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Abstract 19 
 20 
Enhanced weathering is a promising approach for removing carbon dioxide from the atmosphere 21 
at scale while improving agricultural yields. However, accurately quantifying carbon dioxide 22 
removal in the field is critical for this approach to scale, particularly given that nearly all of the 23 
current deployment activity caters to the voluntary carbon market. Here, we present an updated 24 
framework and a signal-to-noise analysis for using soil-based mass balance approaches to quantify 25 
rock powder dissolution from field-scale data of soil composition. With additional assumptions, 26 
the quantification of rock powder dissolution can be used to estimate carbon dioxide removal 27 
potential of EW deployments. The framework we present explicitly accounts for the enrichment 28 
of immobile elements in topsoil due to feedstock mass loss and demonstrates that omission of this 29 
process systematically overestimates feedstock dissolution. We suggest that the framework should 30 
only be used when average post-weathering sample compositions fall within the parameter space 31 
representing physically meaningful results (i.e., set out by the mixing relationships between soil, 32 
feedstock, and a hypothetical weathered feedstock residue endmember). Building from this, we 33 
provide support for the idea that feedstock dissolution should be quantified using the sample 34 
population mean rather than individual samples. Given the potential for signal-to-noise issues with 35 
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this framework, it is critical that it is utilized only when signals are statistically robust. To illustrate 36 
this, we present a signal-to-noise analysis based on a new dataset of soil cation heterogeneity from 37 
high-density spatial sampling of 5 fields (0.6-19.2 samples ha-1, 7.1-39.6 pooled cores ha-1). The 38 
analysis is based on simulated geolocated sample pairs and suggests that detecting rock powder 39 
dissolution via soil mass balance should be feasible when application rates, dissolution fractions, 40 
and sampling frequencies are above certain threshold values. When planning deployments, signal 41 
emergence can be optimized through careful selection of feedstock composition, strategic 42 
feedstock application, and improved sampling protocols. 43 
  44 
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1 Introduction 45 

Achieving the climate targets set out by the Paris agreement requires both deep and immediate 46 

emissions cuts as well as the ability to remove emitted carbon from the atmosphere (IPCC, 2018; 47 

Geden et al., 2024; UNEP, 2024). Removing up to 5-10 Gt CO2 from the atmosphere annually will 48 

ultimately require a portfolio of Carbon Dioxide Removal (CDR) approaches (Strefler et al., 2021). 49 

Enhanced Weathering (EW) is one promising approach where CO2 can be removed from the 50 

atmosphere through the reaction with crushed rock feedstocks applied as soil amendments 51 

(Seifritz, 1990; Schuiling & Krijgsman, 2006; Hartmann & Kempe, 2008; Köhler et al., 2010; ten 52 

Berge et al., 2012; Hartmann et al., 2013; Beerling et al., 2018, 2020, 2024). In the ideal case, CO2 53 

is transferred into bicarbonate and ultimately stored in the oceans for >10 kyrs (Renforth & 54 

Henderson, 2017) or stored as carbonate in both soils and deep-sea sediments. This approach has 55 

a unique set of advantages including that carbon is stored more durably compared to many 56 

biomass-based approaches. Enhanced weathering can also boost crop yields and does not compete 57 

for land resources (Haque et al., 2020; Kelland et al., 2020; Gunnarsen et al., 2023; Beerling et al., 58 

2024), and the logistics and infrastructure to scale are readily available. 59 

 60 

Currently, most CDR activity—including EW—is occurring on the voluntary carbon market 61 

(Smith et al., 2023; Geden et al., 2024; CDR.fyi, 2025). This means that CDR credits are primarily 62 

being used by companies with net-zero goals to balance ongoing emissions. There is a long 63 

tradition of tracking soil carbon removal through biogeochemical modeling—foremost with soil 64 

organic carbon (e.g., Parton et al., 1998)—and using models for emissions offsetting claims 65 

(Oldfield et al., 2022; Potash et al., 2025). There are also geochemical models for enhanced 66 

weathering (Taylor et al., 2017; Kanzaki et al., 2022, 2024a; Bertagni et al., 2024). However, it 67 

has been commonly argued that soil biogeochemical models have not progressed or been 68 

sufficiently validated to make them fit for offsetting purposes at this stage (Kanzaki et al., 2024b; 69 

Sutherland et al., 2024). Therefore, there is a need to develop a suite of tools to track weathering 70 

rates and EW at the field scale, both for verification of ongoing compensatory offset claims and 71 

for validation of predictive process-based models for quantifying soil carbon removal.  72 

 73 
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This is a challenge for EW because it is an open-system CDR pathway, and a large number of 74 

approaches have been suggested to quantify CDR at the field scale (Almaraz et al., 2022; Clarkson 75 

et al., 2024). Broadly speaking, Measurement, Reporting, and Verification (MRV) approaches for 76 

EW rely on either solid soil, water, gas, or exchangeable phase measurements (Clarkson et al., 77 

2024), and typically measurements of two phases are combined into reported CDR numbers 78 

(Sutherland et al., 2024). Soil-based MRV approaches have a unique set of advantages, namely 79 

that they yield a time-integrated signal (Reershemius et al., 2023; Clarkson et al., 2024), meaning 80 

that in contrast to water and gas phase-based estimates, they resolve all rock feedstock weathering 81 

that occurred between different sampling steps without need for high temporal sampling 82 

frequencies. All field-based EW MRV approaches do not directly resolve downstream losses of 83 

CO2, which according to current crediting frameworks must be accounted for based on empirically 84 

informed but modeled based estimates (Campbell et al., 2023; Clarkson et al., 2024).  85 

 86 

One promising variation of soil-based MRV approaches is the use of soil mass balance 87 

(Reershemius et al., 2023; Clarkson et al., 2024; Suhrhoff et al., 2024). Soil mass balance 88 

approaches rely on a sample-resample approach where the dissolution of rock powder feedstock 89 

is tied to the loss of cations from mixed soil-feedstock samples. The loss of cations provides an 90 

estimate of feedstock dissolution, and with additional assumptions can be translated into an 91 

estimate of initial CDR. Here, we present an updated framework for this approach that explicitly 92 

considers the impact of immobile element enrichment in soils due to feedstock mass loss from 93 

topsoils. Furthermore, we demonstrate some of the intricacies of this approach with specific 94 

examples, perform a signal-to-noise analysis, and share Python code and a spreadsheet-based 95 

conceptual tool to help users explore and potentially constrain rock powder dissolution in their 96 

own field deployments. The signal-to-noise analysis is grounded in a new dataset (5 fields, 998 97 

total samples) where spatial heterogeneity in soil major and trace elemental concentration is 98 

assessed at a high spatial sampling density. 99 

  100 
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2 Soil mass balance framework 101 

Soil mass balance approaches are based on the assumption that mobile base cations are lost from 102 

the solid phase of the soil-feedstock mixture during feedstock dissolution, while immobile 103 

elements are retained in the solid phase of the soil. Base cations mobilized during feedstock 104 

dissolution can be temporarily retained on the soil exchange complex (Dietzen & Rosing, 2023; 105 

Kanzaki et al., 2024b; te Pas et al., 2025), but these can also be readily quantified. Using these 106 

assumptions, practitioners can calculate weathering rates of feedstock material based on the 107 

mobility of base cations relative to immobile elements (Brimhall & Dietrich, 1987; Chadwick et 108 

al., 1990, 1999; Brimhall et al., 1991; Kurtz et al., 2000; White et al., 2001; Anderson et al., 2002; 109 

Riebe et al., 2003; Tabor et al., 2004; Sheldon & Tabor, 2009; Brantley & Lebedeva, 2011; Fisher 110 

et al., 2017; Lipp et al., 2021). In the context of EW, this framework was first applied in 2023 111 

(Kantola et al., 2023; Reershemius et al., 2023) and has since been built upon in several 112 

publications (Reershemius & Suhrhoff, 2023; Beerling et al., 2024; Clarkson et al., 2024; Suhrhoff 113 

et al., 2024; Derry et al., 2025) and preprints (Baum et al., 2024; Rogers & Maher, 2025). 114 

 115 

For this approach to be effective, the rock feedstock added to fields must be enriched in base 116 

cations, as compared with the background soil. If immobile element abundance is also being used 117 

to evaluate the amount of feedstock in a given sample, at least one immobile element needs to be 118 

enriched compared to the background soil. If these conditions are met, the enrichment of immobile 119 

elements in topsoils can be used to constrain rock powder addition, and the loss of cations can be 120 

used to estimate rock powder dissolution. If these conditions are not met, soil mass balance 121 

approaches (SOMBA) are not suitable to detect CDR through EW (Reershemius et al., 2023; 122 

Clarkson et al., 2024; Suhrhoff et al., 2024). This does not mean that for such feedstock-soil 123 

combinations no CDR is occurring, only that quantification of CDR will need to rely on different 124 

approaches (Suhrhoff et al., 2024). Using an immobile element to constrain rock powder addition 125 

has the benefit that rock powder loss through, e.g., erosion, is not erroneously detected as 126 

weathering, as may be the case if only changes in major cation concentration are considered. 127 

Because first applications of this approach to EW have used the immobile element Ti as the proxy 128 

for rock powder addition, this approach has also been called “TiCAT” (Reershemius et al., 2023), 129 



Main text | Suhrhoff et al. | V1 | June 19th, 2025 

 6 

but because other immobile elements may also be used (Suhrhoff et al., 2024), we now refer to 130 

this approach more broadly as soil mass balance approaches (SOMBA). 131 

 132 

The loss of cations from topsoils upon weathering can be used to constrain the fraction of rock 133 

powder that has dissolved. This in turn can be a proxy for CDR, but translating rock powder 134 

dissolution into CDR estimates requires additional assumptions as well as quantification of 135 

downstream loss processes (Reershemius et al., 2023; Clarkson et al., 2024). For this reason, robust 136 

quantification of CDR should rely on multiple methods based on two phase measurements (e.g., 137 

solid and gas phases) (Sutherland et al., 2024). At scale, a multiple phase approach will be 138 

impractical in every case at deployment scale, indicating the need to ultimately move away from 139 

field level accounting, as for example also suggested for soil organic carbon management 140 

(Bradford et al., 2023; Potash et al., 2025). Quantitative conversion of dissolution fraction into 141 

CDR estimates as well as post-weathering CDR loss processes are discussed in detail elsewhere 142 

(Campbell et al., 2023; Kanzaki et al., 2023; Clarkson et al., 2024; Zhang et al., 2024) and are 143 

beyond the scope of this study. Our focus here is to present an updated framework for the 144 

quantification of rock powder dissolution, as well as a signal-to-noise analysis of the utility of this 145 

approach against background soil heterogeneity. We also share the accompanying code to provide 146 

future ERW deployments with a solid foundation for the quantification of rock powder dissolution.  147 

 148 

 149 

2.1 Calculation of feedstock dissolution fraction 150 

After rock powder that has an elevated base cation content ([j], with the square brackets denoting 151 

concentrations per mass of soil) and is enriched in at least one immobile element ([i]) is added to 152 

fields, the composition of the initial soil-feedstock mixture falls onto a mixing line between the 153 

soil and feedstock endmembers (Figure 1a). As the rock powder dissolves, mobile base cations are 154 

leached from the mineral phase. This loss of cations is used to quantify the fraction of rock powder 155 

that has weathered. This estimate of base cation loss reflects the dissolution of primary feedstock 156 

when a chemical extraction of secondary phases or exchangeable cations is performed prior to 157 

analysis. Alternatively, the estimate can reflect the proportion of the overall feedstock base cation 158 

inventory that has been leached from topsoils entirely if bulk samples are used.  159 
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 160 

Enrichment of immobile elements through rock powder dissolution occurs when they are retained 161 

in topsoil while a soluble fraction of feedstock is lost from the system. Assuming that the topsoil 162 

volume sampled does not change and that there is no change in porosity, lost feedstock in a sample 163 

is replaced with soil that also contains immobile elements in addition to the retained immobile 164 

elements added via the rock powder. Furthermore, if the density of feedstock is greater than that 165 

of soil, as is true for most cases, this means that the mass being used to calculate the concentration 166 

[i] is less than for the initial soil-feedstock mixture, such that [i]t=n > [i]t=0 in all cases where 167 

feedstock is partially dissolved. As a result of cation loss and immobile element enrichment, the 168 

soil-feedstock mixture composition is evolving from the pre-weathering composition on the 169 

mixing line along a vector towards the bottom right in [j] vs. [i] space (Figure 1b). 170 

 171 

One way to calculate the dissolution fraction (here denoted as the mass transfer coefficient τj, used 172 

synonymously to dissolution fraction in this manuscript) is from the loss of cations compared to 173 

the pre-weathering soil-feedstock mix: 174 

  175 

τj =
![#]
[#]!""

           1 176 

[𝑗]%&& = [𝑗]' − [𝑗](          2 177 

 178 

where [j]add is the increase in base cation concentrations due to the addition of rock powder, Δ[j] 179 

reflects the decrease of base cation concentrations due to feedstock dissolution, and the subscript 180 

s corresponds to baseline soil. If the effect of immobile element enrichment is not taken into 181 

account, and the fraction of feedstock in the pre-weathering soil-feedstock mix and associated 182 

cation addition is calculated simply by vertically projecting the post-weathering composition onto 183 

the mixing line (Figure 1c), the estimate of the cations lost from topsoils (Δ[j]*) is inflated, such 184 

that the erroneous estimate τj* would be larger than τj. The impact of this enrichment process on 185 

post-weathering soil concentrations as well as estimates of the fraction of feedstock that has 186 

dissolved is demonstrated and discussed in section 3.1.  187 

 188 

An alternative way to calculate the fraction of rock powder that has dissolved without exact 189 

knowledge of the pre-weathering soil-feedstock mix composition is to describe the post-190 
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weathering composition as a mix of three endmembers: pure soil, pure feedstock, as well as the 191 

composition of a hypothetical weathered feedstock residue endmember (Figure 1d). The 192 

composition of this hypothetical endmember is defined to be the composition that a layer of soil 193 

would have after a layer of pure feedstock (corresponding to the soil sampling depth, dsample) has 194 

dissolved. The overall dissolution fraction can then be calculated from the contributions to the 195 

feedstock and weathered feedstock endmember to the mixed sample composition. Assuming mass 196 

and volume conservation, this endmember mixing approach can be described by a system of 197 

equations such that each endmember contributes a volume proportion (X) to the observed post-198 

weathering composition, which together sum to unity: 199 

 200 

𝑋( + 𝑋) + 𝑋*) = 1          3 201 

 202 

Where subscripts s, f, and wf correspond to baseline soil, feedstock, and weathered feedstock. 203 

Because in practical field sampling based on constant soil sampling depths, a system of constant 204 

volume is sampled, these endmember contributions reflect volume contributions to the sampled 205 

soil volume defined by the sampling depth over a given area (all calculations and code shared here 206 

use 1 hectare (ha) by default). The endmember contributions reflect three unknowns. Hence, we 207 

set up two additional equations reflecting mass conservation of immobile elements as well as 208 

mobile base cations respectively.  209 

 210 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗]*)𝑋*)𝜌*) = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  4 211 

[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌*) = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  5 212 

 213 

Note that it is important to account for the impact of immobile element enrichment due to mass 214 

loss also for the composition of the hypothetical weathered feedstock endmember. These equations 215 

can be solved (see S1.1 for detailed derivation) to calculate the contribution of each endmember 216 

to the observed post-weathering composition. 217 

 218 

This system of equations (3, 4, and 5) can be used to explicitly calculate the volume proportions 219 

of each of the three endmembers (for full derivation see supplement S1.1): 220 

 221 
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𝑋) =	
𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3

𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3−𝜌𝑓2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑓3
        6 222 

𝑋*) =	
𝜌𝑠2[𝑖]𝑚𝑖𝑥,𝑡=𝑛−[𝑖]𝑠3𝜌𝑓2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑓3−𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3𝜌𝑓2[𝑖]𝑚𝑖𝑥,𝑡=𝑛−[𝑖]𝑓3

𝜌𝑓[𝑖]𝑓4𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3−𝜌𝑓2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑓35
    7 223 

𝑋( = 	1 − 𝑋) − 𝑋*)          8 224 

 225 

The fraction of feedstock that has dissolved is calculated from the proportion of the weathered 226 

feedstock residue endmember relative to the sum of feedstock and weathered feedstock residue 227 

endmembers: 228 

 229 

𝜏# =
𝑋𝑤𝑓

𝑋𝑤𝑓+𝑋𝑓
           9 230 

 231 

Calculating τj requires measuring the immobile element and base cation concentration of baseline 232 

soils, feedstock, and post-weathering soil-feedstock mix samples, as well as soil and feedstock 233 

density (i.e., the density of the ground rock powder, not the rock itself). Generally, EW 234 

deployments should assess τj values for all base cations to be used to estimate CDR. Because these 235 

will vary between base cations, setting the system of equations as an over-constrained system using 236 

multiple equations for different base cations in combination with an inversion approach is not 237 

recommended unless expanding the framework to explicitly consider different mineral phases and 238 

loss processes. Some feedstocks may also contain mineral phases that are not expected to dissolve 239 

on the timeline relevant for the EW deployment, which could be taken into account by modifying 240 

the composition of the hypothetical weathered feedstock residue endmember accordingly (both in 241 

terms of composition and density).  242 

 243 

This endmember mixing approach is preferrable to quantifying feedstock dissolution exclusively 244 

from the loss of cations compared to the initial soil-feedstock mix composition (equations 1 and 245 

2) because estimating this initial composition from post-weathering measurements without 246 

knowing the exact mixing proportions (which may vary throughout a field) is non-trivial given 247 

that the direction of the vector that the soil-feedstock mix composition will move along during 248 

weathering depends on the initial feedstock-soil mass mixing ratio (fMf, t=0) and the composition 249 

of each endmember. Instead, the endmember mixing approach quantifies the dissolution fraction 250 
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while also explicitly accounting for the enrichment of immobile elements due to feedstock loss 251 

from the system. Alternatively, sampling after feedstock addition (and again after weathering has 252 

occurred) can be used resolve issues of mixing proportions. Mobile element loss should still be 253 

calculated relative to a detrital element, even when not using the detrital element to calculate 254 

feedstock addition rates (Brimhall & Dietrich, 1987; Chadwick et al., 1990; Brimhall et al., 1991; 255 

Anderson et al., 2002). 256 

 257 

In addition to estimating feedstock dissolution, the framework presented here can also be used to 258 

estimate the amount of initial feedstock as well as the pre-weathering feedstock-soil mix 259 

composition from the post weathering composition as well as baseline soil and feedstock data (for 260 

detailed derivation see S.1.2): 261 

 262 

𝑎	 = (𝑋) + 𝑋*))	𝑣(%+678&	7%:8; 	𝜌)        10 263 

[𝑗]+,-,	/0' =
<)	=)	[#])><*2=*>=+*3[#]*

<)	=)><*2=*>=+*3
        11 264 

[𝑖]+,-,/0' =	
<)	=)	[,])><*2=*>=+*3[,]*

<)	=)><*2=*>=+*3
        12 265 

 266 

Where vsample layer is the volume of the sampled layer (per hectare if a is estimated per hectare). 267 

 268 

Here, we supply Python code as well as an example use case. Generally, the relevant calculations 269 

are defined as functions in the Python file SOMBA.py, where the calculation of τj is defined in the 270 

function SOMBA_tau. The code also contains additional functions to estimate pre-weathering and 271 

post-weathering mix composition from deployment data (functions SOMBA_start and 272 

SOMBA_end; see supplement S1). In addition, SOMBA.py also contains the function 273 

SOMBA_tau_meta, which in addition to τj also returns the individual endmember contributions as 274 

well as additional deployment parameters calculated from post-weathering samples as defined 275 

below. We provide two Python scripts; one that loads input data and calculates the SOMBA 276 

parameters, and a second one that demonstrates the internal consistency of the framework 277 

presented here (see also supplement S1.5 and Figure S1). We furthermore provide an Excel 278 

template that calculates the dissolution fraction based on eq. 6 –9. This template may be used as a 279 
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tool to analyze initial results, but ultimately thorough statistical investigation should always be 280 

based on advanced statistical modeling. 281 

 282 

2.2 Signal-to-noise analysis 283 

Soils are heterogeneous both on small and large spatial scales (Bahri et al., 1993; Jackson & 284 

Caldwell, 1993; Zhang et al., 1998; McGrath et al., 2004; Spijker et al., 2005; Ramsey et al., 2013; 285 

Smith et al., 2013; Webster & Lark, 2019), which may pose challenges for soil-based approaches 286 

to quantify rock powder dissolution in EW field trials (Suhrhoff et al., 2024; Derry et al., 2025; 287 

Rogers & Maher, 2025). To assess the efficacy of the soil-based mass balance approach to quantify 288 

rock powder dissolution outlined here against the backdrop of soil heterogeneity, we conduct a 289 

signal to noise analysis grounded in soil and basalt data for EW field trials in US agricultural lands.  290 

 291 

 292 

2.2.1 Data constraints 293 
To use a representative basalt composition, we calculate the mean composition (in terms of base 294 

cations and Ti) of all basalts within the US that are contained in the GEOROC database (Lehnert 295 

et al., 2000). Soil base cation and immobile element concentrations as well as representative soil 296 

heterogeneity on these parameters are based on two separate datasets. We use an existing dataset 297 

of US soils (Smith et al., 2013) to constrain the elemental composition of a large number of fields 298 

(only data classified as “Row Crops” and “Small Grains” as LandCover2 variable considered, n = 299 

614). Here, each sample is considered to represent the “true” composition of a field. The analysis 300 

uses Ca+Mg as j (basalt [j]f = 3.11 mol kg-1), and Ti as i (basalt [i]f = 0.206 mol kg-1). Because the 301 

soil mass balance framework requires a clear difference in [i] and [j] between soils and rock 302 

powders (Suhrhoff et al., 2024), we only consider soil samples as suitable fields where both [i] and 303 

[j] are at least 5 times lower than US basalt (n = 130 out of 614 Row Crop and Small Grain samples; 304 

Figure 2). These data are used as “true” field compositions. 305 

 306 

To constrain variance on field-level sample compositions resulting from spatial heterogeneity, we 307 

utilize a new dataset based on high-density spatial sampling (Table 1; Figure S2). This dataset of 308 

soil heterogeneity is based on new ICP-MS soil composition measurements (residual phase after 309 
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exchangeable cations were leached with 1M ammonium acetate) from 5 field sites in the US with 310 

spatial sampling frequencies ranging from 0.6 – 19.8 samples ha-1 (7.1 – 39.6 pooled sub samples 311 

ha-1). For more information on sampling and analytical procedures, see supplement S2. We fit log-312 

normal distributions to field data (using the Python scipy.stats module), and use fitted shape 313 

parameters representing the standard deviations (σ) of the underlying normal distribution to model 314 

in-field variance. The shape parameters corresponding to field data are shown in Figure S3, and 315 

uniform distributions between the range of observed shape parameters is used to generate synthetic 316 

σ values in Monte Carlo simulations. 317 

 318 

2.2.2 Statistical modeling 319 
 320 

The signal-to-noise analysis developed here predicts the efficacy of detecting feedstock dissolution 321 

based on hypothetical application amounts and dissolution fractions (τi) and a paired sampling 322 

approach in a series of Monte Carlo simulations based on the following logic. For each modeled 323 

τj value, application amount, and sampling frequency (1-20 samples ha-1), we: 324 

1. Generate the number of samples to be simulated for each field from the product of sampling 325 

frequency and a simulated field size, ranging from 10-100 ha (uniform distribution). Within 326 

the US, most farms are smaller than 72 ha, but most farmland is in farms that are larger 327 

than 2000 ha (USDA, 2022, 2024), such that the values generated here represent a 328 

conservative choice. 329 

2. Generate a set of baseline soil samples for each field based on log-normal distributions 330 

where the variance is constrained from fits to empirical data (Figure S2, Figure S3), and 331 

the generated log-normal sample distributions scaled to ensure the expected population 332 

mean is the same as the “true” field mean. How the log-normal fits to soil data are used to 333 

generate synthetic in-field heterogeneity is explained in more detail in supplement S2.3. 334 

3. Calculate the “true” post-weathering composition for each baseline sample, based on 335 

deployment parameters (based on functions SOMBA_start and SOMBA_end)—reflecting 336 

a paired sampling approach.  337 

4. Generate variance around “true” post-weathering compositions as in 1 assuming the same 338 

variance as for baseline samples, as well as reduced variance reflecting the expected 339 

improvement due to a paired sampling approach, implemented by reducing shape 340 
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parameters by 50%—while this is somewhat arbitrary, the efficacy of a paired sampling 341 

approach to reduce sampling variance can be tested for any real deployment such that these 342 

conditions can be verified at a field level. 343 

5. Randomly generate uncertainty on feedstock composition from 5–10% (uniform 344 

distribution; i.e. σ values of 0.05 to 0.1 for generated log normal distirbutions). To reflect 345 

increasing thoroughness of the sampling approach, as soil sampling frequency increases 346 

from 1 to 20 samples ha-1 we also increase the number of total samples that the composition 347 

of the feedstock endmember is calculated from (from 1 to 20 samples).  348 

6. Calculate the average baseline, post-weathering soil-feedstock mix, and feedstock 349 

composition based on the generated samples, each called one “realization”. 350 

7. For each realization we calculate the dissolution fraction (based on SOMBA_tau) and 351 

calculate the absolute difference compared to the true dissolution fraction (which is 352 

assumed a priori). 353 

8. We repeat this procedure one hundred times (100 realizations) and calculate the average 354 

error on τj over all fields and realizations. This average error represents the expected error 355 

on τj if applying this framework based on data-constrained soil heterogeneity and 356 

representative US soil composition.   357 
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3 Results and discussion 358 

 359 

3.1 Impact of immobile element enrichment on calculated dissolution 360 

fractions 361 

 362 

Accurately accounting for immobile element enrichment in soils due to feedstock loss from the 363 

topsoil system is essential to quantifying feedstock dissolution. Here, we demonstrate the impact 364 

of this process (see 2.1) by simulating the increase in immobile element concentrations in post-365 

weathering soil-feedstock mixtures for three different feedstock application amounts, the whole 366 

range of dissolution fractions, as well as soils with a Ti content that is 2-10 times depleted 367 

compared to US-average basalt. As expected from mass balance considerations, the enrichment of 368 

immobile elements is highest at high dissolution fractions, τj, as well as at low feedstock-to-soil 369 

immobile element ratios (ri), as shown in Figure 3a where the impact is visualized by showing the 370 

difference in post-weathering to pre-weathering soil-feedstock mix composition (Δi). At constant 371 

ri, this effect is linear with increasing τj, demonstrating that it scales with the amount of feedstock 372 

volume that has been lost from the system and is replaced with soil when considering constant 373 

sampled topsoil volumes. There are also instances where this process will have a negligible (>5%) 374 

effect.  375 

 376 

The effect also increases with increasing application amounts, because at the same dissolution 377 

fraction the volume of feedstock that is lost from topsoils increases. When ri is defined via 378 

depletion relative to a fixed feedstock composition, Δi increases with decreasing ri, reflecting the 379 

fact that when sampling constant soil volumes, soil that replaces lost feedstock has a higher 380 

immobile element concentration. Because ri is defined as the ratio of feedstock to soil immobile 381 

element concentrations, lower ri reflects higher soil concentrations of i: 382 

 383 

[𝑖]( =
[,]*
;,

           24 384 

 385 
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Note that there is also an impact of feedstock dissolution on soil base cation concentrations beyond 386 

the pure loss of feedstock (Figure S4). 387 

 388 

When this enrichment is not accounted for, the resulting dissolution fractions are overestimated. 389 

Here we demonstrate this effect by comparing the erroneously high τj* as calculated from equation 390 

1 based on pre-weathering base cation concentrations estimated by vertically projecting post-391 

weathering [i] concentrations onto the mixing line between soil and feedstock endmembers 392 

without accounting for enrichment of i (i.e., the horizontal component of the vector in Figure 1b). 393 

The difference between the erroneous τj* and τj as calculated from the endmember approach is 394 

largest at intermediate τj and low ri, where it goes up to a Δ value of 0.12 (Figure 3b). The relative 395 

effect is the highest at low τj and approaches 100% at low dissolution fractions and differences 396 

between soil and feedstock immobile element concentrations.  397 

 398 

In theory, one could use an immobile element that is strongly depleted in feedstock relative to soil 399 

to calculate feedstock addition from the depletion of i in the mixed sample. However, in addition 400 

to being undesirable from a signal-to-noise perspective, the utility of this approach is limited as 401 

the vector caused by the enrichment of immobile elements through feedstock mass loss will align 402 

with the mixing line, making it difficult to discern significant trends (Figure S5). Hence, the 403 

framework discussed here in which addition of feedstock is quantified from changes in soil 404 

immobile element content should only be applied when immobile concentrations in feedstock are 405 

greater than those present in background soil.  406 

 407 

In contrast to immobile element enrichment due to feedstock mass loss, calculated τj may be 408 

erroneously small because immobile elements used as a proxy for feedstock addition may not 409 

always be truly immobile. While detrital trace element concentrations in rivers are significantly 410 

depleted relative to their abundance in catchment lithologies (Gaillardet et al., 2014), mobilization 411 

of “immobile” elements such as Ti and Zr has been observed in some extremely weathered and 412 

cation depleted soils (e.g., Melfi et al., 1996; Cornu et al., 1999; Hodson, 2002). This phenomenon 413 

would cause underestimation of the amount of initially added feedstock when immobile elements 414 

are used as a proxy for feedstock addition, resulting in estimates of base cation loss and dissolution 415 

fractions that would be biased low. While this is of less concern than potentially overestimating 416 
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weathering for the purpose of verifying CDR credits, it is in the interest of practitioners to test the 417 

immobility of chosen proxy elements and potentially account for immobile element loss from 418 

topsoils provided this can be achieved at adequate signal-to-noise levels. 419 

 420 

 421 

3.2 Calculated dissolution fractions outside of the mixing triangle 422 

 423 

The framework introduced here should only be applied when the post-weathering composition of 424 

the feedstock-soil mixture falls within mass balance constraints—the mixing triangle defined by 425 

the soil, feedstock, and hypothetical weathered feedstock residue endmembers (Figure 1d). For 426 

this to be the case, the application amount and dissolution fraction need to be large enough and the 427 

difference in soil and feedstock immobile element as well as base cation content needs to be 428 

sufficiently large (Suhrhoff et al., 2024; Rogers & Maher, 2025) such that weathering of rock 429 

powder results in a statistically significant signal within the endmember framework. If a significant 430 

portion of the samples in the sample-resampling approach fall outside of the mass balance 431 

constraints, it is most likely a sign that the sampling strategy was not optimized for capturing the 432 

underlying spatial variation in soil chemistry and/or that soil and feedstock compositions were too 433 

similar to one another (Suhrhoff et al., 2024). Given that soil sampling methods have been 434 

discussed in detail in numerous places (Campbell et al., 2023; Sutherland et al., 2024; Rogers & 435 

Maher, 2025), we will not belabor this point.  436 

 437 

For the framework developed here to explain compositions outside of the endmember mixing 438 

triangle, at least one of the endmember contributions to the post-weathering sample would need to 439 

be negative. Because τj is computed as the contribution of the weathered feedstock residue 440 

endmember relative to the sum of the same endmember and the residual feedstock endmember 441 

contributions (equation 9), if either of these contributions is negative the denominator of this 442 

fraction can approach 0, which causes instability outside of the mixing triangle. This is 443 

demonstrated in Figure 4, where τj is shown as a function of [i] and [j] for two hypothetical soil 444 

and feedstock compositions. As evident from Figure 4, outside of the mixing triangle τj tends to 445 

increase to unrealistically large absolute values. To the left of the soil endmember (indicating a 446 
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hypothetical negative amount of feedstock), reasonable but unphysical τj can be achieved as a 447 

result of noise. These observations suggest: (1) when applied to field settings, this framework 448 

requires thorough statistical investigation to ensure that the post-weathering composition is 449 

significantly different to pure soil and pre-weathering soil-feedstock mixtures. This requires, for 450 

example, Monte Carlo-type statistical approaches in which the uncertainty introduced by all 451 

parameters (including potential corrections for control site trends to baseline data) is fully 452 

propagated into final estimates (see also Derry et al., 2025); (2) although individual samples may 453 

fall outside of the mixing triangle as a result of soil heterogeneity even if there is a robust signal 454 

overall, because mixing compositions outside the mixing plane are unstable, τj should always be 455 

computed based on sample population averages rather than from the average of τj calculated for 456 

individual samples. 457 

 458 

 459 

3.3 Non-self averaging behavior 460 

The framework presented here is non-self-averaging. This means that calculating τj for each 461 

individual sample and then taking the average does not give the same result as calculating τj based 462 

on the sample population average i and j concentrations. This phenomenon is particularly acute 463 

when some samples fall outside of the mixing triangle. 464 

 465 

We demonstrate this behavior with a simple simulation (Figure 5 & Table 2). We calculate the true 466 

pre- and post-weathering soil-feedstock mixture compositions for two hypothetical deployments 467 

(250 t ha-1, τj of 0.5 and 50 t ha-1, τj of 0.25) and endmember compositions (using the Python 468 

functions SOMBA_start and SOMBA_end). For the calculated post-weathering composition, we 469 

simulate a set of samples based on assumed soil heterogeneities (here implemented as normal 470 

distributions with relative standard deviations of 25% and 10%, respectively) such that these two 471 

sets correspond to exemplary low- and high-resolvability deployments. As demonstrated in Figure 472 

5c, for the first deployment many samples fall outside of the mixing triangle. For both populations, 473 

τj as calculated from the average of each individual sample τj is not the same τj calculated from the 474 

population mean i and j concentrations (Table 2), with an extreme difference for the first low-475 

resolvability scenario. This is important to consider in statistical modelling of post-deployment 476 
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data, where Monte Carlo approaches (incl. bootstrapping) should always first calculate population 477 

means based on sample chemical compositions before calculating τj for a specific average model 478 

composition, rather than statistically resampling from distributions of sample τj. 479 

 480 

3.4 Signal-to-noise analysis 481 

The framework presented here can only yield accurate estimates of rock powder dissolution in 482 

soils when weathering signals can be picked out against background soil heterogeneity 483 

(Reershemius & Suhrhoff, 2023; Suhrhoff et al., 2024; Derry et al., 2025; Rogers & Maher, 2025). 484 

Here, we assess signal-to-noise in the updated framework by estimating the average error on 485 

detected dissolution fractions practitioners would observe based on specific deployment choices 486 

and spatial sampling frequencies. This analysis is based on a novel in-field dataset of high spatial 487 

density (0.6 – 19.2 ha-1; Table 1), which are used to simulate in-field heterogeneity. 488 

 489 

The average error on detected dissolution fractions decreases with increasing sampling frequency, 490 

application amounts, and dissolution fractions (Figure 6), which is consistent with previous 491 

investigations (Suhrhoff et al., 2024; Rogers & Maher, 2025). As a function of spatial sampling 492 

density, average errors on detected dissolution fractions have similar shapes to exponential decay 493 

curves where marginal gains in detection accuracy decrease as sampling frequency increases. 494 

Based on conservative estimates of spatial heterogeneity (Figure 6a&b); the signal-to-noise 495 

analysis suggests that when cumulative application amounts exceed 100 t ha-1, expected errors are 496 

on average <15% when sampling frequencies exceed 10 samples ha-1. At higher dissolution 497 

fractions (τj = 0.5), average errors below 10% are possible with high sample density. If paired-498 

sampling is implemented effectively the average error decreases significantly (Figure 6c&d). 499 

While the way that the reduction in variance is implemented here is somewhat arbitrary (σ/2), we 500 

would like to stress that both variance of baseline sampling as well as of reduction of variance due 501 

to paired sampling can be constrained at a field level based on deployment data. Monte Carlo 502 

simulations should then be tailored to specific field conditions to gauge the uncertainty of detected 503 

values and applicability of soil mass balance approaches.   504 

 505 
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In the context of sampling densities, it should be noted that as long as the spatial distance between 506 

sub-sample cores used to pool samples is larger than the spatial wavelength of soil heterogeneity, 507 

these required high sample rates can also partially be achieved by pooling samples, as is commonly 508 

practiced in most agronomic soil sampling protocols (Sawyer et al., 2016). Additionally, there are 509 

well established methods for characterizing contaminants in soils and other particulate media 510 

(Hewitt et al., 2007; Hadley et al., 2011; Clausen et al., 2013a, 2013b, 2013c; ITRC, 2020). A key 511 

aspect of these methodologies, such as Incremental Sampling Methods (ISMs), is that they 512 

acknowledge a-priori that contaminants, or in this case, crop amendments are distributed unevenly 513 

at the scales of interest relevant to signal detection. When implemented properly, incremental 514 

sample pooling and averaging strategies result in highly representative soil data at the field scale 515 

(Hewitt et al., 2007; Hadley et al., 2011; Clausen et al., 2013a, 2013b, 2013c; ITRC, 2020), with 516 

high numbers of pooled sub-samples of sufficient individual mass having a higher utility compared 517 

to more measured samples reflecting less pooled cores, not least because the former tend to be 518 

normally distributed due to the central limit theorem. We assert that if the mean and variance of a 519 

field or fields can be well established, averaged mixing models such as SOMBA can be utilized 520 

with confidence commensurate to the established population statistics. 521 

 522 

This analysis is based on a subset of samples for which soil mass balance approaches are suitable 523 

for MRV, here operationally defined as soil [i] and [j] being at least 5 times below US-average 524 

basalt composition (Lehnert et al., 2000). Approximately ~22% of all agricultural soils contained 525 

in the used geochemical soil database (Smith et al., 2013) fulfill this condition. This fraction 526 

strongly increases when all soils with concentrations at least 2 times lower are considered (n = 594 527 

out of 614 samples; ~95%), primarily due to more samples fulfilling the Ti cutoff (Figure S6). 528 

When the same signal-to-noise analysis is applied to this larger set of fields the average error on 529 

detected mass transfer coefficients is larger (Figure S7). This is expected based on lower soil-530 

feedstock compositional differences (Suhrhoff et al., 2024). Note also that the modeled 531 

deployment size (10-100 ha) has a direct impact on the signal-to-noise analysis as the number of 532 

generated samples is the product between field/deployment size and sampling frequency. 533 

 534 

In addition to increasing application amounts and optimizing deployment parameters e.g., through 535 

the choice of an above-average Ti containing basalt (Suhrhoff et al., 2024), improving sampling 536 
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protocols (Rogers & Maher, 2025) can all help to improve the robustness of soil mass balance 537 

approaches. An alternative way to increase both accuracy and precision could be to quantify 538 

dissolution fractions at the aggregate level over multiple deployments rather than for individual 539 

field sites, as has for example been demonstrated for the quantification of changes in soil organic 540 

carbon stocks (Bradford et al., 2023; Potash et al., 2025). Furthermore, the modelled average US-541 

basalt composition may also not be optimal in terms of soil-feedstock differences.  542 

 543 

Our signal-to-noise analysis also demonstrates that soil mass balance approaches can produce 544 

robust estimates of rock powder dissolution fractions when sampling frequencies, application 545 

amounts, dissolution fractions, and soil-feedstock compositional differences are sufficiently high. 546 

Nevertheless, resolvability also depends on the practice decisions with respect to acceptable 547 

uncertainty. While achieving an error of less than, e.g., 10% for 90% of the realizations (Rogers 548 

& Maher, 2025) is challenging in most settings unless application rates are high, larger 549 

uncertainties can still be acceptable in the context of crediting CDR if crediting is done at lower 550 

bounds of uncertainty (Sutherland et al., 2024). In addition, it is important to keep in mind that this 551 

approach requires an adequate difference in soil and feedstock composition; for a given feedstock 552 

and immobile element some soils will be extremely unlikely to yield a significant signal. A signal-553 

to-noise analysis for a given feedstock should hence only be based on the subset of soils that are 554 

potential targets for robust signals for this MRV approach, rather than through approaches that 555 

group all signals together regardless of soil fitness. Furthermore, it is important to note that what 556 

is relevant for this framework is the total application amount, not the annual rate. Hence, settings 557 

for which feedstock dissolution may not be resolvable initially can become resolvable over time 558 

through the gradual increase of cumulative application amounts as well as increases in the 559 

dissolution fraction over time. 560 

 561 

3.5 Additional Assumptions and Limitations 562 

One key assumption that is made in the signal-to-noise analysis is that baseline soil [i] and [j] does 563 

not change with time, and that therefore as long as sampling and spatial heterogeneity is correctly 564 

accounted for, a change in [i] and [j] can be solely attributed to feedstock addition and dissolution. 565 

This assumption may not always hold in cases where weathering of a labile constituent of the soil, 566 
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aeolian deposition, or other process might unexpectedly result in loss or gain of elements in the 567 

soil. Changes through time in soil [i] and [j] in controls that cannot be explained by sampling 568 

practice and spatial heterogeneity should be factored into estimates for feedstock weathering 569 

generated using SOMBAs; and results treated with caution where a mechanistic understanding of 570 

the elemental concentration change of the system cannot be found.  571 

 572 

We have not included baseline trend corrections in the signal-to-noise analysis presented here due 573 

to a lack of data on covariance for temporal trends in adjacent fields. Any simulation would hence 574 

depend more on our assumptions than realistic processes. As has been demonstrated, e.g., for soil 575 

organic carbon monitoring (Bradford et al., 2023), including such a correction would increase 576 

average detection errors but not systematically change trends relating to different application 577 

amounts and sampling protocols. Importantly, we suggest that for the purpose of crediting, cation 578 

losses from control sites should be deducted from treatment site EW signals, but that control site 579 

gains in base cations must not be used to increase weathering signals from treatment sites unless 580 

the cation gain in control site composition can be explained by known manipulations that has also 581 

occurred on treatment sites (e.g., fertilizer input etc.).   582 
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4 Conclusion 583 

We have presented an updated framework for using soil mass balance approaches (SOMBA) to 584 

quantify rock powder dissolution in EW field settings and provide a Python code base for 585 

implementing this framework. The updated framework explicitly accounts for the enrichment of 586 

immobile elements in topsoils due to feedstock mass loss (Brimhall & Dietrich, 1987; Anderson 587 

et al., 2002). Failing to account for these processes can cause detected dissolution fractions to be 588 

up to ~0.12 too high. Depending on deployment parameters, this may be an error of up to 100% 589 

for low dissolution fractions and relatively small compositional differences between feedstock and 590 

soil. 591 

 592 

We strongly suggest that the framework presented here should only be used when post-weathering 593 

sample compositions fall robustly within the mass balance constraints defined by the baseline soil, 594 

pure feedstock, as well as the composition the topsoil would have after a layer of pure feedstock 595 

had dissolved. Solutions are unstable outside of this parameter space, which may yield dissolution 596 

fractions that are unphysically high or low and should not be used to estimate CDR. When this 597 

occurs albeit reasonable application amounts (Suhrhoff et al., 2024), it is most likely a sign that 598 

sampling was not designed or optimized to capture the underlying spatial variability in soil 599 

chemistry and/or that soil-feedstock compositional differences are too small. The code presented 600 

here generates sensible dissolution fractions when the post-weathering composition falls within 601 

the mass balance dictated mixing triangle. However, this does not necessarily mean that this signal 602 

can be resolved statistically, particularly at low feedstock application amounts. It is the 603 

responsibility of practitioners to thoroughly investigate the statistical significance of changes in 604 

soil compositions and deduced rock dissolution parameters, for example through stochastic 605 

simulations that propagate uncertainties pertaining to all relevant parameters (Derry et al., 2025), 606 

including resulting from trends in control sites and through downsampling statistical tests. 607 

Sampling protocols should generally be defined a priori informed by desired sampling power 608 

(Chow et al., 2008). Lastly, we suggest that the framework should always be applied to calculate 609 

dissolution fractions based on the sample population mean, rather than for each individual sample 610 

because of the non-self-averaging character of this framework as well as instability outside of the 611 

endmember mixing triangle, where individual samples may fall due to soil heterogeneity even if 612 
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there is a clear signal for the overall distribution. This consideration will change the statistical 613 

modelling of weathering dynamics, e.g. via Monte Carlo simulations. Future studies should 614 

include incremental sampling strategies at predefined field and sub-field scales. In effect, 615 

averaging strategies should be fit-for-purpose and built in concert with the soil sampling 616 

procedures that researchers or EW suppliers design. We would also like to stress that alternative 617 

parametrizations of SOMBA are feasible and may be advantageous for certain settings such that 618 

the framework presented here should not be viewed as un-amendable.  619 

 620 

Our signal-to-noise analysis suggests that field-level quantification of rock powder dissolution 621 

based on soil mass balance is possible when application amounts, dissolution fractions, soil-622 

feedstock compositional differences, and sampling frequencies are sufficient. This may for 623 

example imply that signal emergence will only become resolvable after multiple years of repeated 624 

deployments and after substantial feedstock weathering. Our analysis suggests that soil mass 625 

balance approaches can be a useful tool in tracking weathering rates, but it must be acknowledged 626 

that this approach will not work in all settings and will typically require higher sampling densities 627 

than those currently being implemented in commercial deployments. Signal emergence can 628 

furthermore be optimized using tailored sampling strategies (Rogers & Maher, 2025) as well as 629 

feedstock-soil-matching (Suhrhoff et al., 2024).  630 
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8 Figures 910 

 911 
Figure 1: Sketch of the soil-based mass balance framework to quantify rock powder dissolution in soils. After rock powder of an 912 
elevated base cation and immobile element concentration compared to baseline soils is added to a field, the composition of the 913 
initial soil-feedstock mix falls on the mixing line between both endmembers (a). As feedstock dissolves base cations are released 914 
and either stored on the soil exchange complex or flushed out of topsoils. At the same time immobile element concentrations 915 
increase as a result of feedstock mass and volume loss, resulting in a vector starting at the pre-weathering soil-feedstock mix 916 
composition towards the bottom right (b). This is important to take into account, because simply projecting the post-weathering 917 
soil-feedstock mix composition from its immobile element concentration up to the mixing line between soil and feedstock 918 
endmembers will cause inflated estimates of cation mass loss and deduced dissolution fractions (c). One way to estimate the 919 
dissolution fraction while taking into account the impact of feedstock mass loss is to use a three endmember mixing model where 920 
the post-weathering composition is described as a mix of the baseline soil, pure feedstock, and a hypothetical weathered feedstock 921 
residue endmember (d). Note that the offset in immobile element concentrations (i.e., enrichment of immobile element 922 
concentrations due to mass loss) for the post-weathering soil-feedstock mix sample is exaggerated in panels b-d for the purpose of 923 
visualization. In a realistic system the horizontal component of this vector would be smaller compared to the vector between basalt 924 
as well as soil + weathered basalt residue (proportionally to the position of the pre-weathering soil-feedstock mix composition on 925 
the missing line). 926 
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 928 
Figure 2: Sites of the data utilized to constrain soil composition as well as in-field spatial heterogeneity (Table 1). 929 
a Novel soil heterogeneity dataset reported here. 930 
b (Smith et al., 2013) 931 
c (Potapov et al., 2022) 932 
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 934 
Figure 3: The dissolution of added rock powder increases the immobile element concentration of topsoils of constant volume as 935 
the lost rock powder is replaced by soil from the bottom of the soil column (a). The difference between erroneously high τj* when 936 
not taking this process into account and the actual τj is shown in b for absolute values (τj* - τj) and in c relative to the respective τj. 937 
((τj* - τj ) / τj).  938 
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 940 
Figure 4: Quantified feedstock dissolution fractions (τj) for a hypothetical soil and rock powder for a range of immobile element 941 
(i) and base cation (j) concentrations. The framework developed here should only be applied within the mixing triangle set out by 942 
baseline soil, rock powder, and the hypothetical weathered feedstock residue endmember. Outside of this domain, the results of the 943 
framework are unstable, and absolute values can approach infinity because negative contributions of endmembers can cause the 944 
dominator of equation 9 to approach 0. Generally, the framework developed here should only be applied when post-weathering 945 
soil-feedstock mix composition robustly falls within the mixing triangle. 946 
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 948 
Figure 5: Two exemplary EW deployments of 50 t ha-1, τj of 0.25 and relative 1SD on sampled soil compositions of 25% (a and c) 949 
and 250 t ha-1, τj of 0.5 and 1SD on soil samples of 10% (b and d), representative for a low- and high- resolvability scenarios. 950 
Panels c and d show the compositions of 10 random samples generated for the post-weathering soil-feedstock mixture (exact 951 
composition and associated sample τj values listed in Table 2). 952 
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 954 
Figure 6: Average errors on detected dissolution fractions for two simulated mass transfer coefficients (τj = 0.25 in a and c, τj = 955 
0.5 in b and d). The top row shows simulations where the variance imposed onto paired samples is equivalent to the variance of 956 
initial baseline samples. Because is likely an overestimate for accurate sample and resample strategies, the lower row shows the 957 
same simulations based on reduced variance for resampled sample composition (σ/2). The simulations are based on compositions 958 
of US soil (Smith et al., 2013) and basalt (Lehnert et al., 2000) considering soils with base cation and Ti concentrations at least 5 959 
times lower than basalt. The simulated in-field soil heterogeneity is based on the novel field trial dataset presented in Table 1. 960 
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9 Tables 962 

Table 1: Information on the field sites used to constrain spatial heterogeneity in the signal-to-noise analysis. The number of pooled cores corresponds to the number of-sub sample 963 
cores that were combined for each measured sample. Soil heterogeneity refers to the σ of log-normal fits to soil concentration distributions normalized to the field mean such that 964 
the resulting distribution has a mean of 1 (Figure S2). 965 

        soil heterogeneity (σ; log-normal) 

Site name Lat Lon size # samples # pooled cores sample density core density  Ca  Mg Na Ti 
  [°] [°] [ha]   [ha-1] [ha-1] [] [] [] [] 
Elmbrook 45.25194 -87.59694 6.42 40 2 6.23 12.46 0.493 0.278 0.072 0.120 
Hawthorne 42.26161 -73.60088 5.08 41 2 8.07 16.14 0.395 0.309 0.250 0.288 
Longleaf Ridge 31.26212 -84.37106 2.02 40 2 19.80 39.60 0.582 0.218 0.630 0.264 
Bisette - Tower 35.75976 -78.16533 42.44 25 12 0.59 7.07 0.519 0.523 0.510 0.154 
Bisette - Ike Lewis 35.75701 -78.18675 26.85 38 12 1.42 16.98 0.355 0.687 0.391 0.177 

 966 
 967 
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Table 2: Realized sample compositions and their calculated τj as well as population average sample composition and its τj for two 968 
hypothetical EW deployments (50 t ha-1, τj = 0.25, SD of randomly generated soil compositions = 25% as well as 250 t ha-1, τj = 969 
0.5, 1SD = 10%).  970 

 
example deployment 1 

50 t ha-1, τj = 0.25, SD = 0.25 
example deployment 2 

250 t ha-1, τj = 0.5, SD = 0.1 

 i [mol kg-1] j [mol kg-1] τj [] i [mol kg-1] j [mol kg-1] τj [] 

I. random samples (post-deployment composition) 

 0.033 0.569 1.300 0.089 0.707 0.652 

 0.054 0.777 -1.525 0.082 0.808 0.400 

 0.053 0.389 8.379 0.093 0.698 0.694 

 0.076 0.522 0.940 0.085 0.764 0.515 

 0.078 0.365 1.374 0.096 0.924 0.413 

 0.035 0.723 2.392 0.096 0.893 0.452 

 0.061 0.564 0.631 0.072 0.846 0.078 

 0.051 0.455 6.083 0.079 0.880 0.217 

 0.063 0.641 0.313 0.096 0.751 0.635 

 0.066 0.623 0.506 0.093 0.817 0.519 

random sample average τj  2.039   0.457 

       
II. sample average [i], [j], and related τj 

 0.057 0.563 0.433 0.088 0.809 0.481 

       
III. calculated true composition 

 0.057 0.591 0.25 0.089 0.802 0.5 
 971 
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Supplementary information to 972 

 973 

Updated framework and signal-to-noise analysis of soil mass balance 974 

approaches for quantifying enhanced weathering on managed lands 975 

 976 

Tim Jesper Suhrhoff1,2 *, Tom Reershemius3, 2, Jacob Jordan4, Shihan Li5, Shuang Zhang5, Ella 977 

Milliken2, Boriana Kalderon-Asael2, Christopher T. Reinhard6, Noah J. Planavsky2,1 978 

 979 
1 Yale Center for Natural Carbon Capture, Yale University, New Haven, CT 06511, USA 980 
2 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA 981 
3 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, 982 

England NE1 7RU, United Kingdom 983 
4 Mati Carbon, Houston, TX, USA 984 
5 Department of Oceanography, Texas A&M University, College Station, TX 77843, USA 985 
6 School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, 986 

USA 987 

 988 

* corresponding author: timjesper.suhrhoff@yale.edu 989 

 990 

Python code and Excel templates for the soil mass balance framework can be found here: 991 

 992 

 993 

Content of this file: 994 

S1: Additional derivations of the soil mass balance framework (incl. Figure S1) 995 

S2: Soil data (incl. Figure S2 & Figure S3) 996 

S3: Impact of feedstock mass loss on base cation and immobile element concentrations (incl. 997 

Figure S4 & Figure S5) 998 

S4: Impact of soil composition on signal-to-noise analysis (incl. Figure S6 & Figure S7)  999 
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S1 Additional derivations of the soil mass balance framework 1000 

 1001 

This supplement contains all derivations relating to section 2.1 of the manuscript. In addition to 1002 

quantifying rock powder dissolution and deployment parameters based on post-weathering soil 1003 

sample composition (see section 2.1 of the main text), we also present a framework to calculate 1004 

expected pre- and post-weathering compositions for soil-feedstock mixtures. The associated 1005 

Python functions are included in the Python file SOMBA.py and were used in the analyses 1006 

presented here. The code can be assessed here: 1007 

https://doi.org/10.5281/zenodo.15696933 1008 

 1009 

S1.1 Derivation of soil mass balance framework 1010 
 1011 

We continue from section 2.1 after the introduction of the hypothetical weathered feedstock 1012 

endmember. The composition of this hypothetical endmember is defined to be the composition 1013 

that a layer of soil would have after a layer of pure feedstock (corresponding to the soil sampling 1014 

depth, dsample) has dissolved. 1015 

 1016 

Since cations are assumed to be lost from the system, it has the same cation content as an equivalent 1017 

layer of pure soil, i.e.: 1018 

 1019 

[𝑗]*) = [𝑗](           S1 1020 

 1021 

where the subscripts wf and s correspond to weathered feedstock residue and baseline soil (and f 1022 

denotes pure feedstock in the following equations). The immobile element concentration of this 1023 

endmember is given by summing the amount of immobile elements in the fully weathered 1024 

feedstock as well as the soil that has replaced the feedstock in the reference volume, and dividing 1025 

by the system mass after weathering (assumed to be the same as background soil mass/density for 1026 

the equivalent soil volume):  1027 

 1028 

[𝑖]*) =
<)?)!-./0"	/!203	[,])><*?)!-./0"	/!203[,]*

<)?)!-./0"	/!203
= <)[,])><*[,]*

<)
= [𝑖]( +

𝜌)
𝜌(1 [𝑖])  S2 1029 

https://doi.org/10.5281/zenodo.15696933
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 1030 

where vsampled layer corresponds to the sampled soil volume and ρ to the density of feedstock and 1031 

soil. We make the assumption that post-weathering density is equivalent to background soil density 1032 

(see also eq. S6b) within the frame of reference assuming no change in porosity, though we note 1033 

that this ignores weathering congruency and compositional difference between the soil parent 1034 

material and the rock feedstock applied.  1035 

 1036 

Assuming mass and volume conservation, this endmember mixing approach can be described by 1037 

a system of equations such that each endmember contributes a volume proportion (X) to the 1038 

observed post-weathering composition, which together sum to unity: 1039 

 1040 

𝑋( + 𝑋) + 𝑋*) = 1          S3 1041 

 1042 

Because in practical field sampling based on constant soil sampling depths, a system of constant 1043 

volume is sampled, these endmember contributions reflect volume contributions to the sampled 1044 

soil volume defined by the sampling depth over a given area (all calculations and code shared here 1045 

use 1 hectare (ha) by default). The endmember contributions reflect three unknowns. Hence, we 1046 

set up two additional equations reflecting mass conservation of immobile elements as well as 1047 

mobile base cations respectively.  1048 

 1049 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗]*)𝑋*)𝜌*) = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  S4 1050 

[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌*) = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  S5 1051 

 1052 

Assuming that: 1053 

 1054 

[𝑗]*) =	 [𝑗](		, 𝑎𝑛𝑑          S6a 1055 

	𝜌*) = 𝜌(           S6b 1056 

 1057 

gives: 1058 

 1059 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗](𝑋*)𝜌( = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌()   S7 1060 
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[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌( = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌()   S8 1061 

 1062 

Now, rearranging eq. S7 and S8 to isolate the endmember contributions on one side of the 1063 

equation: 1064 

 1065 

𝑋(𝜌(5[𝑗]+,-,/01 − [𝑗](6 + 𝑋)𝜌)5[𝑗]+,-,/01 − [𝑗])6 + 𝑋*)𝜌(5[𝑗]+,-,/01 − [𝑗](6 = 0  S9 1066 

𝑋(𝜌(5[𝑖]+,-,/01 − [𝑖](6 + 𝑋)𝜌)5[𝑖]+,-,/01 − [𝑖])6 + 𝑋*)𝜌(5[𝑖]+,-,/01 − [𝑖]*)6 = 0 S10 1067 

 1068 

Next, we substitute [i]wf from eq. S2 into S10:  1069 

 1070 

𝑋!𝜌!#[𝑖]"#$,&'( − [𝑖]!( + 𝑋)𝜌)#[𝑖]"#$,&'( − [𝑖])( + 𝑋*)𝜌! *[𝑖]"#$,&'( − [𝑖]𝑠 +
𝜌𝑓

𝜌𝑠+ [𝑖]𝑓, = 0 S11 1071 

 1072 

For clarity, we rewrite the system of equations (S3, S7, S8) in matrix form: 1073 

 1074 

!
𝜌4#[𝑗]567,9:; − [𝑗]4( 𝜌<#[𝑗]567,9:; − [𝑗]<( 𝜌4#[𝑗]567,9:; − [𝑗]4(

𝜌4#[𝑖]567,9:; − [𝑖]4( 𝜌<#[𝑖]567,9:; − [𝑖]<( 𝜌4 *[𝑖]567,9:; − [𝑖]4 +
𝜌< 𝜌4, [𝑖]<-

1 1 1

/ 	 ∗ 	 2
𝑋4
𝑋<
𝑋=<

4 = 	 6
0
0
1
8 S12 1075 

 1076 

For clarity, defining the following shorthand notions: 1077 

 1078 

𝑎 = 𝜌(5[𝑗]+,-,/01 − [𝑗](6         S13a 1079 

𝑏 = 𝜌)5[𝑗]+,-,/01 − [𝑗])6         S13b 1080 

𝑐 = 𝜌(5[𝑖]+,-,/01 − [𝑖](6         S13c 1081 

𝑑 = 𝜌)5[𝑖]+,-,/01 − [𝑖])6         S13d 1082 

𝑒 = 𝜌)[𝑖])           S13e 1083 

 1084 

With these shorthand notations, equation S12 becomes: 1085 

 1086 

;
𝑎 𝑏 𝑎
𝑐 𝑑 𝑐 + 𝑒
1 1 1

< 	 ∗ 	 >
𝑋(
𝑋)
𝑋*)

? = 	 ;
0
0
1
<        S14 1087 
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 1088 

Now defining a new variable reflecting the sum of the soil and weathered feedstock residue 1089 

endmembers: 1090 

 1091 

𝑋(@ = 𝑋( + 𝑋*)          S15 1092 

 1093 

Inserting S15 into S14, the system of equations reduces to: 1094 

 1095 

𝑎𝑋(@ + 𝑏𝑋) = 0          S16 1096 

𝑐𝑋(@ + 𝑑𝑋) + 𝑒𝑋*) = 0         S17 1097 

𝑋(@ + 𝑋) = 1           S18 1098 

 1099 

Now we solve for 𝑋(@ by substituting 𝑋) = 1 − 𝑋(@ from equation S18 into S16: 1100 

 1101 

𝑎𝑋(@ + 𝑏(1 − 𝑋(@) = 0          S19a 1102 

𝑎𝑋(@ + 𝑏 − 𝑏𝑋(@ = 0          S19b 1103 

(𝑎 − 𝑏)𝑋(@ + 𝑏 = 0          S19c 1104 

𝑋(@ =
AB
%AB

           S19d 1105 

 1106 

Now, substituting, S19d into 𝑋) = 1 − 𝑋(@ from equation S18: 1107 

 1108 

𝑋) = 1 − AB
%AB

= %AB
%AB

− AB
%AB

= %AB>B
%AB

= %
%AB

       S20 1109 

 1110 

Substituting S13a and S13b into S20: 1111 

 1112 

𝑋) =
<)2[#]-,>,?@AA[#])3

C<)2[#]-,>,?@AA[#])3A<*2[#]-,>,?@AA[#]*3D
       S21 1113 

 1114 

Now we substitute S20 and S19d into S17 to solve for 𝑋*): 1115 

 1116 
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𝑐 AB
%AB

+ 𝑑 %
%AB

+ 𝑒𝑋*) = 0         S22 1117 

ABE>%&
%AB

+ 𝑒𝑋*) = 0          S23 1118 

𝑋*) =
BEA%&
8(%AB)

           S24 1119 

 1120 

Finally, substituting S13a-S13e into S24: 1121 

 1122 

𝑋*) =
<*2[#]-,>,?@AA[#]*3<)2[,]-,>,?@AA[,])3A<)2[#]-,>,?@AA[#])3<*2[,]-,>,?@AA[,]*3

<*[,]*(<)2[#]-,>,?@AA[#])3A<*2[#]-,>,?@AA[#]*3)
   S25 1123 

 1124 

 1125 

S1.2 Calculation of deployment parameters from post-weathering samples 1126 
 1127 

From the estimates of endmember contributions to the post-weathering soil-feedstock mix sample 1128 

as well as the rock powder dissolution calculated using the approach outlined above, additional 1129 

deployment parameters can be calculated that may be valuable for the purposes of MRV. First, we 1130 

can calculate the mass of rock powder initially added to the sampled soil volume (a, t ha-1): 1131 

 1132 

𝑎	 = 𝑓𝑉),/0'	𝑣(%+678&	7%:8; 	𝜌)        S26 1133 

 1134 

where fVf,t=0 is the pre-weathering feedstock volume fraction, defined as the sum of the volume 1135 

fraction comprising residual feedstock as well as the initial feedstock present that has since 1136 

weathered:  1137 

 1138 

𝑓𝑉),/0' = 𝑋) + 𝑋*)          S27 1139 

 1140 

and the sampled layer volume per hectare is calculated from the sampling depth (dsampling): 1141 

 1142 

𝑣(%+678&	7%:8;[𝑚H	ℎ𝑎AI] = 10000	𝑚Jℎ𝑎AI ∗ 𝑑(%+67,1K[𝑚]    S28 1143 

 1144 
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Note that in cases where the sampling depth is not the same as the soil mixing depth, it is important 1145 

to use the depth of soil sampling. If the two depths are not the same, using calculated parameters 1146 

that are based only on the sampled layer for the entire mixed layer assumes that the sampled layer 1147 

composition is representative of the entire mixed layer. This is not necessarily the case, particularly 1148 

when feedstock distribution is not uniform with depth. In cases where the mixing depth is larger 1149 

than the sampling depth, one could assume that the calculated dissolution fraction (τj) applies to 1150 

the known application amount, but this would trade off against the benefit that feedstock addition 1151 

can be calculated from the enrichment of immobile elements. To make sure that the calculation of 1152 

initial CDR from a combination of τj with the applied feedstock mass is entirely constrained in 1153 

empirical measurements the choice of sampling depth should ideally be equal to the mixing depth.  1154 

 1155 

In addition, we can calculate the initial soil-feedstock mix composition from the post-weathering 1156 

composition and mixing model outputs. Initial concentrations can be calculated by combining the 1157 

amounts of base cations as well as immobile elements contributed to the initial mix from both soil 1158 

and feedstock divided by the mass of the system: 1159 

 1160 

[𝑗]+,-,		/0' =
<)	?),?@B	[#])><*	?*,?@B	[#]*

<)	?),?@B	><*	?*,?@B	
         S30 1161 

[𝑖]+,-,		/0' = 	 <)	?),?@B
[,])><*	?*,?@B	[,]*

<)	?),?@B	><*	?*,?@B	
        S31 1162 

 1163 

where vs,t=0 and vf,t=0 are the area normalized volumes (m3 ha-1) of soil and feedstock within the 1164 

sampled topsoil volume: 1165 

 1166 

𝑣(,/0' = 𝑣(%+678&	7%:8; 	𝑋(         S32 1167 

𝑣),/0' = 𝑣(%+678&	7%:8; 	𝑓𝑉),/0' =	𝑣(%+678&	7%:8;(𝑋) + 𝑋*))    S33 1168 

 1169 

Substituting 20 and 21 in 18 and 19: 1170 

 1171 

[𝑗]+,-,	/0' =
<)	?)!-./0"	/!203	=)	[#])><*	?)!-./0"	/!203(=*>=+*)[#]*

<)	?)!-./0"	/!203	=)><*	?)!-./0"	/!203(=*>=+*)
=	 <)	=)	

[#])><*2=*>=+*3[#]*
<)	=)><*2=*>=+*3

 S34 1172 

[𝑖]+,-,/0' =
<)?)!-./0"	/!203	=)	[,])><*	?)!-./0"	/!2032=*>=+*3[,]*

<)	?)!-./0"	/!203	=)><*?)!-./0"	/!2032=*>=+*3
=	 <)	=)	

[,])><*2=*>=+*3[,]*
<)	=)><*2=*>=+*3

 S35 1173 
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 1174 

The calculation of feedstock application mass as well as pre-weathering composition from post-1175 

weathering composition and deployment data is included in the SOMBA_TAU_meta function 1176 

defined in the SOMBA.py file in the supplement.  1177 

 1178 

 1179 

S1.3 Pre-weathering mix composition 1180 
 1181 

After addition of rock powder to soils, the composition of the soil-rock-powder mix falls on a 1182 

mixing line between both endmembers (Figure 1a). Provided the rock powder is enriched in both 1183 

base cations as well as at least one immobile element compared to the baseline soil, the addition 1184 

of rock powder causes an increase of both base cation and immobile element concentrations. The 1185 

pre-weathering mix concentrations of both major cations (j) and an immobile element (i; both in 1186 

mol/kg) can be calculated from the mix of both endmembers: 1187 

 1188 

𝑗+,-,/0' = 𝑗)	𝑟+,/0' + 𝑗(	(1 − 𝑓𝑀),/0')       S36 1189 

𝑖+,-,/0' = 𝑖)	𝑟+,/0' + 𝑖(	(1 − 𝑓𝑀),/0')       S37 1190 

 1191 

Where the subscripts f and s denote feedstock and soil respectively, and fMf refers to the mass 1192 

mixing ratio of feedstock in the soil-feedstock mix, which can be calculated as: 1193 

 1194 

𝑓𝑀),/0' =	
%

(%>+)C,/,?@B)
         S38 1195 

 1196 

where a is the application amount of rock powder (in t ha-1), and mtopsoil,t=0 is the mass of soil in 1197 

the mixed soil rock powder topsoil layer right after deployment (in t ha-1). The application amount 1198 

a is in this case given from deployment data, while the mass of topsoil can be calculated from the 1199 

topsoil volume that is not rock powder (units in square brackets): 1200 

 1201 

𝑚(L,7,/0'	[𝑡	ℎ𝑎AI] = 𝑣(L,7,/0'[𝑚Hℎ𝑎AI]	𝜌(L,7[𝑡	𝑚AH]     S39 1202 

𝑣(L,7,/0'[𝑚Hℎ𝑎AI] = 𝑣+,-8&	7%:8;[𝑚Hℎ𝑎AI] − 𝑣)[𝑚Hℎ𝑎AI]     S40 1203 
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𝑣),/0'[𝑚Hℎ𝑎AI] = %	[/	M%DE]
<*	[/	+F]

         S41 1204 

𝑣+,-8&	7%:8;[𝑚Hℎ𝑎AI] = 10000	[𝑚Jℎ𝑎AI]	𝑑+,-	[𝑚]     S42 1205 

 1206 

where m refers to mass, v to volume, and ρ to density of the soil within the mixed layer (subscript 1207 

topsoil), the total mixed layer (mixed layer) as defined by the mixing depth (dmix), as well as the 1208 

feedstock (f). Substituting S39-42 into S38:  1209 

 1210 

𝑓𝑀),/0' =	
%

(%>(I''''	&-,>A% <*N )	<)C,/)
        S43 1211 

 1212 

 1213 

S1.4 Post-weathering composition 1214 
 1215 

As feedstock dissolves, both base cation as well as immobile element concentrations change. 1216 

While base cation concentrations decrease as these mobile elements are leached from topsoils, 1217 

immobile element concentrations increase due to the loss of feedstock mass (and volume) from 1218 

topsoils, resulting in a vector originating at the pre-weathering composition towards the bottom 1219 

right in j vs. i space (Figure 1a). The post-weathering soil-rock powder mix composition can be 1220 

calculated as a function of feedstock dissolution (mass transfer coefficient τj) fraction through 1221 

system mass conservation where the denominate describes the mass of the post-weathering mix 1222 

and the numerator its amount base cations or immobile elements: 1223 

 1224 

𝑗+,-,/01 =
<)?),?@A[#])	>	<*?*,?@A[#]*

<)?),?@A	>	<*?*,?@A
        S44 1225 

𝑖+,-,/01 =
<)?),?@A[,])	>	<*?*,?@B[,]*

<)?),?@A	>	<*?*,?@A
        S45 1226 

 1227 

where the t = 0 in the numerator of eq. S45 reflects the fact that immobile elements added through 1228 

feedstock are retained within topsoils upon weathering. Post-weathering soil and feedstock 1229 

volumes can be calculated as: 1230 

 1231 
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𝑣),/01 = 𝑣),/0'	(1 − 𝜏#)         S46 1232 

𝑣(,/01 =	𝑣),/0' + 𝑣),/0' −	𝑣),/01 = 𝑣(,/0' + 𝑣),/0'	𝜏#     S47 1233 

 1234 

 1235 

S1.5 Internal consistency of the SOMBA framework 1236 
 1237 

One of the script contained in the code supplement (SOMBA_verification.py) demonstrates the 1238 

internal consistency of the SOMBA framework. In the first part of the script, an example dataset 1239 

is generated based on assumed deployment parameters. Some of these parameters—such as the 1240 

amount of feedstock applied, the dissolution fraction, and others—are specifically required for the 1241 

SOMBA_start and SOMBA_end functions. These functions estimate the composition of the soil-1242 

feedstock mix before and after weathering, respectively, using deployment-specific inputs. 1243 

However, when using the soil mass balance framework to estimate rock powder dissolution 1244 

fractions from post-weathering samples, these parameters may not be necessary.  1245 

 1246 

In the second part of the script, the generated dataset is used to sequentially call a series of soil 1247 

mass balance functions defined in the SOMBA.py file, which are derived here. The functions 1248 

called include: (1) SOMBA_start, which calculates the pre-weathering soil-feedstock mix 1249 

composition from deployment parameters; (2) SOMBA_end, which estimates the post-weathering 1250 

composition based on the output from SOMBA_start and an assumed rock powder dissolution 1251 

fraction; (3) SOMBA_tau, which calculates the rock powder dissolution fraction from deployment 1252 

data, including baseline soil, feedstock, and post-weathering compositions; and (4) 1253 

SOMBA_tau_meta, which performs the same calculation as SOMBA_tau but also provides 1254 

metadata such as endmember contributions and detected feedstock amounts.  1255 

 1256 

Finally, the exported Figure S1 demonstrates that the calculated from the SOMBA framework 1257 

(such as τj and pre-weathering concentrations) are equivalent to the values assumed or calculated 1258 

a-priori. The same is true for the estimate rock powder application amount—in this case it is 1259 

important to consider potential mismatches between mixing and sampling depth, where the 1260 

detected rock powder amount is going to be less than the amount assumed a-priori if the sampling 1261 

depth is less than the mixing depth.  1262 
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 1263 

 1264 
Figure S1: This figure demonstrates that the soil mass balance framework developed here is internally consistent. The calculated 1265 
dissolution fraction τj (a) and pre-weathering soil concentration (b) are equivalent to the values assumed a-priori. The same is true 1266 
for detected rock powder application amounts (c) when taking into account potential mismatches between soil mixing and sampling 1267 
depth. 1268 

  1269 
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S2 Soil data  1270 

 1271 
 1272 

S2.1 Site and sampling information 1273 
 1274 

Elmbrook: This field is classified as loamy-sand, with a mean pH of 7.0, and is on a corn-1275 

yellow pea rotation. The only fertilizer used is chicken litter.  1276 

Hawthorne: This field is classified as silt-loam, with a mean pH of 6.4. This field is used as 1277 

pastureland, growing native grasses for grazing. There is no tillage, irrigation, fertilizer, or 1278 

liming use.  1279 

Longleaf Ridge: This field is classified as loamy-sand. This field is used for peanuts, and is 1280 

irrigated by a center pivot. There is no tillage, regular nitrogen application, and highly infrequent 1281 

liming.  1282 

Tower/Ike Lewis: Tower and Ike Lewis fields are managed by the same farmer. The fields are 1283 

no-till and are ripped every 3 years. Both fields are on a corn-soy rotation, and receive nitrogen 1284 

fertilizer during corn season. There is no irrigation. No pH data is available for this field. 1285 

 1286 

Elmbrook, Hawthorne, and Longleaf fields were sampled in a grid array across the entire field 1287 

region, with 2 cores taken at each sampling location and homogenized. Samples were dried at 60 1288 

°C, sieved to 2mm and ground prior to analysis. Tower and Ike Lewis samples were collected by 1289 

randomly pooling 12 15-cm drill cores from a 1m radius circle. Samples were dried at 60 °C, 1290 

sieved to 2mm and ground prior to analysis. 1291 

 1292 
 1293 

S2.2 Analytical information 1294 
 1295 

Powdered soil samples (typically 0.1 g) were leached in 12 ml of 1M Ammonium Acetate (trace 1296 

metal grade) and centrifuged in 15 ml polypropylene tubes for 5 minutes at 4000 rpm to release 1297 

any adsorbed cations (i.e, the exchangeable fraction) and subsequently washed in 2 ml of 2X 1298 

MilliQ H2O (18.2MΩcm at 25 °C) and centrifuged again. The soil was then transferred into pre-1299 

acid-cleaned quartz crucibles, dried at 60 °C and ashed at 600 °C to incinerate any organic matter 1300 
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(and release volatiles). The dried residue was weighed for insoluble content and to estimate the 1301 

LOI. The residue was then transferred into pre-acid-cleaned teflon beakers and dissolved 1302 

completely using a mixture of 5 ml distilled hydrochloric acid (HCl), 5 ml distilled nitric acid 1303 

(HNO3) and 1 ml of trace metal grade hydrofluoric acid (HF), capped, heated at 100 °C for 24 1304 

hours. The samples were then uncapped and evaporated to dryness at 90 °C and redissolved in 5 1305 

ml of 6N HCl.  1306 

 1307 

Splits were taken for elemental concentrations measurements. For analysis on the Agilent 8900 1308 

Triple Quadrupole ICP-MS, a split of 15 μl from each sample was evaporated, diluted 1000 1309 

times with 1% HNO3 (v/v) and spiked with 26Mg and 49Ti. Indium was introduced externally as 1310 

an internal standard. For analysis on the Thermo Scientific Element XR ICP-MS, a split of 10 μl 1311 

from each sample was evaporated, diluted 400 times with 5% HNO3 (v/v) and spiked with 26Mg, 1312 
42Ca, 49Ti and 1ppb In. Values were normalized using routine measurements of USGS 1313 

geostandards BHVO-2 and SGR-1b (processed with each batch of samples throughout the entire 1314 

procedure), whose precision was within 1% of certified values (4% for Al) on the Agilent (LL). 1315 

For more information on the analytical procedure see also Reershemius et al. (2023). 1316 

 1317 

 1318 

S2.3 Implementation of soil heterogeneity in Monte Carlo simulations 1319 
 1320 

We use soil composition data from five novel field sites sampled at high spatial densities to 1321 

constrain in-field heterogeneity for the Monte Carlo signal-to-noise analysis. The data are 1322 

normalized by the field mean concentration (Figure S2) before we fit log-normal distributions to 1323 

make sure the population means are 1. The use of log-normal (rather than normal) distributions is 1324 

intentional because samples generated from log-normal distributions always have positive values, 1325 

preventing the occurrence of non-physical negative soil concentrations in the signal-to-noise 1326 

analysis without having to filter some data. For normal distributions, this could be achieved by 1327 

simply filtering out negative model occurrences, but this would change the mean of generated 1328 

sample distributions and cause a systematic error in calculated dissolution fractions. In addition, 1329 

using log-normal compared to normal fits also represents a conservative choice for the signal-to-1330 



Supplement | Suhrhoff et al. | V1 | June 19th, 2025 

 53 

noise analysis due to the generally higher variance, as well has overall better fits compared to 1331 

normal distributions (R2 better for 11 out of 20 elemental field distributions). 1332 

 1333 

 1334 
Figure S2: Distributions of baseline data for the 5 field sites (Table 1) including log-normal fits to the data. The shape parameters, 1335 
corresponding to the standard deviation of the normal distribution of the logarithm of the data, are plotted in Figure S3. 1336 

 1337 

Generally, a random variable is log-normally distributed if: 1338 

 1339 

𝑋	~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)         S48 1340 

 1341 
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Which means that: 1342 

 1343 

𝑙𝑛(𝑋)	~𝑁(𝜇, 𝜎J)          S49 1344 

 1345 

where μ is the mean, σ the standard deviation, and σ2 the variance of the respective distributions, 1346 

with log-normal distributions conventionally defined via the standard deviation of the underlaying 1347 

normal distribution. The expected value (mean) of a log-normal variable X can be calculated as: 1348 

 1349 

E[X] = e4O>
GH

H 5          S50a 1350 

 1351 

Hence, when using the parameters of log-normal fits to populations with a given mean (Figure S2) 1352 

to generate synthetic data for the Monte Carlo simulations, if generating μ and σ independently, 1353 

the mean of the resulting populations will not be the same as of the initial distribution (i.e., 1). Or 1354 

said differently, if we want the mean of a synthetic distribution to be a specific value, μ and σ are 1355 

not independent—only one can be randomly generated. We implement this into the Monte Carlo 1356 

simulation by randomly generating shape parameters (σsyn) and then calculating μsyn such that E(X) 1357 

= 1:   1358 

 1359 

E[X] = e
PO)2A>

G)2AH

H Q
= 1         S50b 1360 

 1361 

Now, taking the natural logarithm: 1362 

 1363 

ln ;e
PO)2A>

G)2AH

H Q
< = ln(1)⇒ 	 𝜇(:1 +

R)2AH

J
= 0	⇒	𝜇(:1 =	−

R)2AH

J
	    S51 1364 

 1365 

The empirically constrained simulated μsyn and σsyn describe log-normal distributions with a mean 1366 

of 1 and σ (shape) parameters constrained from field data (with a mean of 1), and are used to 1367 

randomly generate sets of samples by multiplying these in-field variance factors with true “true” 1368 

sample compositions. 1369 

 1370 
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Because the σ values from the fit to field data (Figure S2) are neither normally nor log-normally 1371 

distributed (negative R2; Figure S3), in the Monte Carlo simulations we generate synthetic σsyn 1372 

values by randomly pulling from uniform distributions set out by the minimum and maximum 1373 

observed σ values observed in field data (for Ca, Mg, and Na the used values are 0.072402 and 1374 

0.687422, and for Ti 0.119775 and 0.288003). 1375 

 1376 

 1377 
Figure S3: Histograms as well as normal and log-normal fits to the shape parameters from log-normal fits to soil data. The signal-1378 
to-noise analysis and related Monte Carlo simulations use uniform distribution set out by the minimum and maximum Ca, Mg, and 1379 
Na shape values (b) as well as Ti shape values (c) due to low fit of both normal and log-normal distributions. 1380 

  1381 
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S3 Impact of feedstock mass loss on base cation and immobile element 1382 

concentrations  1383 

 1384 
Figure S4 Change of base cation concentration as a result of feedstock mass/volume loss from the system considering constant 1385 
feedstock compositions.  1386 

 1387 

Calculated as: 1388 

 1389 

𝛥𝑗 = [𝑗]10/ − [𝑗]∗10/          S52 1390 

 1391 

Where [𝑗]10/ is equation from S44, and [𝑗]∗10/ calculated from a linear loss of base cations 1392 

relative to the dissolution fraction: 1393 

 1394 

[𝑗]∗10/ = [𝑗]( + ([𝑗]10' − [𝑗]()(1 − 𝜏#)       S53 1395 

 1396 

Where [𝑗]10' is equation from S36. 1397 

 1398 
  1399 
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 1400 
Figure S5: Sketch of the impact of enrichment of post-weathering soil immobile element concentrations when the feedstock 1401 
immobile element concentration is lower than in soil. 1402 
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S4 Impact of soil composition on signal-to-noise analysis  1407 

 1408 
Figure S6: Cumulative distribution plot of the ratio of agricultural soil (LandCover2 = “Row Crops” and “Small Grains”) 1409 
composition (Smith et al., 2013) to US-basalt composition (Lehnert et al., 2000). As the ratio increases above the value of 0.2 1410 
defined here as a cut off for soils suitable for soil mass balance approaches, the fraction of soils fulfilling this condition quickly 1411 
increases. 1412 

  1413 
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 1414 

 1415 
Figure S7: Average errors on detected dissolution fractions for two simulated mass transfer coefficients (τj = 0.25 in a, τj = 0.5 in 1416 
b). The simulations are based on US soil (Smith et al., 2013) and basalt (Lehnert et al., 2000) compositions considering soils with 1417 
base cation and Ti concentrations at least 2 times lower than basalt (in contrast to Figure 5, which shows the same for soil 1418 
concentrations that are at least 5 times lower). The simulated in-field soil heterogeneity is based on the novel dataset presented in 1419 
Table 1.  1420 


