [H+] and [Na+] are the corresponding porewater concentrations of each cation 
(mol L-1). We compiled a database of studies reporting Na+ and H+ both in porewater and the 
exchangeable phase (Table S1) and use these data to calculate K¢H\Na values according to Eq. S1. 
We then obtain the K¢H\Na values from our initialized model ensemble according to Eq. S1, using 
the intrinsic KH\Na values and a factor that accounts for the surface charge effect [2, 3]. As shown 
in Eq. S1, the values of K¢H\Na are expected to be significantly influenced by porewater pH and 
therefore we compare values in logK¢H\Na-pH space (Fig. S1a). Observed K¢H\Na values show 
considerable variability and in many cases are characterized by ranging over orders of 
magnitude. However, both the general logK¢H\Na-pH scaling and absolute values for exchange 
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coefficients are consistent between the observation and our simulation at a comparable 
porewater pH range (Fig. S1a).  

Text S3 – Retardation factor for soil Ca 
One can obtain a Ca retardation factor (RCa) – the relative partitioning of Ca or any solute in the 
mobile phase moving through a mixed-phase system – in one of two ways: (1) by conducting 
“breakthrough” experiments in which Ca transport is examined relative to the transport of the 
fluid; or (2) direct calculation of RCa if the Ca distribution between porewater and the soil 
exchangeable phase is known. The first approach is challenging when attempting to compare 
model simulations with field data, in large part because breakthrough conditions in the field are 
difficult to control and because breakthrough dynamics can change with e.g., the initially 
loaded cation in the system [3]. However, Ca distributions are often readily available in the 
literature, allowing us to estimate RCa values based on the second approach. We calculate 
retardation factor for Ca according to: 

 , (S2) 

where <Ca-X> and CCa represent the concentrations of exchangeable Ca (mol m-3 soil) and 
aqueous Ca (mol m-3 porewater), respectively and q denotes soil moisture (m3 porewater m-3 
soil).  We compiled a database of studies that report both <Ca-X> and CCa (Table S2) and use 
these to calculate RCa based on Eq. S2. We assume a range for q  consistent with the 
observational data product used in the geospatial ensemble (0.13 to 0.31; Main Text Fig. 2). We 
then obtain RCa values from our initialized model ensemble from all sites, using the observed q  
value for each site. It is clear from Eq. S2 that CEC is a dominant control over RCa [e.g., 5], so we 
compare results from the initialized model ensemble to observations in CEC-RCa space (Fig. S1b). 
As with K¢H\Na values, estimates of RCa show considerable variability across the observed CEC 
range and can range considerably at a given CEC value. Nevertheless, our simulated values for 
RCa are within observed variability across a range of systems, indicating that our model does not 
artificially reduce the effectiveness of Ca transport.  

Text S4 – Historical agricultural liming 
Our initialization procedure includes a tuned calcium concentration at the upper boundary 
(Main Text Fig. 3b), which essentially represents a boundary alkalinity flux required to achieve 
observed soil pH (Main Text Fig. 2g). This boundary condition can be readily replaced with a 
CaCO3 input flux, which represents a net soil CaCO3 dissolution flux coming from both inputs 
due to agricultural liming and natural background CaCO3 weathering. In order to roughly 
estimate the background natural CaCO3 weathering flux we obtain soil CaCO3 (wt%) data at 
different soil depths from the Global Soil Dataset for use in Earth System Models [GSDE; 6], with 
available depths of 4.5, 9.1, 16.1, 28.9, 49.3, 82.9, 138.3, and 229.6 cm (Fig. S2a-c). These data are 
used to estimate a background CaCO3 weathering rate according to: 
 

 , (S3) 

where w is the cropland erosion rate [7], r is the bulk soil density (assumed here to be 1.5´106 
g/m3), and DCaCO3 is the difference in CaCO3 content between the deepest depth for cropland 
soils (assumed here to be either 49.3 or 82.9 cm) and the topmost soil layer (4.5 cm). Using this 
approach (Fig. S2d-f), we estimate a background CaCO3 weathering flux between 16 and 40 
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megatons (Mt = 106 tons) of CaCO3 per year for our cropland model ensemble using lower soil 
depths of 49.3 and 82.9 cm, respectively. This can be compared with an estimate for total CaCO3 
weathering from major CONUS rivers of ~80 MtCaCO3 y-1 [8], which is of the same order but 
larger because it also includes all non-cropland areas. If we subtract this background 
weathering from the gross CaCO3 input flux we estimate during initialization (Fig. S2g-i), we find 
a median area-normalized flux for croplands (18-25 gCaCO3 m-2 y-1), consistent with estimates 
of agricultural liming in the Mississippi River basin [9]. When integrated across CONUS croplands 
we obtain an estimate of 18-31 MtCaCO3 y-1, which can be compared to an estimated 
agricultural liming flux of ~20-40 MtCaCO3 y-1 from [10]. Though there remains a pressing need 
for robust gridded datasets of agricultural liming in cropland systems in the U.S. and globally, 
our results suggest that the upper boundary we place on alkalinity input during initialization is 
fully in line with our understanding of background and anthropogenic alkalinity fluxes to 
cropland soils in the U.S. 

Text S5 – Soil respiration and SOC turnover 
By default, SCEPTER employs a simplified representation of soil organic carbon (SOC) cycling, 
with three SOC classes of differing reactivity and a Michaelis-Menten dependence on soil 
oxygen [see 11]. In the analysis presented here, we use observations of MAT and NPP (Main Text 
Fig. 2b,d) to derive an estimate of soil pCO2 according to [1], then tune the input flux of SOC 
(Main Text Fig. 3c) and a turnover time representing organic matter reactivity (Main Text Fig. 
3d) to match soil pCO2 and SOC content (Main Text Fig. 2e). Our tuned values of SOC turnover 
time (torg, in years) can be compared with observations and more sophisticated (IPCC-class) land 
surface models by defining turnover time as SOC storage (gC m-2) divided by soil respiration rate 
(gC m-2 y-1), following [12]. We obtain observational SOC storage data from GSDE (Shangguan et 
al., 2014) and soil respiration rates from CARDAMOM [13]. Our model assumes a soil mixed layer 
of 25 cm, so we compare our calculated turnover times to observations for the upper 28.9 cm in 
GSDE (Fig. S3a,b). Our estimated torg values are generally consistent with those from 
GSDE/CARDAMOM, though there is a clear bias toward higher values in the Northeast U.S. and 
lower values in the Northern Plains region (Fig. S3b). These results can be compared to IPCC-
class land surface models, using an 82.9 cm depth horizon from GSDE as CMIP6 models 
represent the upper 1 m of soil by default (Fig. S3c,d). We find a comparable distribution of bias 
from GSDE/CARDAMOM observations in the CMIP6 ensemble mean (Fig. S3d) to those of our 
initialized model ensemble. Fully evaluating the mechanisms for bias in model SOC turnover 
and storage is a significant issue in Earth system models that is well beyond the scope of this 
study. However, these results indicate that our tuned values for SOC turnover are well in line 
with existing land surface models. 
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Reference Short description Note 

[3] Dutch soil/sediment  

[2, 14]  Mesocosm at Yale 
greenhouse 

Soil solution and soil chemistry listed in Kanzaki et al. (2024) 

[15]  Chinese soil at tea 
plantation 

 

[16]  Canterbury New Zealand CCa is from soil saturation paste extract. CEC and f(Ca-X) are read from diagram  

[17]  Pasture Pine in New 
Zealand 

For 10-20 cm solution pH is from tension lysimetry at 22 cm (other from centrifugation) 

[18]  Forest soil Norway  

[19]  European soil  

[20]  Douglas fir stand in France CCa is read from diagram 

[21]  Volcanic soils in Iceland  

[22]  Maury silt loam log K¢H\Na = log K¢H\K + 0.6 based on K¢H\K and assuming log K¢K\Na = 0.6 

[23, 24]  Hubbard Brook 
Experimental Forest in 
New Hampshire 

F(Ca-X) and f(H-X) are extrapolated when missing while soil solution data exist  

[25]  Canadian podzol CEC is calculated as a function of soil pH 

Table S1. References used to calculate empirical cation exchange coefficients (K’H/Na).   
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Reference Short description Note 

[2, 14]  Mesocosm at Yale greenhouse Soil solution and soil chemistry listed in 
Kanzaki et al. (2024) 

[16]  Canterbury New Zealand CCa is from soil saturation paste extract  

[17]  Pasture Pine in New Zealand 
 

[26]  Forest soil Sweden  CCa is assumed to be equivalent as base 
saturation 

[18]  Forest soil Norway 
 

[19] European soil 
 

[20] Douglas fir stand in France CCa is read from diagram 

[27] Hubbard Brook Experimental Forest in 
New Hampshire 

[28] Incubation of basalt powder with 
Malaysian Oxisol 

 

[29] 130-year-old beech/oak forest in 
Steigerwald Germany 

 

[21] Volcanic soils in Iceland 
 

[30]  Haplic Podzol in mature Norway spruce 
forest  

 

[22]  Maury silt loam 
 

[31] Japanese paddy fields CEC is calculated as sum of exch. base 
cations  

[25]  Canadian podzol CEC is calculated as a function of soil pH 

Table S2. References used to calculate empirical Ca retardation factors (RCa).   
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Figure S1. Comparison of logK¢H\Na as a function of porewater pH (left) and logRCa as a function 
of log CEC (right) between the tuned model ensemble and observational data. Observed data 
are depicted with different colors based on the soil type from the database summarized in 
Tables S1 and S2.   
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Figure S2. Estimates of soil CaCO3 gradient (a-c), background CaCO3 weathering flux (d-f), and 
inverted liming rate (g-h), across U.S. cropland. The soil CaCO3 gradient is calculated based on 
the GSDE CaCO3 dataset as the concentration difference between the bottom and surface, 
assuming the bottom as 49.3 (a, d, g), 82.9 (b, e, h), and 138.3 (c, f, i) cm depths, with 4.5 cm data 
used to represent the soil surface layer. The background CaCO3 weathering flux is a function of 
soil CaCO3 gradient, and the liming rate is calculated as the gross CaCO3 input flux (equivalent 
to the Ca upper boundary condition; Main Text Fig. 3b) in the initialized model subtracted by 
background CaCO3 weathering flux. See Text S4 for the details of the calculation.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

4 
 

 
 
Figure S3. Comparison of turnover time for soil organic carbon (torg) between observations (a,c), 
SCEPTER (b), and the CMIP6 model ensemble mean (d). Observational torg values are calculated 
with soil respiration from CARDAMOM dataset and soil organic carbon storage from GSDE. In 
(a) and (c), 28.9 and 82.9 cm depths are assumed as the bottom of the organic matter storage 
domain in order to be comparable to the depths of simulation domains for soil organic matter 
in SCEPTER (25 cm) and CMIP6 models (100 cm), respectively. In (b) and (d), the differences of 
simulated torg values relative to the corresponding observations (Dtorg) are shown. CMIP6 results 
are based on the mean torg values from 22 CMIP6 Earth System models. See Text S5 for further 
details of the calculation.  
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