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Abstract15

Carbon dioxide removal (CDR) is a crucial component of climate change mitigation strategies,16

and ocean afforestation via seaweed cultivation has been touted as a promising marine CDR17

(mCDR) approach due to high productivity and favorable carbon-to-nutrient ratios. However,18

global mCDR models generally overlook iron limitation, a potential bottleneck for sustainable19

seaweed cultivation. While competition with phytoplankton for nutrients could even reduce20

ocean carbon uptake. Here we assess the potential for this unintended consequence using21

an ocean biogeochemical model. We find that iron limitation reduces afforestation potential22

three-fold after already accounting for N and P limitation. Variations in nutrient dynamics23

contribute to substantial uncertainty in projections of CDR efficiency, with global CDR effi-24

ciency ranging from -43% to +78%. This study underscores the need for iron dynamics to be25

included in projections of ocean afforestation. Failing to account for such nutrient dynamics26

risks overestimating the efficacy of seaweed-based CDR as a mitigation strategy.27
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1 Introduction31

In response to the urgent challenge posed by climate change, strategies aimed at limiting global32

warming to 1.5 or 2°C by 2100 require substantial deployment of carbon dioxide removal (CDR),33

with projected targets ranging from 24 to 860 GtCO2 throughout the 21st century [1]. One proposed34

CDR technique is seaweed cultivation, which is based on upscaling well-established coastal seaweed35

aquaculture to the near-shore open ocean, followed by the export of the harvested biomass to the36

deep ocean. The potentially high carbon fixation capacity of seaweed makes it an attractive option37

for CDR [2, 3]. However, the CDR potential and possible side effects of seaweed cultivation are38

poorly characterized [4, 5].39

Notably, recent research has identified iron limitation as a possible bottleneck for sustainable40

seaweed cultivation [6]. However, iron dynamics have yet to be incorporated into seaweed-based41

CDR projections, which have focused on nitrate and phosphate macronutrient constraints. As a42

vital micronutrient, iron is required for essential metabolic functions of seaweed, including photo-43

synthesis, growth, and nitrogen assimilation [7]. Iron also limits phytoplankton production in many44

ocean regions [8].45

Nutrient (nitrate (N), phosphate (P), and iron (Fe)) stoichiometry (i.e. demands) and uptake46

affinities influence seaweed-phytoplankton competition dynamics, determining the CDR benefit of47

seaweed [9]. If seaweed are less nutrient efficient than phytoplankton, they could theoretically result48

in negative CDR. If the assessed scope of nutrient demands and affinities were limited, it could49

bias assessments of seaweed cultivation potential. Yet, studies that examined the CDR potential50

of seaweed cultivation have generally tested a limited scope of stoichiometry (e.g., C:N ratios of51

16.3 and 20 (and +/- 10%), and C:P ratios of 49 and 111, as reported by Berger et al. [10] and52

Wu et al. [11], respectively) and one nutrient affinity, and those that have tested variable nutrient53

affinity have focused on seaweed production potential and overlooked geochemical and biological54

feedback mechanisms that influence CDR [12]. As such, there are currently poor constraints on55

the CDR potential of seaweed cultivation, its environmental co-benefits and consequences, and the56

potential optimum regions for deployment [9, 13].57

This modeling study is the first to examine the effects of iron limitation [6, 9], nutrient demands,58

and affinities on ocean afforestation potential and CDR efficiency. Together, these two factors define59

the overall CDR potential of seaweed cultivation, i.e. product of the ocean afforestation potential60

(the amount of seaweed that can be grown) and the CDR efficiency (the amount of atmospheric61

carbon removed per ton of seaweed biomass) [13]. We conduct an ensemble of simulations exploring62

the influence of nutrient limitation, affinity, and demand on seaweed CDR in Exclusive Economic63
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Zones (EEZs) of the global ocean. Specifically, we assess how nutrient limitations, affinities, and64

demands affect phytoplankton and the overall ocean afforestation capacity and CDR efficiency.65

We used a modified version of the global ocean biogeochemical model NEMO-PISCES to66

simulate seaweed cultivation, accounting for dissolved inorganic carbon (DIC) and nutrient uptake67

based on light, temperature, and nutrient availability. We simulated 25 years of cultivation in EEZs68

followed by 50 years of cessation under a high-mitigation scenario (Representative Concentration69

Pathway 2.6; RCP2.6) for the period 2025-2100. The choice of RCP2.6 reflects the consensus that70

CDR approaches should target eliminating residual emissions alongside substantial reductions in71

CO2 emissions [1]. With the exception of afforestation potential simulations, seaweed production72

is scaled by enhancing afforestation in nutrient-rich regions to achieve a global production target73

of 0.5 PgC yr-1. This ensures CDR efficiency and environmental impact comparisons are performed74

at a consistent afforestation level. To assess the impact of nutrient demands and affinities on CDR75

potential, we compiled published data on stoichiometric ratios extending the work of Sheppard et76

al [9] with C:Fe ratios (Fig. 1). We performed an ensemble of simulations that encapsulated the77

observed range in seaweed stoichiometry and nutrient uptake kinetics.78

Fig. 1 Seaweed nutrient demand compared to phytoplankton. The carbon to (A) nitrogen, (B)
phosphorus, and (C) iron ratios. High carbon-to-nutrient ratios correspond to a low nutrient demand for carbon
fixation. Seaweed mean, maximal (max.), and minimal (min.) carbon-to-nutrient ratios are shown. Bounds are
25% greater (lower) than the maximum (minimum) biological parameter values found in the literature. Dotted
red lines represent phytoplankton carbon-to-nutrient ratios used in the PISCES model, specifically the Redfield
ratios for nitrogen and phosphorus (C:N and C:P) and the minimum carbon-to-iron quota (C:Fe) (the carbon-
to-iron quota in PISCES varies from 25,000 to 1,000,000).
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2 Results79

2.1 Ocean afforestation potential is limited by iron80

Nitrogen and phosphorus limitations constrain ocean afforestation potential, confining high produc-81

tion areas primarily to high latitudes, and upwelling regions. N and P limitations on seaweed growth82

(simulation CNP) reduce ocean afforestation potential compared to the idealized afforestation83

potential without nutrient constraints (simulation C), with only 15% of the idealized afforestation84

potential achieved after 25 years of cultivation (Fig. 2 a and b). Mid-latitude regions are most85

affected, with production reduced by 80–100%. Approximately 36% of the cultivation area experi-86

ences near-total production loss, with reductions exceeding 95% relative to the idealized potential.87

In contrast, high-latitude and upwelling regions maintained near-complete production.88

The inclusion of iron limitation further diminishes afforestation potential, with only 5% of the89

idealized capacity realized (Fig. 2 a and c). Concurrent N, P, and Fe limitation (simulation CNPFe),90

therefore reduces afforestation potential by a factor of three compared to the simulation where91

only macronutrient limitations are considered (simulation CNP). This limitation further suppresses92

production in high latitudes and upwelling regions, confining viable cultivation primarily to coastal93

zones. Pacific islands exhibit a production decline of 90% to the complete absence of production,94

while the Southern Ocean shows reductions of 90–99%, except in coastal areas. Overall, 63% of95

the cultivation area faces near-total production loss, with reductions exceeding 95% relative to96

the scenario without nutrient limitation. Only a limited number of coastal regions maintain viable97

production.98
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Fig. 2 Impact of nutrient limitation on afforestation potential. Maps of cumulative seaweed produc-
tion (kgC m-2) after 25 years of cultivation under three nutrient limitation scenarios: (A) no nutrient limitation
(simulation C; limited only by temperature and light), (B) nitrate and phosphate limitation (simulation CNP),
and (C) nitrate, phosphate, and iron limitation (simulation CNPFe).

2.2 Seaweed CDR is counterproductive in 20% of the ocean when99

iron is accounted for100

Seaweed-based CDR generally enhances ocean carbon uptake, but its effectiveness is strongly101

influenced by nutrient limitations, which can sometimes cause a reduction in the ocean carbon102

sink. In the absence of nutrient constraints, seaweed cultivation causes an additional carbon flux103

of up to 1.76 GtCO2 yr-1 (0.48 GtC yr-1) for global seaweed production of 0.5 GtC yr-1, equivalent104

to 1.83 GtCO2 yr-1 (Fig. 3, simulation C). This represents a CDR efficiency of 82% after 25105

years of cultivation and 99% after 50 years post-cessation. Macronutrient limitations reduce the106

maximum CDR flux to 1.66 GtCO2 yr-1 (0.37 GtC yr-1), despite maintaining the same global107

seaweed production of 0.5 GtC yr-1 (Fig. 3, simulation CNP). This reduction is driven by the108
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negative biological feedback associated with a decline in phytoplankton primary production due109

to nutrient diversion (Fig. 4). Consequently, the CDR efficiency decreases to 64% after 25 years110

of cultivation and only 81% after 50 years post-cessation. The inclusion of iron limitation further111

lowers the CDR flux to 0.73 GtCO2 yr-1 (0.2 GtC yr-1), with seaweed production remaining at 0.5112

GtC yr-1 (Fig. 3, simulation CNPFe) due to enhanced biological feedback. Under these constraints,113

CDR efficiency drops to 24% after 25 years and recovers only to 60% after 50 years post-cessation.114

Regionally, in the absence of nutrient limitations, the CDR flux is relatively uniform (Fig. 3 D),115

aligning with areas of maximum afforestation potential (Fig. 2 A). When macronutrient limitations116

are considered, the highest CDR fluxes occur in regions of maximum afforestation potential and117

nutrient-rich areas, particularly in the Southern Ocean and upwelling zones, with fluxes reaching118

up to 52 gCO2 m-2 yr-1 The inclusion of iron limitation, however, causes a substantial shift, with119

approximately 20% of the ocean exhibiting negative CDR fluxes, including many regions that had120

previously exhibited high CDR fluxes under N and P limitation. In these areas, instead of enhancing121

carbon uptake, seaweed cultivation results in a net reduction in ocean carbon uptake. For example,122

the Pacific eastern boundary upwelling zone shows a negative CDR flux of up to -50 gCO2 m-2
123

yr-1. Under combined N, P, and Fe limitations, the highest CDR fluxes are found in the Northwest124

Pacific and Northeast Atlantic, where local fluxes reach up to 29 gCO2 m-2 yr-1.125
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Fig. 3 Impact of nutrient limitation on CDR flux and efficiency. Time series of (A) total air-sea
carbon flux in the control simulation (RCP2.6 scenario) and in seaweed cultivation simulations under three
nutrient limitation scenarios: no nutrient limitation (C; limited only by temperature and light), nitrate and
phosphate (CNP), and nitrate, phosphate, and iron (CNPFe). (B) CDR flux in these scenarios; (C) cumulative
CDR flux and CDR efficiency. (D) Maps of the CDR flux (gCO2 m-2 yr-1) for C, CNP, and CNPFe, averaged
over 25 years of cultivation. Dashed lines represent the threshold of 0.15 kgC m-2 yr-1 for seaweed production.

2.3 Iron amplifies the biological feedback limiting seaweed CDR126

efficiency127

Under macronutrient limitation, a decrease in carbon export flux of up to 0.31 PgC yr-1 (4% decline)128

is observed after 25 years of cultivation compared to the control (Fig. 4, CNP). The cumulative flux129

reaches -6.1 PgC after 25 years of cultivation and -9.2 PgC 50 years after cessation. This reflects130

a reduction in carbon sequestration by the biological carbon pump (BCP), resulting in diminished131

CDR efficiency due to seaweed nutrient consumption (Fig. 3 C).132

The introduction of iron limitation further exacerbates this reduction of the carbon export flux133

to 0.45 PgC yr-1 (5.8% decline) reached during the second year of cultivation (Fig. 4, CNPFe).134

After cultivation ends, the carbon export flux recovers quickly, rising by 0.28 PgC yr-1 within two135

years. Despite the rebound, cumulative carbon export flux under N, P, and Fe limitations decreases136

by 14.4 PgC after 25 years of cultivation and recovers to only 10.6 PgC 50 years after cessation,137

with most recovery occurring within the first 15 years.138

Regionally, reductions in carbon export flux under N and P limitations are most pronounced in139

the western equatorial Pacific, where fluxes decrease by 12.0 gC m-2 yr-1 (Fig.4 D), aligning with140
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the decline in NPPPHY (Fig.5 C and D). The inclusion of iron limitation leads to further reductions,141

with carbon export fluxes dropping by up to 60 gC m-2 yr-1, particularly in the Southern Ocean142

and along eastern boundary currents. In contrast, certain subtropical regions show an increase in143

carbon export flux of up to 10 gC m-2 yr-1.144

Fig. 4 Impact of seaweed nutrient limitation on carbon export flux at 100 m. Time series of (A)
global carbon export flux at 100 m (FCexp, 100) in the control simulation (RCP2.6 scenario) and in seaweed
cultivation simulations under two nutrient limitation scenarios: nitrate and phosphate (CNP), and nitrate,
phosphate, and iron (CNPFe). Time series of (B) change in global FCexp, 100 (PgC yr-1) and (C) cumulative
global FCexp, 100 (PgC) for the two nutrient limitation scenarios (D) Spatial change in FCexp, 100 averaged
over 25 years of cultivation relative to the control simulation (gC m-2 yr-1). Dashed lines represent the threshold
of 0.15 kgC m-2 yr-1 for seaweed production.

2.4 Seaweed iron consumption amplifies phytoplankton production145

decline146

In the control simulation (without seaweed cultivation) under the RCP2.6 scenario, phytoplankton147

primary production (NPPPHY) shows a climate change signal, with a global decline peaking in148

2040 followed by a gradual recovery. In the idealized simulation C, where seaweed only consumes149

DIC (no nutrient limitation), phytoplankton production remains unaffected, showing no deviation150

from the control simulation. However, when N and P limitations are introduced, phytoplankton151

primary production decreases by up to 2 PgC yr-1, decreasing by 4.8% global NPPPHY compared to152

the control (Fig. 5, CNP). The introduction of iron limitation further exacerbates this reduction,153

decreasing phytoplankton primary production by up to 3.5 PgC yr-1 in the second year of cultivation,154
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corresponding to an 8% decrease in global NPPPHY (Fig. 5, CNPFe). However, after cessation of155

cultivation, phytoplankton production recovers quickly increasing to 1.9 PgC yr-1 two years after156

cessation.157

Regionally, N and P limitations trigger NPPPHY declines in the western equatorial Pacific, with158

phytoplankton production declining by 106 gC m-2 yr-1 — equivalent to a 57% reduction (Fig.5159

C and D). The addition of iron limitation intensifies this decline to 268.3 gC m-2 yr-1, or an 81%160

reduction, particularly in the Southern Ocean and eastern boundary regions. However, some regions161

in the subtropics exhibit increased phytoplankton production of up to 90 gC m-2 yr-1, corresponding162

to a 97% increase under seaweed N, P, and Fe consumption.163

Fig. 5 Impact of seaweed nutrient limitation on phytoplankton production. Time series of (A) global
phytoplankton net primary production (NPPPHY) in the control simulation (RCP2.6 scenario) and in seaweed
cultivation simulations under two nutrient limitation scenarios: nitrate and phosphate (CNP), and nitrate,
phosphate, and iron (CNPFe); (B) change in global NPPPHY in these two scenarios. Change in phytoplankton
net primary production compared to control simulation (no seaweed cultivation) averaged over 25 years of
cultivation in (C) absolute, (D) relative difference. Dashed lines represent the threshold of 0.15 kgC m-2 yr-1

for seaweed production.
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2.5 Favorable regions for seaweed CDR effectively non-existent164

Favorable regions for seaweed-based CDR were identified as regions with high afforestation poten-165

tial, high CDR efficiency, and minimal environmental impacts on phytoplankton. Under nitrate and166

phosphate limitations, a vast area of 24 million km2 or 20% of global EEZs, was determined to167

have high afforestation potential (Fig. 6 A, green). Some regions of high afforestation potential168

coincided with areas of high CDR flux, including the Pacific and Atlantic upwelling zones and the169

Southern Ocean (Fig. 6 A, magenta). Phytoplankton impacts were mostly localized in the western170

equatorial Pacific, likely due to upstream cultivation effects around Pacific islands. The Southern171

Ocean and upwelling regions stood out as optimal areas with high production, high CDR fluxes,172

and minimal impacts on phytoplankton.173

When iron limitation is introduced, the area with high afforestation potential shrank drastically174

to 4 million km2, representing 3% of global EEZs. No regions exhibited both high CDR flux and high175

production, except a small region in the Senegalese upwelling center (Fig. 6 B). High phytoplankton176

impact areas expanded, excluding most of the Southern Ocean and upwelling systems. Under177

N, P, and Fe limitations, regions with high CDR flux and minimal phytoplankton impact were178

concentrated in the western North Pacific and parts of the North Atlantic.179

Fig. 6 Favorable seaweed cultivation regions considering nutrient limitation and phytoplankton
impacts. Regions where seaweed cultivation is simulated to result in high afforestation potential (green), high
CDR flux (magenta), and low phytoplankton impact (grey, hatches), under two nutrient limitation scenarios:
(A) nitrate and phosphate, and (B) nitrate, phosphate, and iron.
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2.6 Phosphorus demand has the greatest capacity to reduce CDR180

The CDR potential of seaweed afforestation depends on both the scale of afforestation and carbon181

removal efficiency. Variability in nutrient demand and affinity introduces uncertainty into both182

afforestation potential (Fig. 7 A) and CDR potential (Fig. 7 B) via the impact on the BCP (Fig.183

7 C). High nutrient affinity reflects the ability to compete more efficiently for available nutrients,184

thereby reducing nutrient limitation. Conversely, nutrient demand plays a key role in determining185

whether seaweed cultivation enhances ocean carbon uptake and provides additionality. Ultimately,186

the relative nutrient demands of seaweed and phytoplankton determine whether seaweed can fix187

more carbon than phytoplankton for a given nutrient pool.188

Among the nutrients simulated, phosphorus demand introduces the greatest uncertainty into189

both afforestation potential (Fig. 7 A) and CDR flux (Fig. 7 B), followed by iron and then nitrogen.190

The lower P demand bound (C:P of 461) of seaweed can increase afforestation potential by up to191

53%, a trend consistent over 25 years of cultivation. However, high P demand (C:P of 15) results192

in a net reduction in ocean carbon uptake, with a cumulative loss of 15 PgC over 25 years of193

cultivation, (i.e. negative CDR). This negative CDR flux persists, even after 50 years of cessation,194

due to a long-lasting BCP feedback that reduces carbon export by 58 PgC after 25 years and does195

not recover.196

Iron demand introduces the second largest source of uncertainty. The high Fe demand bound197

(C:Fe ratio of 172) reduces afforestation potential by 28%, while also leading to negative CDR, with198

a 9.4 PgC reduction in ocean carbon uptake over 25 years, associated with a 43.6 PgC decrease in199

carbon export (Fig. 7 C). Conversely, low Fe demand (C:Fe ratio of 23,214) enhances both the CDR200

flux and efficiency, with an additional 9.8 PgC of ocean carbon uptake after 50 years of cessation,201

corresponding to 78% efficiency, and reduced impact on carbon export (-6.7 PgC after 25 years).202

In comparison, variability in nitrogen demand has a much smaller effect on ocean afforestation203

potential, with projection anomalies of less than 2%. The impact of N demand on CDR flux is more204

pronounced. High N demand (C:N ratio of 4) results in a globally negative CDR flux, with losses205

of up to 3 PgC from reduced ocean carbon uptake, and a 12% reduction in global phytoplankton206

production. In contrast, low N demand (C:N ratio of 144) enhances CDR, with CDR efficiency207

reaching 70% after 50 years of cessation.208

Variability in nutrient affinity also contributes to uncertainty in afforestation potential. Vari-209

ations in iron affinity have the strongest effect, with high Fe affinity (KFe of 0.29 nmolFe/L)210

increasing afforestation potential by 85%, while low Fe affinity (KFe of 5.15 nmolFe/L) decreases211

it by 43% (Fig. 7, right panels). Variations in nitrogen affinity are the second most influential,212
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with a high affinity (KN of 1.1) increasing afforestation by 13%, and a low affinity reducing it by213

40%. Variability in phosphorus affinity has a relatively minor impact (<8%). While nutrient affin-214

ity variations do not substantially alter total global seaweed production, they do affect its regional215

distribution, leading to slight changes in CDR efficiency.216

Fig. 7 Impact of nutrient demand and affinity variability on CDR potential. Bounds of N (blue),
P (yellow), and Fe (pink) demands (left panels) and affinities (right panels) are shown. These influence (A)
afforestation potential, (B) carbon dioxide removal (CDR) flux and CDR efficiency, and (C) cumulative carbon
export at 100 m. Dotted lines represent the mean demand and affinity values for N, P, and Fe.

3 Discussion217

3.1 Iron diminishes seaweed CDR and exacerbates environmental218

impacts219

Iron availability is demonstrated to be a critical determinant of seaweed CDR potential, affect-220

ing both ocean afforestation potential and CDR efficiency, confirming the need to include it in221

12



CDR discussions, as suggested by Paine et al. (2023) [6]. Iron is a key micronutrient required for222

photosynthesis and cellular metabolism in both phytoplankton and seaweed [6]. When seaweed223

iron requirements and uptake kinetics are accounted for in our simulations, both projected ocean224

afforestation potential and CDR efficiency decline (Fig. 2 and 3).225

Under macronutrient limitation, simulated CDR efficiency is 82% after 25 years of cultivation,226

aligning with previous global modeling studies on multi-centennial timescales [11] but exceeding227

decadal estimates, which likely underestimate efficiency due to incomplete air-sea equilibration [10].228

This also falls within the 7–50% reduction in CDR efficiency due to nutrient reallocation estimated229

from natural analogs [14]. Under iron-limited conditions, CDR efficiency is further diminished, with230

20% of the ocean becoming counterproductive and exhibiting reduced ocean carbon uptake instead231

of enhancement (Fig. 3). Notably, regions that previously exhibited the highest CDR flux under only232

nitrogen and phosphorus limitations—such as the Southern Ocean and upwelling zones—experience233

reduced or even negative CDR flux when iron limitation is included (up to -50 gCO2 m
-2 yr-1) (Fig.234

3). This global reduction in CDR flux, along with the emergence of regions with negative CDR,235

is largely driven by stronger BCP feedback under iron limitation (Fig. 4). Since iron is already236

a limiting nutrient in many ocean regions, the additional iron demand from seaweed cultivation237

further depletes iron availability for phytoplankton, thereby constraining productivity. Iron limitation238

also alters the temporal dynamics of seaweed cultivation. Under iron limitation, CDR flux and239

phytoplankton primary production anomalies peak within just two years of cultivation, followed by240

a rebound effect after cultivation ceases (Fig. 5 and 4). This rebound is attributed to the short241

seawater residence time of iron, with a similar response simulated in ocean fertilization experiments242

[15].243

Iron limitation not only reduces CDR potential but also intensifies the impact of seaweed244

cultivation on phytoplankton (Fig. 5). Phytoplankton responses are highly variable, with production245

declines in some regions and increases in others due to a shift in nutrient co-limitations. These246

changes are likely to cascade through marine ecosystems, disrupting trophic structures and affecting247

zooplankton, fish, and other organisms reliant on phytoplankton, the foundation of the marine food248

web [16].249

Our simulations highlight the complexity of identifying optimal regions for ocean afforesta-250

tion. While seaweed cultivation is often assumed to have high CDR potential due to the vast251

habitable areas within EEZs [17], accounting for biogeochemical feedbacks, nutrient limitations,252

and phytoplankton impacts, is required to identify favorable deployment regions. Simulated high253

afforestation potential under macronutrient limitation (Fig. 6) aligns with production hotspots254
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identified by Arzeno-Soltero et al. [12]. However, exceptions were noted in the North Pacific and255

Atlantic, where our model simulations showed lower production, likely due to surface nutrient biases256

in the NEMO-PISCES model (see Fig. S1 in Supplementary Materials). The Southern Ocean and257

upwelling zones emerged as favorable regions when only nitrate and phosphate limitations were258

considered, offering high production and CDR flux with minimal environmental impacts. These259

areas overlap with regions identified by He et al. [18] as optimal for ocean alkalinity enhancement260

(OAE), suggesting synergies between ocean-based CDR strategies in regions where air-sea CO2261

transfer timescale exceeds surface residence time [19]. Iron limitation, however, drastically dimin-262

ishes favorable regions and excludes key regions such as the Southern Ocean and upwelling systems.263

This underscores the challenge of optimizing production while maintaining high CDR efficiency and264

minimizing environmental impacts, with iron emerging as a key limitation in this paradigm.265

3.2 Sensitivity to nutrient demand and affinity266

Nutrient affinity plays a critical role in modulating the afforestation potential by determining267

seaweed-phytoplankton nutrient competition dynamics. Previous studies found that nutrient affinity268

variability had limited influence on afforestation potential compared to other biophysical con-269

straints but did not explicitly account for competition with phytoplankton [12]. Incorporating this270

competition, we demonstrate that nutrient affinity, particularly iron affinity, substantially affects271

afforestation potential.272

Our projections also highlight the role of nutrient demand in determining the efficacy of seaweed273

cultivation-based CDR (Fig. 7). For seaweed to fix more carbon than phytoplankton using the same274

available nutrient pool, it must be more nutrient efficient. Any carbon fixation advantage depends275

on how much lower seaweed nutrient demand is compared to phytoplankton [9], as well as on the276

proportion of nutrients that remain unused by the BCP. Together, these factors determine overall277

CDR efficiency. Lower nutrient demands result in fewer nutrients being diverted from the BCP,278

and a smaller BCP feedback (Fig. 7 B and C). Variability in phosphorus demand has the most279

substantial effect on CDR efficiency, causing uncertainties ranging from -70% to 61% in global280

efficiency, followed by iron and nitrogen. In comparison, Wu et al. [11] found that a 20% increase281

or decrease in nitrogen demand leads to a 10% change in global CDR efficiency during continuous282

cultivation on a centennial scale. In contrast, our analysis using published stoichiometric ratios283

revealed a much larger range, with an increase of 800% and a reduction of 77% in N demand,284

resulting in a decrease of 45% and an increase of 10% in CDR efficiency, respectively.285
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This reveals a fundamental trade-off: maximizing CDR efficiency requires low nutrient demand286

and high nutrient affinity, yet low seaweed nutrient demand is typically found in nutrient-poor envi-287

ronments [9], which inherently limits seaweed production potential. Optimizing seaweed cultivation288

for climate mitigation requires a careful balance between maximizing CDR efficiency and gener-289

ating substantial seaweed biomass. Future efforts should carefully consider these trade-offs when290

developing effective and sustainable seaweed-based strategies.291

Our findings underscore the need for iron demand and affinity to be included in projections of292

seaweed-based CDR. Failing to account for such nutrient dynamics is likely to result in erroneous293

estimates of the potential of seaweed-based CDR as a mitigation strategy.294

4 Materials and Methods295

4.1 Model296

Simulations were performed using version 3.6 of the Nucleus for European Modelling of the Ocean297

(NEMO), which integrates the Louvain-La-Neuve Sea Ice Model (LIM) version 3 [20] and the298

Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES) biogeochemical model ver-299

sion 2 [21]. The PISCES model incorporates various forms of carbon, including dissolved inorganic300

carbon, dissolved organic carbon, particulate inorganic carbon (calcite), and particulate organic car-301

bon, as well as living compartments such as nanophytoplankton, diatoms, microzooplankton, and302

mesozooplankton. It also includes total alkalinity and essential marine nutrients such as nitrate,303

ammonium, phosphate, silicate, and iron. The PISCES model represents four sources of dissolved304

iron: dust deposition, riverine input, hydrothermal vents, and sediment resuspension. Scavenging305

is computed following Parekh et al. [22], with scavenging rates dependent on particle concentra-306

tions. The model includes a representation of colloidal losses of dissolved Fe via the aggregation307

of dissolved organic material, as described by Aumont et al. [21]. It assumes a constant ligand308

concentration and employs a quota approach for Fe stoichiometry in organic matter, with the309

regeneration efficiency of particulate Fe dependent on stoichiometry. PISCES includes two sizes of310

particulate iron pools [23]. Air-sea CO2 fluxes follow the protocols of the Ocean Model Intercom-311

parison Project [24], with gas exchange determined by the air-sea partial pressure gradient and an312

instantaneous gas transfer velocity parameterized based on 10 m atmospheric wind speed [25, 26].313

NEMO-PISCES simulations were performed using a 2° global ocean configuration (ORCA2).314

This resolution permitted centennial scale simulations that extensively explore seaweed nutrient315

demand and affinity parameter space.316
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4.2 Simulations317

Seaweed production318

Seaweed production in NEMO-PISCES is simulated as the uptake of DIC and nutrients in EEZs.319

EEZ definitions are based on the Maritime Boundaries Geodatabase, version 11 (Flanders Marine320

Institute, 2019, available at https://www.marineregions.org). Production is continuous and is con-321

sidered immediately harvested and permanently sequestered with no associated carbon emissions.322

Consequently, there is no remineralization of seaweed biomass. Seaweed production is temperature,323

light, and nutrient-limited, but explicit seaweed biomass is not represented (see Supplementary324

Materials for detailed production functions). Two types of nutrient limitations and consumption325

were tested, alongside simulations that assume no nutrient demand:326

• DIC only (C): Seaweed carbon, no nutrient limitation and consumption.327

• Macronutrient only (CNP): Seaweed carbon, nitrate, and phosphate consumption and328

limitation.329

• Macronutrient and iron (CNPFe): Seaweed carbon, nitrate, phosphate, and iron consumption330

and limitation.331

Moreover, we conducted two sets of seaweed cultivation simulations:332

• Afforestation potential simulations: In these simulations, we use a free production approach,333

with homogeneous farm density (Fig. 8 A). A unique scaling factor, representing a maximum334

production rate of 0.09 mmolC m-3 d-1, is applied consistently across all simulations. This scaling335

enables the reference scenario, which assumes no nutrient limitation (simulation C), to achieve a336

global seaweed production of 0.5 PgCyr−1. This approach allows us to test the relative effects337

of macronutrient (N,P), and Fe limitation on afforestation potential.338

• CDR efficiency and phytoplankton impact simulations: In these simulations, we use a glob-339

ally constrained production approach, indicative of higher farm density in nutrient-rich regions340

that support higher production (Fig. 8 B). Each scenario has a specific scaling of the maximal341

per-area production of seaweed to constrain global production to 0.5 PgCyr−1 (see Table 1).342

This method was used to compare CDR efficiency under conditions of similar global seaweed343

production.344
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Fig. 8 Schematic of the two simulation sets. The left panel (A) illustrates unconstrained production,
where a uniform farm density across global EEZs is used to estimate the afforestation potential. The right
panel (B) depicts globally constrained production, where farm density is concentrated in nutrient-rich regions
to achieve global production of 0.5 PgC yr-1. These simulations are used to assess CDR efficiency and impacts
on phytoplankton productivity at a fixed global production level.

Table 1 Descriptions of the maximal per-area
seaweed production in C, CNP and CNPFe
simulations, scaled to constrain global seaweed
production to 0.5 PgC yr-1.

Name Maximal production (mmolC m-3 d-1)

C 0.09
CNP 0.67

CNPFe 3.72

Nutrient demands and affinities345

The nutrient demands are inversely proportional to the carbon-to-nutrient ratios (C:N, C:P, and346

C:Fe) of seaweed biomass. To explore the variability in seaweed nutrient demand, we compiled347

published seaweed C:N:P stoichiometric ratios (Fig. 2) [9, 27–31] and C:Fe [32–34], selecting tem-348

perate brown seaweed species including laminaria digitata, macrocystis pyrifera, laminaria japonica,349

laminaria hyperborea, and laminaria saccharina. To account for potential variability not captured350

in the dataset, we set the maximum and minimum values 25% higher and lower, respectively, than351

the published extremes (Table 2).352
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The bounds we employed for half-saturation constants are based on published uptake rates353

for nitrate [35–37], phosphate [38, 39], and iron [6, 40] (Table 2). As with stoichiometric ratios,354

maximum (resp. minimum) values were chosen to be 25% larger (resp. smaller). Values of KNO3355

are consistent with those used in previous studies [12].356

These simulations, which incorporate mean, minimal, and maximal values of stoichiometric357

ratios (demand) and half-saturation constants (affinity) reported in the literature, provide insights358

into how variations in these biological parameters influence the production potential, the CDR effi-359

ciency and the impact on phytoplankton. While it may be unrealistic for global seaweed cultivation360

to consistently adopt the extreme C:N:P:Fe ratios and half-saturation constants, exploring such361

scenarios permits the assessment of the sensitivity of afforestation potential and CDR efficiency to362

these parameters at both global and regional scales.363

Table 2 Descriptions of the biological parameters used in this study, mean, minimal (min.), and maximal (max.)
values. Note that nutrient affinity is inversely proportional to the half-saturation constant (Ks), and the nutrient
demand is the inverse of the carbon-to-nutrient ratio.

Parameter Units Mean value Min. value Max. value Ref

Half-saturation
constant KNO3

µmolN/L 2 1.1 18.1 [11]
KPO4

µmolP/L 0.1 0.06 6.5 [39, 41]
KFe nmolFe/L 1.56 0.29 5.15 [6]

Carbon-to-nutrient
ratio qFe molC/molFe 3346 172 23214 [32–34]

qNO3
molC/molN 17 4 144 [9, 27–31]

qPO4
molC/molP 269 15 461

4.3 Evaluation of simulated nutrient fields364

PISCES exhibits no systematic bias in upper ocean nitrate, phosphate, and iron concentrations,365

performing well in reproducing large-scale nutrient distributions [21]. Among the FeMIP mod-366

els, PISCES demonstrates one of the highest correlation values for dissolved iron concentrations367

(PISCES1 in Tagliabue et al., 2016 [23]), indicating reasonable agreement with observational368

datasets. However, discrepancies remain in certain regions. The largest biases for nitrate and phos-369

phate are found in the North Pacific, with root mean square errors (RMSE) of up to 8.5 mmol m-3
370

for nitrate and 0.8 mmol m-3 for phosphate (Fig. S1 in Supplementary Materials). For dissolved371

iron, the most significant deviations occur in the Arctic and North Atlantic, with RMSE of up to372

5 µmol m-3 (Fig. S1 in Supplementary Materials).373
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4.4 Scenarios374

Seaweed cultivation was performed for 25 years (2025-2050), followed by a subsequent 50-year375

period without any cultivation (2050-2100). We ran offline biogeochemical model simulations376

with ocean physics derived from the ESM IPSL-CM5A-LR. The atmospheric CO2 concentration is377

prescribed with the Representative Concentration Pathway (RCP) 2.6 scenario, a low-emission sce-378

nario. Under this scenario, atmospheric CO2 concentration peaks at 443 ppm in 2052 and decreases379

to 421 ppm by 2100.380
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Supplementary Text 
Seaweed production model 

 
The macroalgal production rate is modulated by temperature, light, and nutrient affinity. 

The growth rate function is defined for each nutrient limitation scenario in Table 1. The 
temperature limiting function (f(T)) used is an optimum curve following Bowie et al. [42], 
also used by the MOS model reported in Wu et al. [11]. 

 𝑓 𝑇( ) = 𝑒
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2
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Topt is set to 20°C [37,43], Tmin to 0°C [43], and Tmax to 35°C [44]. 
 
Light limiting function (h(I)) follows Kirk, 1994 [45], also used by MOS model reported 

in Wu et al. [11], with Iopt set to 180 W m-2 [37]. 

 ℎ 𝐼( ) = 𝐼
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Nutrient limitations follow the Michaelis-Menten equation for nitrate, phosphate [11-12], and 
iron [7] (see main text for half saturation constants). 
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Experiments Seaweed production functions Tracer consumption 
C  𝐺 = 𝑔

𝑠𝑐𝑎𝑙𝑒
· 𝑓 𝑇( ) · ℎ 𝐼( )  ∆𝐷𝐼𝐶

CNP  𝐺 = 𝑔
𝑠𝑐𝑎𝑙𝑒

· 𝑓 𝑇( ) · ℎ 𝐼( ) · 𝐿
𝑙𝑖𝑚
𝑁,𝑃  ∆𝐷𝐼𝐶, ∆𝑁𝑂

3
−, ∆𝑃𝑂

4
2 −, ∆𝐹𝑒

CNPFe  𝐺 = 𝑔
𝑠𝑐𝑎𝑙𝑒

· 𝑓 𝑇( ) · ℎ 𝐼( ) · 𝐿
𝑙𝑖𝑚
𝑁,𝑃,𝐹𝑒  ∆𝐷𝐼𝐶, ∆𝑁𝑂

3
−, ∆𝑃𝑂

4
2 −, ∆𝐹𝑒

 
Table S1. Production functions and elements consumed by seaweed cultivation in 
simulations C, CNP, and CNPFe. 
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Simulated surface nutrients 

 

Fig. S2. (A) Observed upper 100 m nitrate and phosphate concentrations from the World 
Ocean Atlas [46], and iron concentrations from GEOTRACES IDP 2021 [47]. (B) Simulated 
upper 100 m nitrate, phosphate, and dissolved iron concentrations. (C) Differences between 
simulated and observation-based nutrient concentrations, and the zonal root mean square 
error (RMSE). 
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