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Abstract. One-dimensional reactive transport codes are powerful tools for examining a range of geologic, biogeochemical, and

agronomic phenomena. The reactive transport code SCEPTER (Soil Cycles of Elements simulator for Predicting TERrestrial

regulation of greenhouse gases) has been recently developed for simulating a range of processes controlling soil biogeochem-

istry in managed lands, with a particular emphasis on soil pH management and enhanced weathering as a carbon sequestration

strategy. While much of the basic framework implemented in SCEPTER is structurally and parametrically akin to existing5

reactive transport codes, its behavior has not been systematically benchmarked against other longstanding reactive transport

models. Here, we quantitatively evaluate the performance of SCEPTER relative to a range of other reactive-transport models

through a series of benchmarking experiments designed to assess the capacity of the code to simulate: (1) soil hydrology and

fluid transport; (2) charge balance during cation exchange; and (3) mineral dissolution/precipitation, with (2) and (3) accompa-

nied by diffusive/advective fluid transport and equilibria for aqueous speciation and gas dissolution into pore fluids. We show10

that the performance of SCEPTER is functionally identical to all other hydrological and reactive transport codes across the

simulated benchmark conditions and discuss the emerging need for a reactive transport model benchmarking procedure that is

fit for the purpose of predictive modeling of soil pH management in agricultural lands.

Copyright statement. Author(s) 2025. CC Attribution 4.0 License.

1 Introduction15

Theoretical models of fluid transport coupled with biogeochemical reaction networks are indispensable for understanding com-

plex, open geochemical systems where elements can move through multiple phases via biophysical transport processes with

biogeochemical reactions occurring across phases. Tracking and predicting the mechanics of natural terrestrial weathering

and element cycling through the Earth’s "critical zone", the dynamics of marine sediment diagenesis, and the environmental

impacts of human activity across scales all benefit enormously from the insights and predictive frameworks provided by re-20

active transport models (RTMs). Systematic documentation, benchmarking, uncertainty analysis, and validation of RTMs are
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thus critical for developing robust scientific understanding and for integrating theoretical reactive transport frameworks into

decision-making processes and environmental management strategies.

Conducting benchmark experiments for individual (or grouped) reactive transport codes represents an important first step

toward more comprehensive model validation and evaluation of structural and parametric model uncertainty (cf. Class et al.,25

2009; Steefel et al., 2015b; Tian et al., 2019). Ideally, a well-developed benchmark problem can be used to evaluate the struc-

tural capabilities, numerical implementation, and accuracy of a given RTM against an accepted set of results across multiple

independent code bases. Although this does not constitute a validation of any particular model for any specific application —

in essence it represents an evaluation of inter-model precision rather than model predictive accuracy — it can be used to assess

whether a given RTM or configuration adheres to accepted or established norms of behavior and performance in a well-defined30

context (e.g., Steefel et al., 2015a). Benchmarking problems with established results are thus extremely valuable for initial

assessment of newly developed RTM codes and for evaluation of major developments or updates to more well-established

RTM code bases.

Here, we present a series of benchmark exercises designed to evaluate the performance of the one-dimensional reactive

transport code Soil Cycles of Elements simulator for Predicting TERrestrial regulation of greenhouse gases (SCEPTER) rel-35

ative to the core functionalities of existing RTM frameworks. In Sec. 2 we describe the basic mechanics of SCEPTER as

relevant to the benchmarking exercises presented here, describe modifications to the model implemented for the purposes of

benchmarking, and outline the general procedure for each benchmarking simulation. In Sec. 3 we compare the results of our

benchmarking simulations with relevant results from other reactive transport codes. In Sec. 4 we discuss the results in the

broader context of model documentation, benchmarking, and validation, particularly in the context of predictive simulation of40

soil pH management in agricultural lands and intentional modification of soil inorganic carbon cycling. Lastly, in Sec. 5 we

provide a short summary and some recommendations for future work.

2 Methods

The physical and biogeochemical architecture and numerical implementation at the core of SCEPTER have been extensively

documented previously (Kanzaki et al., 2022, 2024), and the basic framework for physical transport and coupled geochemical45

reactions in SCEPTER is similar to that of a number of existing reactive transport codes (Steefel et al., 2015a; Kanzaki et al.,

2022). However, SCEPTER has been designed specifically for use in understanding the behavior of managed agricultural

soils. In particular, SCEPTER is equipped with a range of features for simulating soil charge balance and modifications to soil

management, such as implementation of a wide range of physical mixing styles (bio-diffusion by soil fauna and/or manual

tilling), explicit tracking of particle size distributions in solid phases added to the upper boundary of the model domain, and50

a protocol for in-silico simulation of conventional agronomic soil measurements (Kanzaki et al., 2024). These functionalities
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are not commonly implemented in other reactive transport codes and are thus not examined here, although benchmarking these

functionalities represents an important area for future work (see Sec. 4).

Here, we focus on the core functionalities commonly included in reactive transport codes (e.g., Steefel et al., 2015a).

Specifically, we examine the performance of SCEPTER in simulating: (1) soil hydrology and fluid flow; (2) cation exchange55

and charge balance between pore fluid and the soil exchange complex; and (3) geochemical reaction and mineral dissolution/-

precipitation. Soil hydrology (e.g., soil water content and infiltration rate) is a key factor determining the dynamics of soil

solution chemistry and gas transport, and is thus critical for both natural weathering (e.g., Clow and Drever, 1996; Stonestrom

et al., 1998; Maher, 2010) and carbon cycling in agricultural soils (e.g., Cipolla et al., 2021; Baek et al., 2023). It has also been

known for decades that cation exchange and transient storage on the soil exchange complex can cause significant time lags in60

cation transport through surface and subsurface flow paths (Haynes and Goh, 1980; Appelo, 1994), and this process may have

importance for the dynamics of carbon removal through enhanced weathering in cropland soils (Kanzaki et al., 2025). Lastly,

the dissolution and secondary formation of minerals act to control input and output fluxes of base cations, trace elements, and

inorganic carbon to the soil and are thus expected to govern instantaneous and time-integrated process rates in natural systems

and managed lands.65

2.1 Updates to relevant mechanics in the SCEPTER model

2.1.1 Soil hydrology

Soil hydrology is described using the mass conservation of water under the assumption of constant water density (e.g., Ireson

et al., 2023):

∂θ

∂t
=−∂q

∂z
+S , (1)70

where t and z are time (y) and soil depth (m), respectively, and θ, q, and S are the soil water content (m3 m−3), the vertical

water flux (m y−1), and additional source/sink terms (m3 m−3 y−1), respectively. Darcy’s law describes the water flux q as

being proportional to the gradient of the hydraulic head H (m):

q =−K∂H

∂z
=−K

(
∂ψ

∂z
− 1

)
, (2)

whereK is the hydraulic conductivity (m y−1) and ψ is the pressure head (m). Combining Eqs. (1) and (2), the governing equa-75

tion for soil water content is given as the Richardson-Richards equation (or Richards equation) (Richardson, 1922; Richards,

1931):

∂θ

∂t
=

∂

∂z

(
K

(
∂ψ

∂z
− 1

))
+S . (3)
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Solving Eq. (3) requires that the hydraulic properties of the soil be parameterized and related to each other. By default, we

adopt the following formulations of Schaap and Leij (2000):80

σ = (1+ (αψ)
n
)
−m

, (4)

θ = θr +(θs − θr)σ , (5)

K =Ksσ
L
(
1−

(
1−σ1/m

)m)2

, (6)

where σ is the soil water saturation ratio (m3 m−3), θr and θs are the residual and saturation θ, respectively, and Ks is

the hydraulic conductivity (K) at water saturation. The parameters α (m−1), n, m and L correspond to specific hydraulic85

properties of the soil, with m= 1− 1
n (Schaap and Leij, 2000). Note that when L= 0.5 Eq. (6) is identical to the Mualem–van

Genuchten model (van Genuchten, 1980; Schaap and Leij, 2000).

Richards equation is solved by the same time-implicit finite difference method as that adopted for solving the other

governing equations described in Kanzaki et al. (2022). The upper boundary condition is given as a specified water flux, while

a free-drainage boundary is specified for the lower boundary (Ireson et al., 2023). If enabled, the code can use the soil water90

saturation (σ) and flux (q) obtained by solving the Richards equation in the governing equations for aqueous and gaseous

phases in each time integration step (see Kanzaki et al., 2022, 2024). Currently, the option to use Richards equation for soil

water dynamics can be implemented when the code is compiled, at which point users can specify hydraulic properties (θr, θs,

α, n,m and L) in the input file h2odynpars.in. The parameter values used in the benchmark experiment for soil hydrology

in this study are used as default (see Sec. 2.2.1 and Code Availability).95

2.1.2 Activity coefficients and redox equilibrium

The chemical activity of a given aqueous species i ({i}) can differ from the concentration ([i], mol L−1) as a result of ionic

interactions, particularly for concentrated solutions with elevated dissolved solids. Calculation of activity coefficients (γi ≡
{i}/[i]) in SCEPTER is based on Debye-Hückel theory, and includes options to use the formulations adopted for WATEQ

(Truesdell and Jones, 1974), also referred to as the “B-dot” model (Bethke, 1996):100

logγi =− Az2i
√
I

1+Bai
√
I
+ biI , (7)

where zi is the charge of species i, I is ionic strength (= 1
2

∑
i z

2
i [i], mol L−1), and ai (Å) and bi (Lmol−1) are species-specific

parameters (though ai is somewhat related to the size of i, both ai and bi are in practice fitting parameters calibrated using

laboratory data). The parameters A (L0.5 mol−0.5) and B (L0.5 mol−0.5 Å−1) in Eq. (7) are given as follows (Truesdell and
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Jones, 1974):105

A=
1.82483× 106ρ1/2

(ϵT )3/2
, (8)

B =
50.2916ρ1/2

(ϵT )1/2
, (9)

where T is temperature (K), ρ is water density (g cm−3), and ϵ is the dielectric constant of water. By default, the parameters

ρ and ϵ are calculated as a function of temperature based on Wagner and Pruß (2002) and Malmberg and Maryott (1956),

respectively.110

The model also includes an option to implement a Davies formulation where ai = 1/B and bi = 0.2, eliminating the

need to provide species-specific values for ai and bi in Eq. (7) (e.g., Bethke, 1996; Zeebe and Wolf-Gladrow, 2001). The

current version of the SCEPTER code uses the Davies formulation by default, but in what follows we implement the B-dot

formulation for benchmark experiments in order to render the simulation protocol as consistent as possible across models (Sec.

2.2). In addition, prior versions of the SCEPTER code implement redox coupling and transformations for, e.g., Fe(II)/Fe(III)115

and S(−II)/S(VI), through kinetics (Kanzaki et al., 2022), while here we enable redox coupling through chemical equilibrium

in order to facilitate benchmark comparison across models (Sec. 2.2).

2.1.3 Mineral dissolution/precipitation kinetics

The rate laws describing mineral dissolution and precipitation are fundamental in determining the fate and transport of ele-

ments in reactive transport models. By default, mineral precipitation/dissolution kinetics for a solid phase j are formulated in120

SCEPTER according to the general form:

Rj = Sjkj (1−Ωj) . (10)

Here,Rj (mol m−3 y−1) is the rate of dissolution (Rj > 0) or precipitation (Rj < 0) of solid phase j, Ωj is the thermodynamic

saturation state of j in pore fluid, kj is a rate coefficient (mol m−2 y−1) that is a function of pore fluid pH and soil CO2 (for

carbonates), and Sj is the surface area of the species per unit bulk soil/rock volume (m2 m−3) that is exposed to pore fluid.125

The SCEPTER code relates Sj to the molar amount of solid phase j per unit bulk soil/rock volume (mj ; mol m−3) via a range

of user-specified scaling options, and by default scales reactive surface area as a function of porosity and hydraulic radius (see

Kanzaki et al., 2022).

We implement the following rate laws for mineral dissolution/precipitation in our benchmark simulations:

Rj = kj(1−Ωj) , (11)130

Rj = kj(ϕj/ϕ
0
j )

2/3(1−Ωj) , (12)

Rj =max
[
Aj

[
kacid
j {H+}n

acid
j + kalk

j {H+}n
alk
j

]
(ϕj/ϕ

0
j )

2/3(1−Ωj),0
]
, (13)
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where Rj and Ωj are given as above, ϕj is the volume fraction of j in bulk soil, with ϕ0j denoting the initial value of ϕj , Aj

(m2 m−3) is the surface area of j, and kj (mol m−3 y−1) is the rate constant for dissolution/precipitation of j. In the full

formulation (Eq. 13) the rate constant is parameterized as a function of pH, where {H+} denotes activity of H+, kacidj and135

kalkj (mol m−2 y−1) represent the rate constants in acidic and alkaline pH ranges, respectively, and nacidj and nalkj represent

the dependence on pH in the corresponding pH ranges. The default formulation in SCEPTER is very similar to Eq. (13),

but it differs in that a pH-independent term is also included in the rate law (e.g., Palandri and Kharaka, 2004), surface area

changes linearly with solid phase concentration rather than non-linearly (although the 2/3 scaling exponent is a user option;

see Kanzaki et al., 2022), and H+ is tracked with respect to concentration rather than activity (Kanzaki et al., 2022).140

2.2 Benchmark experiments

Our benchmark experiments on (1) soil hydrology, (2) cation exchange, and (3) mineral dissolution/precipitation are based

on experimental setups used by Ireson et al. (2023), Appelo (1994), and Mayer et al. (2015), respectively. More details on

individual benchmarks are provided below.

2.2.1 Soil hydrology145

We implement the "infiltration" benchmark exercise of Ireson et al. (2023), developed to benchmark the openRE model for

solving the Richards equation (Eq. 3) against the Hydrus-1D model (e.g., Šimůnek et al., 2005). The benchmark simulation

considers a 1.5 m deep soil column and a 10-year time series of daily precipitation as model input (Fig. 1a). Soil hydraulic

properties are specified according to the values given in Table 1, along with a uniform initial ψ of −3.59 m and a SCEPTER

model domain of 30 layers. Input data as well as the results from openRE and Hydrus-1D for this benchmark problem are150

available in the openRE repository (see Code Availability of Ireson et al., 2023).

2.2.2 Cation exchange

Appelo (1994) introduces a widely used theoretical formulation of cation exchange along with activity modification linked

to the surface potential of the exchange complex, and conducts multiple cation exchange experiments accompanied with so-

lute advection and dispersion using the widely used PHREEQM software. Here, we implement an example simulation using155

PHREEQC v3.0 (Parkhurst and Appelo, 2013) in which a 1.1 meq L−1 cation exchanger initially equilibrated with a solution

containing 1 mM Na, 0.2 mM K and 1.2 mM NO3 is flushed with a 0.6 mM CaCl2 solution, driven by advection and dis-

persion with a Péclet number of 40. The experimental setup is freely accessible as an example script of PHREEQC v3.0 along

with the software (Parkhurst and Appelo, 2013). Another reactive transport software OpenGeoSys (Kolditz et al., 2012) adopts

this cation exchange experiment as its benchmark exercise as well (v≥ 6.4.1; Naumov et al., 2021), allowing us to compare160
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cation exchange behavior across all three models. Although this benchmark has previously been implemented in v1.0 of the

SCEPTER code and compared with results from PHREEQC v3.0 (Kanzaki et al., 2024), we provide it here for complete-

ness and in order to evaluate consistency between all three reactive-transport frameworks and between v1.0 and v1.0.2 of the

SCEPTER reactive transport code. As discussed above, extensive description of the parameterization of cation exchange and

charge balance at the soil exchange complex is given in Kanzaki et al. (2024).165

2.2.3 Mineral dissolution/precipitation

Mayer et al. (2015) introduced a series of benchmark simulation exercises in which four different well-established reactive

transport models — CrunchFlow (Steefel, 2009), Flotran (Lichtner, 2007), HP1 (Jacques et al., 2008), and MIN3P (Mayer

et al., 2002) — are used to simulate acid rock drainage (ARD). The benchmark consists of three sets of numerical experiments

(ARD-B1 to ARD-B3) with staged levels of complexity and involving different varieties of primary and secondary minerals170

during the generation of ARD and its neutralization. Simulated gaseous/aqueous species are fixed throughout ARD-B1 to

ARD-B3, and include O2 and CO2 as gaseous/aqueous species and a comprehensive suite of Al, Ca, K, Cl, Si, S(VI)/S(−II)

and Fe(II)/Fe(III) aqueous species, with (uniform) initial and boundary conditions for gaseous/aqueous species remaining

unchanged across all experiments. Initial concentrations of total dissolved Al, Ca, K, C, Cl, Si, and Fe are given as 2.59×10−8,

1.43× 10−2, 9.00× 10−3, 2.49× 10−3, 1.14× 10−3, 1.93× 10−3, and 1.45× 10−4 mol L−1, respectively, while the initial175

total S concentration and soil partial pressure of O2 (pO2, atm) are tuned so that initial soil water pH and pe are fixed at 7.0

and −2.5, respectively.

Boundary conditions are established as fixed concentrations at the upper boundary and are set as 1.28×10−8, 1.90×10−3,

8.70×10−3, 1.14×10−4, 1.99×10−4, and 5.00×10−7 mol L−1 for total dissolved Al, Ca, K, Cl, Si, and Fe, respectively. The

total S concentration is tuned so that the boundary soil water pH is fixed at 5.0. Boundary conditions for gaseous O2 and CO2180

are set as atmospheric partial pressures (p): pO2 = 0.21 and pCO2 = 3.17×10−4 atm, respectively. The calculation of activity

coefficients is based on Eq. (7) with the parameters ai and bi given in the Supplementary Material of Mayer et al. (2015) for all

aqueous species considered in the benchmark simulation. Additional details on all aqueous species included in the benchmark

simulation and their thermodynamic constants can be found in the Supplementary Material of Mayer et al. (2015).

Throughout the benchmark experiments ARD-B1 to ARD-B3 the parameters relevant to aqueous and gaseous transport185

remain unchanged, characterized by a porosity of 0.5, free-phase diffusion coefficients in water and soil gas of 2.4×10−9 and

2.1× 10−5 m2 s−1, respectively, and a longitudinal dispersivity of 5.0× 10−4 m. Soil water content and flux are assumed to

be at steady state, with a water table located around the middle (2.5 m) of the 5 m model domain (Fig. 2 of Mayer et al., 2015)

and steady state q given as 0.3 m y−1. The effect of tortuosity on soil fluid diffusion is formulated as a function of soil fluid

saturation based on Millington (1959). The 5 m model domain is divided into 101 layers with equal thicknesses for numerical190

implementation of a finite difference method (Kanzaki et al., 2022). All simulations are conducted for 10 model years. The
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steady-state water saturation profile, as well as the results of all ARD benchmark experiments from CrunchFlow, Flotran, HP1,

and MIN3P, are available in the Supplementary Material of Mayer et al. (2015).

Simulation ARD-B1 is the simplest of the benchmark simulations and only considers acid rock drainage in mine tailings

by simulating oxidation of pyrite with soil O2 transported from the atmosphere — e.g., the only mineral involved is pyrite. We195

adopt Eq. (12) with kj = 3× 10−10 mol L−1 s−1 as the rate law for pyrite dissolution. The initial condition for pyrite is given

as a uniform distribution set at a soil volume fraction of 0.2 %. It is important to note that boundary conditions are not required

for solid species in any of the benchmark simulations explored here given that the transport of solid phases is not considered

in the original simulations of Mayer et al. (2015). We return to a consideration of this phenomenon in Sec. 4.

Simulation ARD-B2 adds complexity to ARD-B1 by additionally considering pH buffering by dissolution of carbonates200

and hydroxides and the precipitation of secondary minerals including calcite and gibbsite as primary minerals and ferrihydrite,

jarosite, and gypsum as potential secondary minerals. The dissolution rate law and initial concentration of pyrite remain un-

changed in ARD-B2. The dissolution/precipitation rate law for calcite is given as Eq. (12) with kj = 1× 10−8 mol L−1 s−1,

while those of the other mineral phases are given as Eq. (11) with the same kj value of 1×10−8 mol L−1 s−1. Initial conditions

for calcite and gibbsite are given as uniform distributions throughout the model soil column at soil volume fractions of 0.177205

and 0.083 %, respectively.

Finally, simulation ARD-B3 adds further complexity to ARD-B2 by including pH buffering by silicate weathering through

the addition of K-feldspar and muscovite as primary minerals and amorphous silica as a potential secondary phase, and switches

gibbsite from a primary mineral to a potential secondary mineral. The dissolution/precipitation rate laws and initial conditions

of the minerals simulated in ARD-B2 remain unchanged in ARD-B3 except that the initial gibbsite concentration is now210

zero as gibbsite is now specified as a secondary rather than a primary mineral phase. The dissolution rate laws of K-feldspar

and muscovite are given as Eq. (13), with the following parameter values (Mayer et al., 2015); Aj = 10 m2 L−1, kacidj =

10−9.93 mol m−2 s−1, kalkj = 10−16.5 mol m−2 s−1, nacidj = 0.5 and nalkj =−0.45 for K-feldspar, and Aj = 30 m2 L−1,

kacidj = 10−12.6 mol m−2 s−1, kalkj = 10−13.5 mol m−2 s−1, nacidj = 0.08 and nalkj =−0.10 for muscovite. Initial uniform

concentrations of K-feldspar and muscovite are set to soil volume fractions of 2.68 and 7.31 %, respectively.215

3 Results

3.1 Soil hydrology

Soil water storage (=
∫
θdz, m) and drainage from the model domain (q at depth of 1.5 m) are shown in Fig. 1b, c for openRE,

Hydrus-1D and SCEPTER when forced with the same 10-year daily precipitation record (Fig. 1a). All three models show

systematic increases in soil water storage and drainage following periods of intense rainfall. The results of SCEPTER are220
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essentially indistinguishable from those of openRE and Hydrus-1D, indicating that the optional implementation of Richards

equation in SCEPTER is fully consistent with existing 1D hydrological transport codes.

3.2 Cation exchange

As also discussed in Kanzaki et al. (2024, 2025), the processes controlling cation exchange in soil may in many cases be

critically important for the time dynamics of inorganic carbon cycling and mitigation of anthropogenic soil acidity. The simu-225

lations presented here indicate that replacement of K and Na by Ca requires variable pore volumes in all three models for each

cation due to the different affinities of individual cations for cation exchangeable sites (Fig. 2). However, we find negligible

differences in the breakthrough dynamics of CaCl2 between PHREEQC v3.0, OpenGeoSys v6.4.1 and SCEPTER v1.0.2. This

indicates that the representation of charge balance of key cations at the soil exchange complex is consistent across the three

model frameworks under the conditions simulated here. This result is further supported by data-model comparison of simulated230

cation exchange and empirical measurements from soil mesocosm experiments (Kanzaki et al., 2024).

3.3 Mineral dissolution/precipitation

3.3.1 ARD-B1

Chemical profiles after a 10-year ARD-B1 simulation by SCEPTER show a significant drop in soil pO2 within 2 m (Fig. 3d)

caused by consumption through oxidation of pyrite (Fig. 3b). Pyrite oxidation also leads to corresponding drops in pH and235

pe (Fig. 3a). Vertical solute concentration profiles (Fig. 3c) emerge from the combined effects of solute supply from pyrite

oxidation, aqueous speciation as impacted by pH and pe in soil pore fluids, and transport reflecting soil water content and

vertical fluid flux. All of the reactive transport codes examined here perform similarly, with Flotran and HP1 showing very

slight elevations in dissolved SO4 and Fe(II) at the bottom of the model domain relative to the other models. The results

from SCEPTER are virtually indistinguishable from those of CrunchFlow and MIN3P with respect to solution chemistry, the240

abundance of solid, gaseous, and aqueous species, and the timeseries of dissolved SO4 and Fe(II) (Fig. 3, 4).

The simulated integrated release fluxes of SO4 and Fe(II) and consumption of O2 species are also very similar across

all reactive transport codes (Table 2). Integrated SO4 release is virtually identical across CrunchFlow, Flotran, MIN3P, and

SCEPTER, with SO4 export from HP1 very slightly elevated relative to the other models (Table 2). As implied by the solute

profiles and timeseries results (Fig. 3, 4), differences in integrated Fe(II) release from the system are clustered, with Crunch-245

Flow, MIN3P, and SCEPTER yielding nearly identical results while HP1 and Flotran show slight elevations in Fe(II) flux

over the 10-year model integration period. The column-integrated O2 consumption is slightly lower in SCEPTER, though

the magnitude of this difference is small relative to the overall range in O2 consumption rates across the reactive transport
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codes included here (Table 2). Overall, the solute dynamics and tracer production/consumption are extremely similar across all

reactive transport codes for simulation ARD-B1.250

3.3.2 ARD-B2

The effect of adding calcite and gibbsite as primary minerals and introducing secondary mineral precipitation in ARD-B2 is

clear from the difference in chemical profiles at 10 model years (Fig. 5) relative to those of ARD-B1 (Fig. 3). In particular,

the profile of soil solution pH is much more complex, reflecting buffering to different values with depth as a result of the

additional mineral equilibria — a calcite buffer at pH ∼ 6, a gibbsite buffer at pH ∼ 4, a ferrihydrite buffer at pH ∼ 3, and a255

jarosite-buffered region above 1 m with a pH ∼ 2 (Fig. 5a–c). The profile of soil redox potential (pe) is largely controlled by

pyrite oxidation by O2 and thus the general features of the soil solution pe profile are not strongly impacted by the addition of

calcite and gibbsite except for small steps caused by step-wise changes in soil solution pH (Fig. 5a, b, e).

The inclusion of a more diverse suite of primary and secondary minerals has significant impacts on key solute and gas

species. Because of the production of secondary minerals containing SO4 and Fe(III) (Fig. 5c) — ferrihydrite (Fe(OH)3),260

jarosite (KFe3(SO4)2(OH)6), and gypsum (CaSO4 · 2H2O) — the concentrations of total dissolved SO4 and Fe are signifi-

cantly reduced (Fig. 5c). In addition, the dissolution of primary calcite from pyrite-derived acid production produces a complex

soil pCO2 profile — the resulting CO2 is released to the atmosphere via gas diffusion through shallower depths, but accumu-

lates below the water table, reaching a peak of almost 1 atm, and is then advected downward with pore fluid (Fig. 5e).

Although there are some slight differences between the results of the reactive transport codes — in particular for dissolved265

Fe(II) near the redox front and for soil pCO2 just below the depth of the water table (Fig. 5d, e) — overall the codes agree

very closely with respect to depth profiles of major gaseous, aqueous, and solid species. The simulated integrated release

fluxes of SO4 and Fe(II) and the integrated O2/CO2 fluxes all agree closely across models, with the CrunchFlow, MIN3P, and

SCEPTER codes again aligning very closely with respect to integrated solute fluxes (Table 3). Once again, the overall solute

dynamics and tracer production/consumption are extremely similar across all reactive transport codes for simulation ARD-B2,270

as are the depth profiles and abundances of key primary and secondary mineral phases.

3.3.3 ARD-B3

Further including dissolution of K-feldspar and muscovite and removing gibbsite as a primary mineral results in a higher pH

at depth but a lower pH around 1 to 1.5 m depths (compare Figs. 6a and 5a). These differences reflect the combined buffering

effects of primary mineral dissolution and secondary mineral precipitation with the modified mineral assemblage (Fig. 6b, c).275

Dissolution of K-feldspar and muscovite are driven by acid production through pyrite oxidation (Fig. 7), resulting in more
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effective acid neutralization in ARD-B3 relative to ARD-B2. However, buffering at jarosite solubility decreases the pore fluid

pH at shallower depths despite the additional buffering capacity of K-feldspar and muscovite (Mayer et al., 2015).

As in ARD-B2, soil solution pe is largely determined by pyrite oxidation by O2 and thus the general features of the

redox profile remain unchanged except for small steps reflecting soil solution pH. Despite the lack of ferrihydrite formation280

total concentrations of dissolved Fe remain low (Fig. 6d), as enhanced jarosite formation at the top of the soil column due to

K+ release mostly from K-feldspar offsets the lack of ferrihydrite precipitation (Fig. 6c). The accumulation of soil CO2 is

significantly reduced near the water table across all models, resulting at least in part from significantly higher pore fluid pH

and correspondingly higher solubility (Fig. 6e).

One of the more notable differences between reactive transport codes highlighted by Mayer et al. (2015) is a difference285

in Fe(II) and SO4 breakthrough at a depth of 2.5 m, such that HP1 and Flotran show transient elevations in dissolved con-

centrations relative to CrunchFlow and MIN3P (Fig. 8). As with benchmark simulations ARD-B1 and ARD-B2, the results

from SCEPTER are very close to those of CrunchFlow and MIN3P (Fig. 8). Interestingly, the integrated impacts of this slight

elevation in dissolved Fe(II) and SO4 in HP1 and Flotran do not dramatically impact the time-integrated fluxes of Fe(II) and

SO4 after 10 model years (Table 4). In any case, the depth profiles of major gaseous, aqueous, and solid species, the timeseries290

of dissolved Fe(II) and SO4 transport, and the cumulative fluxes of major solutes and gas species are all very similar across

models for benchmark simulation ARD-B3, with the results of SCEPTER again aligning most closely to CrunchFlow and

MIN3P.

4 Discussion

The suite of benchmark simulations provided here demonstrates that SCEPTER performs similarly to existing, well-established295

hydrologic and reactive transport codes with respect to fluid transport, cation exchange, and coupled biogeochemistry of key

gaseous, aqueous, and solid phases. Soil water storage and drainage in SCEPTER with Richards equation enabled are identical

to results from openRE and HYDRUS, while cation exchange during a benchmark breakthrough simulation is virtually identical

to both PHREEQC and OpenGeoSys. Slight differences in solute concentrations and transport are observed across the five

models examined here in the more complex coupled reactive transport experiments (ARD-B1 to ARD-B3), but given the300

level of process complexity in the models and the level of complexity in the benchmark simulations the results are essentially

identical across the reactive transport codes examined here.

The acid rock drainage benchmark simulation of Mayer et al. (2015) was chosen as a benchmark here because it evalu-

ates key acid-base processes — including silicate/carbonate transformations, pore fluid pH dynamics, and CO2 transport —

coupled with hydrologic transport in a near-surface environment on anthropogenic timescales. As such, it provides one of the305

only existing frameworks for evaluating some of the key features of anthropogenic soil pH management in agricultural systems
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that has been implemented across multiple well-established reactive transport codes. In this context, it is clear that the perfor-

mance of SCEPTER is functionally identical to the other reactive transport codes. However, there are a range of key processes

important for tracking the climate impacts of soil pH management in agricultural lands that cannot be assessed by this or any

other existing benchmark exercise. These include (but are not limited to) solid phase transport, evolution of reactive surface310

area and particle size distributions of anthropogenic feedstocks, simulation of conventional soil geochemical and agronomic

measurements from reactive transport model results, organic carbon cycling, nutrient amendment and cycling, dynamic crop

uptake of base cations and nutrients, and the representation of other greenhouse gases (e.g., CH4 and N2O).

For instance, functionality allowing for multiple styles of solid phase transport is likely to be important for predictive

representation of agricultural pH management. Transport of solid phases can include upward advection through uplift of parent315

rock and erosion of soil at the surface, and mixing of solid species in surface layers of soil through either natural bioturbation or

intentional soil mixing through discing, tilling, and plowing. Although the timescale of solid phase advection in natural settings

is usually assumed to be long enough that it can be ignored, in croplands agricultural management can lead to erosion rates that

are often significantly faster than those in natural weathering environments (Montgomery, 2007; Nearing et al., 2017; Thaler

et al., 2021; Quarrier et al., 2023). In addition, soil mixing practice in agricultural systems can span a wide range of intensities320

and mixing styles, from moldboard (inversion) ploughing to no-till, or hybrid approaches that depend on crop rotation and year

(e.g., Köller, 2003). These practices have variable but clear effects on geochemical fluxes and stocks in managed soils (Abdalla

et al., 2013; Huang et al., 2018; Guenet et al., 2021; Li et al., 2023; Meng et al., 2024), including impacts to local erosion

rates (Melland et al., 2016). As a result, agricultural extension recommendations for soil pH management practice often vary

according to tilling style (e.g., Ketterings et al., 2006).325

In addition, the representation of specific (reactive) surface area (SSA) and how it evolves over time can also be critical,

particularly for practices employing feedstocks that dissolve relatively slowly (e.g., basalt). This will likely need to include

the ability to track particle size distributions of feedstocks from (measured) starting distributions as they dissolve (Přikryl

et al., 2017; Ghanbarian et al., 2021; Lewis et al., 2021; Kanzaki et al., 2022), along with robust parameterization of shielding

and reaction inhibition by formation of secondary mineral phases (Velbel, 1993; Nugent et al., 1998; Zhu et al., 2010; Daval330

et al., 2018). Optimizing practice in light of these impacts will be crucial for deployment of enhanced weathering in practice,

given the need to account for upstream carbon emissions associated with feedstock grinding (Moosdorf et al., 2014; Beerling

et al., 2020; Zhang et al., 2023; Li et al., 2024). Validation of these process representations will benefit strongly from the

incorporation of key weathering tracers into reactive transport codes and isotope-specific benchmark exercises formulated in

the context of managed soils out of steady state, particularly the systematics of strontium (Sr) and lithium (Li) isotopes.335

There is also a practical need to evaluate varying techniques for simulating conventional soil geochemical and agronomic

measurements based on key outputs from reactive transport codes. Soil pH provides one important illustrative example (e.g.,

Kanzaki et al., 2024). Reactive transport codes commonly simulate pore fluid pH, and model frameworks that include cation

exchange have the potential to simulate the pool of exchangeable H+ on the soil exchange complex. However, in an agronomic
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context "soil pH" is an aggregate measurement that depends crucially on the laboratory buffer being used and the solid/fluid340

ratio employed during measurement. These can vary considerably from lab to lab, across commercial agronomic service labs

and local cooperative extensions (Kissel and Sonon, 2008; Fernandez and Hoeft, 2009; Donohue, 2023) . The abundances of

other exchangeable cations, soil organic pools, and nutrients are often similarly operational when measured in the field, and

particularly in the context of soil management in agricultural or forested lands. As a result, there is a clear need for transparent,

adequately benchmarked tools and protocols for inverting reactive transport model results for conventional soil measurements.345

Benchmarking this functionality across models will be especially critical for validation of reactive transport models against

many common field agronomic and soil geochemical data.

In any case, we suggest that there is a clear need for simulation benchmarks designed specifically to evaluate the behavior

of reactive transport codes in the context of soil pH management and enhanced weathering in agricultural systems. This

could involve setting a baseline level of process representation for benchmarking of full modeling systems, or could employ a350

modular approach in which individual key components of different modeling systems — e.g., inorganic geochemical reaction

and physical transport, organic carbon and/or nutrient subcycling, crop uptake and growth — are benchmarked separately and

for specific practical applications. A well-designed model benchmarking procedure could also have the added benefit of better

informing field trial design for robust model validation against empirical data — a process with particular salience given the

need to effectively augment soil health and food security in coming decades and ongoing compensatory claims against fossil355

fuel emissions based on enhanced weathering practices.

5 Conclusions

This study presents a series of benchmark experiments of the reactive transport code SCEPTER in order to examine its perfor-

mance in simulating soil hydrology, cation exchange, and key mineral dissolution/precipitation reactions coupled to physical

transport. We find that the performance of SCEPTER is functionally identical to the existing models examined here — soil360

water dynamics in the SCEPTER reactive transport code are consistent with openRE and Hydrus-1D, cation dynamics through

interaction with the soil complex, advection, and dispersion are consistent with results from PHREEQC and OpenGeoSys,

and multi-phase reactive mass transport in partially saturated porous media during the generation and attenuation of acid rock

drainage are consistent with MIN3P, CrunchFlow, Flotran and HP1. A key avenue for future work will be the design and imple-

mentation of benchmarking protocols appropriate for assessing the behavior of existing and newly developed reactive transport365

codes specifically in the context of soil pH management and greenhouse gas cycling in managed lands.

Code availability. The source codes of the model are available at GitHub (https://github.com/cdr-laboratory/SCEPTER) under the GNU

General Public License v3.0. The specific version of the model used in this paper is tagged as “v1.0.2” and has been assigned a doi
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Figure 1. 10 year long simulations of (b) soil water storage and (c) drainage, in response to (a) daily precipitation, by openRE, Hydrus-1D

and SCEPTER.
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Figure 2. Simulation of 0.6 mM CaCl2 solution breaking through 1.1 meq L−1 cation exchanger initially equilibrated with solution

containing 1 mM Na, 0.2 mM K and 1.2 mM NO3 via advection and dispersion with a Péclet number of 40 by PHREEQC, OpenGeoSys

and SCEPTER.
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Figure 3. Depth profiles of (a) soil solution pH and redox potential (pe), (b) soil volume fraction (ϕ) of pyrite, (c) concentrations of total

Fe(II), Fe(III) and SO4 species and (d) partial pressure of soil gas O2 (pO2), at 10 model years of ARD-B1 simulation by CrunchFlow,

Flotran, HP1, MIN3P and SCEPTER. See Sec. 2.2.3 for the details on experimental setup of ARD-B1.
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Figure 4. Time evolution of total Fe(II) and SO4 concentrations at the soil bottom through ARD-B1 simulation by CrunchFlow, Flotran,

HP1, MIN3P and SCEPTER. See Sec. 2.2.3 for the details on experimental setup of ARD-B1.
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Figure 5. Depth profiles of (a) soil solution pH and pe, (b) soil volume fractions (ϕ) of pyrite, gibbsite and calcite, (c) soil volume fractions

(ϕ) of jarosite, gypsum and ferrihydrite, (d) concentrations of total Fe(II), Fe(III) and SO4 species and (e) partial pressures of soil gas O2

(pO2) and CO2 (pCO2), at 10 model years of ARD-B2 simulation by CrunchFlow, Flotran, HP1, MIN3P and SCEPTER. See Sec. 2.2.3 for

the details on experimental setup of ARD-B2. Note that the results for total Fe(II), Fe(III) and SO4 concentrations from CrunchFlow are

not available in the Supplementary Material of Mayer et al. (2015) and thus are not shown in (d). These should be essentially identical to

those of MIN3P (see Fig. 5 in Mayer et al., 2015).
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Figure 6. Depth profiles of (a) soil solution pH and pe, (b) soil volume fractions (ϕ) of pyrite, gibbsite and calcite, (c) soil volume fractions

(ϕ) of jarosite, gypsum and ferrihydrite, (d) concentrations of total Fe(II), Fe(III) and SO4 species and (e) partial pressures of soil gas O2

(pO2) and CO2 (pCO2), at 10 model years of ARD-B3 simulation by CrunchFlow, Flotran, HP1, MIN3P and SCEPTER. See Sec. 2.2.3 for

the details on experimental setup of ARD-B3.
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Figure 7. Depth profiles of (a) reaction rates and (b) saturation index (SI = logΩ) of K-feldspar and muscovite, at 10 model years of ARD-

B3 simulation by CrunchFlow, Flotran, HP1, MIN3P and SCEPTER. In (a) reaction rate is negative and positive when a mineral dissolves

and precipitates, respectively, as in Mayer et al. (2015) (cf. Eq. 13). See Sec. 2.2.3 for the details on experimental setup of ARD-B3.
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Figure 8. Time evolution of total Fe(II) and SO4 concentrations at 2.5 m soil depth through ARD-B3 simulation by CrunchFlow, Flotran,

HP1, MIN3P and SCEPTER. See Sec. 2.2.3 for the details on experimental setup of ARD-B3.
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Table 1. Soil hydraulic properties for benchmarking simulation of fluid transport.

Parameter Description Units Value

θr residual soil water content m3 m−3 0.131

θs saturation soil water content m3 m−3 0.396

α inverse air-entry pressure m−1 0.423

Ks saturation hydraulic conductivity m d−1 0.0496

L pore connectivity factor – 0.5

n pore size distribution factor – 2.06

m [derived from n] – 0.515
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Table 2. Cumulative flux (mol m−2) for experiment ARD-B1 over 10 model years.

Model O2-ingress SO4-release Fe(II)-release

CrunchFlow 344.0 116.7 37.3

Flotran 345.9 116.4 39.6

HP1 349.0 123.0 39.8

MIN3P 344.1 116.5 37.2

SCEPTER 342.3 116.9 37.3
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Table 3. Cumulative flux (mol m−2) for experiment ARD-B2 over 10 model years.

Model O2-ingress SO4-release Fe(II)-release CO2-egress

CrunchFlow 346.6 51.3 0.8 93.1

Flotran 346.1 52.7 1.0 92.9

HP1 350.0 53.1 1.6 95.1

MIN3P 343.8 51.4 0.8 92.8

SCEPTER 343.3 51.5 0.8 94.5
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Table 4. Cumulative flux (mol m−2) for experiment ARD-B3 over 10 model years.

Model O2-ingress SO4-release Fe(II)-release CO2-egress

CrunchFlow 344.3 53.6 3.6 85.0

Flotran 345.8 53.9 3.3 84.6

HP1 350.0 54.6 4.9 87.2

MIN3P 343.5 53.9 3.8 84.5

SCEPTER 343.2 53.9 3.8 85.9
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