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Abstract 19 
 20 
Enhanced weathering is a promising approach for removing carbon dioxide from the atmosphere 21 
at scale while improving agricultural yields. However, accurately quantifying carbon dioxide 22 
removal in the field is critical for this approach to scale, particularly given that nearly all of the 23 
current deployment activity caters to the voluntary carbon market. Here, we present an updated 24 
framework and a signal-to-noise analysis for using soil-based mass balance approaches to quantify 25 
rock powder dissolution from field-scale data of soil composition. With additional assumptions, 26 
the quantification of rock powder dissolution can be used to estimate carbon dioxide removal 27 
potential of EW deployments. The framework we present explicitly accounts for the enrichment 28 
of immobile elements in topsoil due to feedstock mass loss and demonstrates that omission of this 29 
process systematically overestimates feedstock dissolution. We suggest that the framework should 30 
only be used when average post-weathering sample compositions fall within the parameter space 31 
representing physically meaningful results (i.e., set out by the mixing relationships between soil, 32 
feedstock, and a hypothetical weathered feedstock residue endmember). Building from this, we 33 
provide support for the idea that feedstock dissolution should be quantified using the sample 34 
population mean rather than individual samples. Given the potential for signal-to-noise issues with 35 
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this framework, it is critical that it is utilized only when signals are statistically robust. To illustrate 36 
this, we present a signal-to-noise analysis based on a new dataset of soil cation heterogeneity from 37 
high-density spatial sampling of 5 fields (0.6-19.2 samples ha-1, 7.1-39.6 pooled cores ha-1). The 38 
analysis is based on simulated geolocated sample pairs and suggests that detecting rock powder 39 
dissolution via soil mass balance should be feasible when application rates, dissolution fractions, 40 
and sampling frequencies are above certain threshold values. When planning deployments, signal 41 
emergence can be optimized through careful selection of feedstock composition, strategic 42 
feedstock application, and improved sampling protocols. 43 
 44 
Synopsis statement: This work advances reliable carbon removal accounting for enhanced 45 
weathering by providing a novel tool to quantify rock powder dissolution in soils and demonstrates 46 
utility based on a signal-to-noise analysis grounded in new data on in-field soil heterogeneity. 47 
  48 
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1 Introduction 49 

Achieving the climate targets set out by the Paris agreement requires both deep and immediate 50 

emissions cuts as well as the ability to remove emitted carbon from the atmosphere 1–3. Enhanced 51 

Weathering (EW) is one promising approach where CO2 can be removed from the atmosphere 52 

through the reaction with crushed rock feedstocks applied as soil amendments 4–12. In the ideal 53 

case, CO2 is transferred into bicarbonate and ultimately stored in the oceans for >10 kyrs 13 or 54 

stored as carbonate in both soils and deep-sea sediments. This approach has a unique set of 55 

advantages including that carbon is stored more durably compared to many biomass-based 56 

approaches. Enhanced weathering can also boost crop yields and does not compete for land 57 

resources 12,14–16, and the logistics and infrastructure to scale are readily available. 58 

 59 

Currently, most CDR activity—including EW—is occurring on the voluntary carbon market 2,17,18. 60 

This means that CDR credits are primarily being used by companies with net-zero goals to balance 61 

ongoing emissions. There is a long tradition of tracking soil carbon removal through 62 

biogeochemical modeling—foremost with soil organic carbon (e.g., Parton et al., 1998)—and 63 

using models for emissions offsetting claims 20,21. There are also geochemical models for enhanced 64 

weathering 22–25. However, it has been commonly argued that soil biogeochemical models have 65 

not progressed or been sufficiently validated to make them fit for offsetting purposes at this stage 66 
26,27. Therefore, there is a need to develop a suite of tools to track weathering rates at the field 67 

scale.  68 

 69 

This is a challenge for EW because it is an open-system CDR pathway, and a large number of 70 

approaches have been suggested to quantify CDR at the field scale 28,29. Broadly speaking, 71 

Measurement, Reporting, and Verification (MRV) approaches for EW rely on either solid soil, 72 

water, gas, or exchangeable phase measurements 28. Soil-based MRV approaches have a unique 73 

set of advantages, namely that they yield a time-integrated signal 28,30, meaning that they resolve 74 

all rock feedstock weathering that occurred between different sampling steps without need for high 75 

temporal sampling frequencies.  76 

 77 
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One promising variation of soil-based MRV approaches is the use of soil mass balance 28,30,31. Soil 78 

mass balance approaches—here called SOMBA—rely on a sample-resample approach where the 79 

dissolution of rock powder feedstock is tied to the loss of cations from mixed soil-feedstock 80 

samples. The loss of cations provides an estimate of feedstock dissolution, and with additional 81 

assumptions can be translated into an estimate of initial CDR. Here, we present an updated 82 

framework for this approach that explicitly considers the impact of immobile element enrichment 83 

in soils due to feedstock mass loss. Furthermore, we demonstrate some of the intricacies of this 84 

approach, perform a signal-to-noise analysis, and share tools to help users constrain rock powder 85 

dissolution in their own field deployments. The signal-to-noise analysis is grounded in a new 86 

dataset (5 fields, 998 total samples) where spatial heterogeneity in soil major and trace elemental 87 

concentration is assessed at a high spatial sampling density. 88 

  89 
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2 Soil mass balance framework 90 

Soil mass balance approaches assume that mobile base cations are lost from the solid phase of the 91 

soil-feedstock mixture during feedstock dissolution, while immobile elements are retained in the 92 

solid phase of the soil. Base cations mobilized during feedstock dissolution can be temporarily 93 

retained on the soil exchange complex 26,32,33, but these can also be readily quantified. Using these 94 

assumptions, practitioners can calculate weathering rates of feedstock material based on the 95 

mobility of base cations relative to immobile elements 34–46. In the context of EW, this framework 96 

was first applied in 2023 30,47 and has since been built upon in several publications 12,28,31,48,49 and 97 

preprints 50,51. 98 

 99 

For this approach to be effective, rock feedstock added to fields must be enriched in base cations 100 

compared to background soil. If immobile element abundance is also being used to evaluate the 101 

amount of feedstock, at least one immobile element needs to be enriched. If these conditions are 102 

met, the enrichment of immobile elements in topsoils can be used to constrain rock powder 103 

addition, and the loss of cations can be used to estimate rock powder dissolution. If these conditions 104 

are not met, SOMBA are not suitable to detect CDR through EW 28,30,31. Using an immobile 105 

element to constrain rock powder addition has the benefit that rock powder loss through, e.g., 106 

erosion, is not erroneously detected as weathering, as may be the case if only changes in base 107 

cation concentration are considered. Because first applications of this approach to EW have used 108 

Ti as the proxy for rock powder addition, this approach has also been called “TiCAT” 30, but 109 

because other immobile elements may be used 31, we now refer to this approach more broadly as 110 

SOMBA. 111 

 112 

The loss of cations from topsoils upon weathering can be used to constrain the fraction of rock 113 

powder that has dissolved. This in turn can be a proxy for CDR, but translating rock powder 114 

dissolution into CDR estimates requires additional assumptions as well as quantification of 115 

downstream loss processes 28,30. These are discussed in detail elsewhere 28,52–54 and are beyond the 116 

scope of this study. Our focus here is to present an updated framework for the quantification of 117 

rock powder dissolution, as well as a signal-to-noise analysis of the utility of this approach against 118 
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background soil heterogeneity. We also share the accompanying code to provide future ERW 119 

deployments with a solid foundation for the quantification of rock powder dissolution.  120 

 121 

2.1 Calculation of feedstock dissolution fraction 122 

After rock powder that has an elevated base cation content ([j], with the square brackets denoting 123 

concentrations per mass of feedstock) and is enriched in at least one immobile element ([i]) is 124 

added to fields, the composition of the initial soil-feedstock mixture falls onto a mixing line 125 

between the soil and feedstock endmembers (Figure 1a). As the rock powder dissolves, mobile 126 

base cations are leached from the mineral phase. This loss of cations is used to quantify the fraction 127 

of rock powder that has weathered. This estimate of base cation loss reflects the dissolution of 128 

primary feedstock when a chemical extraction of secondary phases or exchangeable cations is 129 

performed prior to analysis. Alternatively, the estimate can reflect the proportion of the overall 130 

feedstock base cation inventory that has been leached from topsoils entirely if bulk samples are 131 

used.  132 

 133 

Enrichment of immobile elements through rock powder dissolution occurs when they are retained 134 

in topsoil while a soluble fraction of feedstock is lost from the system. Assuming that the topsoil 135 

volume sampled does not change and that there is no change in porosity, lost feedstock in a sample 136 

is replaced with soil that also contains immobile elements in addition to the retained immobile 137 

elements added via the rock powder. Furthermore, if the density of feedstock is greater than that 138 

of soil, as is true for most cases, this means that the mass being used to calculate the concentration 139 

[i] is less than for the initial soil-feedstock mixture, such that [i]t=n > [i]t=0 in all cases where 140 

feedstock is partially dissolved. As a result of cation loss and immobile element enrichment, the 141 

soil-feedstock mixture composition is evolving from the pre-weathering composition on the 142 

mixing line along a vector towards the bottom right in [j] vs. [i] space (Figure 1b). 143 

 144 

One way to calculate the dissolution fraction (here denoted as the mass transfer coefficient τj, used 145 

synonymously to dissolution fraction in this manuscript) is from the loss of cations compared to 146 

the pre-weathering soil-feedstock mix: 147 

  148 
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τj =
![#]
[#]!""

           1 149 

[𝑗]%&& = [𝑗]' − [𝑗](          2 150 

 151 

where [j]add is the increase in base cation concentrations due to the addition of rock powder, Δ[j] 152 

reflects the decrease of base cation concentrations due to feedstock dissolution, and the subscript 153 

s corresponds to baseline soil. If the effect of immobile element enrichment is not taken into 154 

account, and the fraction of feedstock in the pre-weathering soil-feedstock mix and associated 155 

cation addition is calculated simply by vertically projecting the post-weathering composition onto 156 

the mixing line (Figure 1c), the estimate of the cations lost from topsoils (Δ[j]*) is inflated, such 157 

that the erroneous estimate τj* would be larger than τj. The impact of this enrichment process on 158 

post-weathering soil concentrations as well as estimates of the fraction of feedstock that has 159 

dissolved is discussed in section 3.1.  160 

 161 

An alternative way to calculate the fraction of rock powder that has dissolved without exact 162 

knowledge of the pre-weathering soil-feedstock mix composition is to describe the post-163 

weathering composition as a mix of three endmembers: pure soil, pure feedstock, as well as the 164 

composition of a hypothetical weathered feedstock residue endmember (Figure 1d). The 165 

composition of this hypothetical endmember is defined to be the composition that a layer of soil 166 

would have after a layer of pure feedstock (corresponding to the soil sampling depth, dsample) has 167 

dissolved. Assuming mass and volume conservation, this endmember mixing approach can be 168 

described by a system of equations such that each endmember contributes a volume proportion (X) 169 

to the observed post-weathering composition, which together sum to unity: 170 

 171 

𝑋( + 𝑋) + 𝑋*) = 1          3 172 

 173 

Where subscripts s, f, and wf correspond to baseline soil, feedstock, and weathered feedstock. 174 

Because in practical field sampling based on constant soil sampling depths, a system of constant 175 

volume is sampled, these endmember contributions reflect volume contributions to the sampled 176 

soil volume defined by the sampling depth over a given area (all calculations and code shared here 177 

use 1 hectare (ha) by default). The endmember contributions reflect three unknowns. Hence, we 178 
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set up two additional equations reflecting mass conservation of immobile elements as well as 179 

mobile base cations respectively.  180 

 181 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗]*)𝑋*)𝜌*) = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  4 182 

[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌*) = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  5 183 

 184 

Where ρi is the density of each respective endmember. Note that it is important to account for the 185 

impact of immobile element enrichment due to mass loss also for the composition of the 186 

hypothetical weathered feedstock endmember. These equations can be solved (see S1.1 for 187 

detailed derivation) to calculate the contribution of each endmember to the observed post-188 

weathering composition:  189 

 190 

𝑋) =	
𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3

𝜌𝑠2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑠3−𝜌𝑓2[𝑗]𝑚𝑖𝑥,𝑡=𝑛−[𝑗]𝑓3
        6 191 

𝑋*) =
4&2[#]'(),+,-5[#]&34.2[,]'(),+,-5[,].354.2[#]'(),+,-5[#].34&2[,]'(),+,-5[,]&3

4.[,].(4&2[#]'(),+,-5[#]&354.2[#]'(),+,-5[#].3)
   7 192 

𝑋( = 	1 − 𝑋) − 𝑋*)          8 193 

 194 

The fraction of feedstock that has dissolved is calculated from the proportion of the weathered 195 

feedstock residue endmember relative to the sum of feedstock and weathered feedstock residue 196 

endmembers: 197 

 198 

𝜏# =
𝑋𝑤𝑓

𝑋𝑤𝑓+𝑋𝑓
           9 199 

 200 

Calculating τj requires measuring the immobile element and base cation concentration of baseline 201 

soils, feedstock, and post-weathering soil-feedstock mix samples, as well as soil and feedstock 202 

density (i.e., the density of the ground rock powder, not the rock itself). Generally, EW 203 

deployments should assess τj values for all base cations to be used to estimate CDR. Because these 204 

will vary between base cations, setting the system of equations as an over-constrained system is 205 

not recommended. Some feedstocks may also contain mineral phases that are not expected to 206 

dissolve on the timeline relevant for the EW deployment, which could be taken into account by 207 
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modifying the composition of the hypothetical weathered feedstock residue endmember 208 

accordingly.  209 

 210 

This endmember mixing approach is preferrable to quantifying feedstock dissolution exclusively 211 

from the loss of cations compared to the initial soil-feedstock mix composition (equations 1 and 212 

2) because estimating this initial composition from post-weathering measurements without 213 

knowing the exact mixing proportions (which may vary throughout a field) is non-trivial. Instead, 214 

the endmember mixing approach quantifies the dissolution fraction while also explicitly 215 

accounting for the enrichment of immobile elements due to feedstock loss from the system. 216 

Alternatively, sampling after feedstock addition (and again after weathering has occurred) can be 217 

used to resolve issues of mixing proportions. Mobile element loss should still be calculated relative 218 

to a detrital element, even when not using the detrital element to calculate feedstock addition rates 219 
34,35,38,40. 220 

 221 

In addition to estimating feedstock dissolution, the framework presented here can also be used to 222 

estimate the amount of initial feedstock as well as the pre-weathering feedstock-soil mix 223 

composition from the post weathering composition as well as baseline soil and feedstock data (for 224 

detailed derivation see S1.2): 225 

 226 

𝑎	 = (𝑋) + 𝑋*))	𝑣(%+89:&	9%<:= 	𝜌)        10 227 

[𝑗]+,-,	/0' =
4&	>&	[#]&?4.2>.?>1.3[#].

4&	>&?4.2>.?>1.3
        11 228 

[𝑖]+,-,/0' =	
4&	>&	[,]&?4.2>.?>1.3[,].

4&	>&?4.2>.?>1.3
        12 229 

 230 

Where vsample layer is the volume of the sampled layer (per hectare if a is estimated per hectare). 231 

 232 

Here, we supply Python code as well as an example use case. Generally, the relevant calculations 233 

are defined as functions in the Python file SOMBA.py, where the calculation of τj is defined in the 234 

function SOMBA_tau. The code also contains additional functions to estimate pre-weathering and 235 

post-weathering mix composition from deployment data (functions SOMBA_start and 236 

SOMBA_end; see supplement S1). In addition, SOMBA.py also contains the function 237 
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SOMBA_tau_meta, which in addition to τj also returns the individual endmember contributions as 238 

well as additional deployment parameters calculated from post-weathering samples as defined 239 

below. We provide two Python scripts; one that loads input data and calculates the SOMBA 240 

parameters, and a second one that demonstrates the internal consistency of the framework 241 

presented here (see also supplement S1.5 and Figure S1). We furthermore provide an Excel 242 

template that calculates the dissolution fraction based on eq. 6 –9. This template may be used as a 243 

tool to analyze initial results, but ultimately thorough statistical investigation should always be 244 

based on advanced statistical modeling. 245 

 246 

2.2 Signal-to-noise analysis 247 

Soils are heterogeneous both on small and large spatial scales 55–62, which may pose challenges for 248 

soil-based approaches to quantify rock powder dissolution in EW field trials 31,49,51. To assess the 249 

efficacy of the soil-based mass balance approach to quantify rock powder dissolution outlined here 250 

against the backdrop of soil heterogeneity, we conduct a signal to noise analysis grounded in soil 251 

and basalt data for EW field trials in US agricultural lands.  252 

 253 

2.2.1 Data constraints 254 
To use a representative basalt composition, we calculate the mean composition (in terms of base 255 

cations and Ti) of all basalts within the US that are contained in the GEOROC database 63. Soil 256 

element concentrations as well as representative soil heterogeneity on these parameters are based 257 

on two separate datasets. We use an existing dataset of US soils 60 to constrain the elemental 258 

composition of a large number of fields (only data classified as “Row Crops” and “Small Grains” 259 

as LandCover2 variable considered). Here, each sample is considered to represent the “true” 260 

composition of a field. The analysis uses Ca+Mg as j (basalt [j]f = 3.11 mol kg-1), and Ti as i (basalt 261 

[i]f = 0.206 mol kg-1). Because the SOMBA framework requires a clear difference in [i] and [j] 262 

between soils and rock powders 31, we only consider soil samples as suitable fields where both [i] 263 

and [j] are at least 5 times lower than US basalt (n = 130; Figure S2). These data are used as “true” 264 

field compositions. 265 

 266 
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To constrain variance on field-level sample compositions resulting from spatial heterogeneity, we 267 

utilize a new dataset based on high-density spatial sampling (Table 1; Figure S3). This dataset of 268 

soil heterogeneity is based on new ICP-MS soil composition measurements (residual phase after 269 

exchangeable cations were leached with 1M ammonium acetate) from 5 field sites in the US with 270 

spatial sampling frequencies ranging from 0.6 – 19.8 samples ha-1 (7.1 – 39.6 pooled sub samples 271 

ha-1). For more information on sampling and analytical procedures, see supplement S2. We fit log-272 

normal distributions to field data (using the Python scipy.stats module), and use fitted shape 273 

parameters representing the standard deviations (σ) of the underlying normal distribution to model 274 

in-field variance. The shape parameters corresponding to field data are shown in Figure S4, and 275 

uniform distributions between the range of observed shape parameters is used to generate synthetic 276 

σ values in Monte Carlo simulations. 277 

 278 

2.2.2 Statistical modeling 279 
The signal-to-noise analysis developed here predicts the efficacy of detecting feedstock dissolution 280 

based on hypothetical application amounts and dissolution fractions (τi) and a paired sampling 281 

approach in a series of Monte Carlo simulations based on the following logic. For each modeled 282 

τj value, application amount, and sampling frequency (1-20 samples ha-1), we: 283 

1. Generate the number of samples to be simulated for each field from the product of sampling 284 

frequency and a simulated field size, ranging from 10-100 ha (uniform distribution). Within 285 

the US, most farms are smaller than 72 ha, but most farmland is in farms that are larger 286 

than 2000 ha 64,65, such that the values generated here represent a conservative choice. 287 

2. Generate a set of baseline soil samples for each field based on log-normal distributions 288 

where the variance is constrained from fits to empirical data (Figure S3, Figure S4), and 289 

the generated log-normal sample distributions scaled to ensure the expected population 290 

mean is the same as the “true” field mean (see also supplement S2.3). 291 

3. Calculate the “true” post-weathering composition for each baseline sample, based on 292 

deployment parameters (using functions SOMBA_start and SOMBA_end)—reflecting a 293 

paired sampling approach.  294 

4. Generate variance around “true” post-weathering compositions as in 1 assuming the same 295 

variance as for baseline samples, as well as reduced variance reflecting the expected 296 

improvement due to a paired sampling approach, implemented by reducing shape 297 
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parameters by 50%—while this is somewhat arbitrary, the efficacy of a paired sampling 298 

approach to reduce sampling variance can be tested for any real deployment. 299 

5. Randomly generate uncertainty on feedstock composition from 5–10% (uniform 300 

distribution; i.e. σ values of 0.05 to 0.1 for generated log normal distributions). To reflect 301 

increasing thoroughness of the sampling approach, as soil sampling frequency increases 302 

from 1 to 20 samples ha-1 we also increase the number of total samples that the composition 303 

of the feedstock endmember is calculated from (from 1 to 20 samples).  304 

6. Calculate the average baseline, post-weathering soil-feedstock mix, and feedstock 305 

composition based on the generated samples, each called one “realization”. 306 

7. For each realization we calculate the dissolution fraction (based on SOMBA_tau) and 307 

calculate the absolute difference compared to the true dissolution fraction (which is 308 

assumed a priori). 309 

8. We repeat this procedure one hundred times (100 realizations) and calculate the average 310 

error on τj over all fields and realizations. This average error represents the expected error 311 

on τj if applying this framework based on data-constrained soil heterogeneity and 312 

representative US soil composition.   313 
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3 Results and discussion 314 

 315 

3.1 Impact of immobile element enrichment on calculated dissolution 316 

fractions 317 

Accurately accounting for immobile element enrichment in soils due to feedstock loss from the 318 

topsoil system is essential to quantifying feedstock dissolution. Here, we demonstrate the impact 319 

of this process (see 2.1) by simulating the increase in immobile element concentrations in post-320 

weathering soil-feedstock mixtures for three different feedstock application amounts, the whole 321 

range of dissolution fractions, as well as soils with a Ti content that is 2-10 times depleted 322 

compared to US-average basalt. As expected, the enrichment of immobile elements is highest at 323 

high dissolution fractions, τj, as well as at low feedstock-to-soil immobile element ratios (ri), as 324 

shown in Figure 2a where the impact is visualized by showing the difference in post-weathering 325 

to pre-weathering soil-feedstock mix composition (Δi). At constant ri, this effect is linear with 326 

increasing τj, demonstrating that it scales with the amount of feedstock volume that has been lost 327 

from the system and is replaced with soil when considering constant sampled topsoil volumes. 328 

There are also instances where this process will have a negligible (>5%) effect.  329 

 330 

The effect also increases with increasing application amounts, because at the same dissolution 331 

fraction the volume of feedstock that is lost from topsoils increases. When ri is defined via 332 

depletion relative to a fixed feedstock composition, Δi increases with decreasing ri, reflecting the 333 

fact that when sampling constant soil volumes, soil that replaces lost feedstock has a higher 334 

immobile element concentration. Because ri is defined as the ratio of feedstock to soil immobile 335 

element concentrations, lower ri reflects higher soil concentrations of i: 336 

 337 

[𝑖]( =
[,].
=(

           24 338 

 339 

Note that there is also an impact of feedstock dissolution on soil base cation concentrations beyond 340 

the pure loss of feedstock (Figure S5). 341 

 342 
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When this enrichment is not accounted for, the resulting dissolution fractions are overestimated. 343 

Here we demonstrate this effect by comparing the erroneously high τj* as calculated from equation 344 

1 based on pre-weathering base cation concentrations estimated by vertically projecting post-345 

weathering [i] concentrations onto the mixing line between soil and feedstock endmembers. The 346 

difference between the erroneous τj* and τj as calculated from the endmember approach is largest 347 

at intermediate τj and low ri, where it goes up to a Δ value of 0.12 (Figure 2b). The relative effect 348 

is the highest at low τj and approaches 100% at low dissolution fractions and differences between 349 

soil and feedstock immobile element concentrations.  350 

 351 

In theory, one could use an immobile element that is strongly depleted in feedstock relative to soil 352 

to calculate feedstock addition from the depletion of i in the mixed sample. However, the utility 353 

of this approach is limited as the vector caused by the enrichment of immobile elements through 354 

feedstock mass loss will align with the mixing line, making it difficult to discern significant trends 355 

(Figure S6). Hence, the framework discussed here should only be applied when immobile 356 

concentrations in feedstock are greater than those present in background soil.  357 

 358 

In contrast, calculated τj may be erroneously small if immobile elements used as a proxy for 359 

feedstock addition are not truly immobile. Mobilization of “immobile” elements such as Ti and Zr 360 

has been observed for example in some extremely weathered and cation depleted soils (e.g., Melfi 361 

et al., 1996; Cornu et al., 1999; Hodson, 2002). This phenomenon would cause underestimation of 362 

the amount of initially added feedstock when immobile elements are used as a proxy for feedstock 363 

addition, resulting in estimates of base cation loss and dissolution fractions that would be biased 364 

low. While this is of less concern than potentially overestimating weathering for the purpose of 365 

verifying CDR credits, it is in the interest of practitioners to test the immobility of chosen proxy 366 

elements. 367 

 368 

3.2 Calculated dissolution fractions outside of the mixing triangle 369 

The framework introduced here should only be applied when the post-weathering composition of 370 

the feedstock-soil mixture falls within mass balance constraints—the mixing triangle defined by 371 

the soil, feedstock, and hypothetical weathered feedstock residue endmembers (Figure 1d). For 372 
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this to be the case, the application amount and dissolution fraction need to be large enough and the 373 

difference in soil and feedstock immobile element as well as base cation content needs to be 374 

sufficiently large 31,51 such that weathering of rock powder results in a statistically significant 375 

signal. If a significant portion of the samples in the sample-resampling approach fall outside of the 376 

mass balance constraints, it is most likely a sign that the sampling strategy was not optimized for 377 

capturing the underlying spatial variation in soil chemistry and/or that soil and feedstock 378 

compositions were too similar 31. Given that soil sampling methods have been discussed in detail 379 

in numerous places 27,51,52, we will not belabor this point.  380 

 381 

For the framework developed here to produce compositions outside of the endmember mixing 382 

triangle, at least one of the endmember contributions to the post-weathering sample would need to 383 

be negative. Because τj is computed as the contribution of the weathered feedstock residue 384 

endmember relative to the sum of the same endmember and the residual feedstock endmember 385 

contributions (equation 9), if either of these contributions is negative the denominator of this 386 

fraction can approach 0, which causes instability outside of the mixing triangle. This is 387 

demonstrated in Figure 3, where τj is shown as a function of [i] and [j] for two hypothetical soil 388 

and feedstock compositions. As evident from Figure 3, outside of the mixing triangle τj tends to 389 

increase to unrealistically large absolute values. To the left of the soil endmember (indicating a 390 

hypothetical negative amount of feedstock), reasonable but unphysical τj can be achieved as a 391 

result of noise. These observations suggest: (1) when applied to field settings, this framework 392 

requires thorough statistical investigation to ensure that the post-weathering composition is 393 

significantly different to pure soil and pre-weathering soil-feedstock mixtures. This requires, for 394 

example, Monte Carlo-type statistical approaches in which the uncertainty introduced by all 395 

parameters (including potential corrections for control site trends to baseline data) is fully 396 

propagated into final estimates (see also Derry et al., 2025); (2) although individual samples may 397 

fall outside of the mixing triangle as a result of soil heterogeneity even if there is a robust signal 398 

overall, because mixing compositions outside the mixing plane are unstable, τj should always be 399 

computed based on sample population averages rather than from the average of τj calculated for 400 

individual samples. 401 

 402 
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3.3 Non-self averaging behavior 403 

The framework presented here is non-self-averaging. This means that calculating τj for each 404 

individual sample and then taking the average does not give the same result as calculating τj based 405 

on the sample population average i and j concentrations. This phenomenon is particularly acute 406 

when some samples fall outside of the mixing triangle. 407 

 408 

We demonstrate this behavior with a simple simulation (Figure S7 & Table 2). We calculate the 409 

true pre- and post-weathering soil-feedstock mixture compositions for two hypothetical 410 

deployments (250 t ha-1, τj of 0.5 and 50 t ha-1, τj of 0.25) and endmember compositions (using the 411 

Python functions SOMBA_start and SOMBA_end). For the calculated post-weathering 412 

composition, we simulate a set of samples based on assumed soil heterogeneities (here 413 

implemented as normal distributions with relative standard deviations of 25% and 10%, 414 

respectively) such that these two sets correspond to exemplary low- and high-resolvability 415 

deployments. For the first deployment many samples fall outside of the mixing triangle (Figure 416 

S7c). For both populations, τj as calculated from the average of each individual sample τj is not the 417 

same τj calculated from the population mean i and j concentrations (Table 2), with an extreme 418 

difference for the first low-resolvability scenario. This is important to consider in statistical 419 

modelling of post-deployment data, where Monte Carlo approaches (incl. bootstrapping) should 420 

always first calculate population means based on sample chemical compositions before calculating 421 

τj for a specific average model composition, rather than statistically resampling from distributions 422 

of sample τj. 423 

 424 

3.4 Signal-to-noise analysis 425 

The framework presented here can only yield accurate estimates of rock powder dissolution in 426 

soils when weathering signals can be picked out against background soil heterogeneity 31,48,49,51. 427 

Here, we assess signal-to-noise in the updated framework by estimating the average error on 428 

detected dissolution fractions practitioners would observe based on specific deployment choices 429 

and spatial sampling frequencies. This analysis is based on a novel in-field dataset of high spatial 430 

density (0.6 – 19.2 ha-1; Table 1), which are used to simulate in-field heterogeneity. 431 

 432 
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The average error on detected dissolution fractions decreases with increasing sampling frequency, 433 

application amounts, and dissolution fractions (Figure 4), which is consistent with previous 434 

investigations 31,51. Based on conservative estimates of spatial heterogeneity (Figure 4a&b); the 435 

signal-to-noise analysis suggests that when cumulative application amounts exceed 100 t ha-1, 436 

expected errors are on average <15% when sampling frequencies exceed 10 samples ha-1. At higher 437 

dissolution fractions (τj = 0.5), average errors below 10% are possible with high sample density. 438 

If paired-sampling is implemented effectively the average error decreases significantly (Figure 439 

4c&d). While the way that the reduction in variance is implemented here is somewhat arbitrary 440 

(σ/2), we would like to stress that both variance of baseline sampling as well as of reduction of 441 

variance due to paired sampling can be constrained at a field level based on deployment data. 442 

Monte Carlo simulations should then be tailored to specific field conditions to gauge the 443 

uncertainty of detected values and applicability of SOMBA.   444 

 445 

In the context of sampling densities, it should be noted that if the spatial distance between sub-446 

sample cores used to pool samples is larger than the spatial wavelength of soil heterogeneity, 447 

required high sample frequencies can also partially be achieved by pooling samples, as is 448 

commonly practiced in most agronomic soil sampling protocols 69. Additionally, there are well 449 

established methods for characterizing contaminants in soils and other particulate media 70–75. A 450 

key aspect of these methodologies, such as Incremental Sampling Methods (ISMs), is that they 451 

acknowledge a-priori that soil components are distributed unevenly at the scales of interest relevant 452 

to signal detection. When implemented properly, incremental sample pooling and averaging 453 

strategies result in highly representative soil data at the field scale 70–75, with high numbers of 454 

pooled sub-samples of sufficient individual mass having a higher utility compared to more 455 

measured samples reflecting less pooled cores, not least because the former tend to be normally 456 

distributed due to the central limit theorem. We assert that if the mean and variance of a field or 457 

fields can be well established, averaged mixing models such as SOMBA can be utilized with 458 

confidence commensurate to the established population statistics. 459 

 460 

This analysis is based on a subset of samples for which SOMBA are suitable for MRV, here 461 

operationally defined as soil [i] and [j] being at least 5 times below US-average basalt composition 462 
63. Approximately ~22% of all agricultural soils contained in the used geochemical soil database 463 
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60 fulfill this condition. This fraction strongly increases when all soils with concentrations at least 464 

2 times lower are considered (n = 594 out of 614 samples; ~95%), primarily due to more samples 465 

fulfilling the Ti cutoff (Figure S8). When the same signal-to-noise analysis is applied to this larger 466 

set of fields the average error on detected mass transfer coefficients is larger (Figure S9). This is 467 

expected based on lower soil-feedstock compositional differences 31. Note also that the modeled 468 

deployment size (10-100 ha) has a direct impact on the signal-to-noise analysis as the number of 469 

generated samples is the product between field/deployment size and sampling frequency. 470 

 471 

In addition to increasing application amounts and optimizing deployment parameters e.g., through 472 

the choice of an above-average Ti containing basalt 31, improving sampling protocols 51 can all 473 

help to improve the robustness of SOMBA. An alternative way to increase both accuracy and 474 

precision could be to quantify dissolution fractions at the aggregate level over multiple 475 

deployments rather than for individual field sites, as has for example been demonstrated for the 476 

quantification of changes in soil organic carbon stocks 20,76.  477 

 478 

Our signal-to-noise analysis also demonstrates that SOMBA can produce robust estimates of rock 479 

powder dissolution under specific conditions. Nevertheless, resolvability also depends on the 480 

practice decisions with respect to acceptable uncertainty. While achieving an error of less than, 481 

e.g., 10% for 90% of the realizations 51 is challenging in most settings unless application rates are 482 

high, larger uncertainties can still be acceptable in the context of crediting CDR if crediting is done 483 

at lower bounds of uncertainty 27. In addition, it is important to keep in mind that this approach 484 

requires an adequate difference in soil and feedstock composition. A signal-to-noise analysis for a 485 

given feedstock should hence only be based on the subset of soils that are potential targets for 486 

robust signals for this MRV approach, rather than through approaches that group all signals 487 

together regardless of soil fitness. Furthermore, it is important to note that what is relevant for this 488 

framework is the total application amount, not the annual rate. Hence, settings for which feedstock 489 

dissolution may not be resolvable initially can become resolvable over time through the gradual 490 

increase of cumulative application amounts as well as increases in the dissolution fraction over 491 

time. 492 

 493 
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3.5 Additional Assumptions and Limitations 494 

One key assumption that is made in the signal-to-noise analysis is that baseline soil [i] and [j] does 495 

not change with time, and that therefore as long as sampling and spatial heterogeneity is correctly 496 

accounted for, a change in [i] and [j] can be solely attributed to feedstock addition and dissolution. 497 

This assumption may not always hold in cases where weathering of a labile constituent of the soil, 498 

aeolian deposition, or other process might unexpectedly result in loss or gain of elements in the 499 

soil. Changes through time in soil [i] and [j] in controls that cannot be explained by sampling 500 

practice and spatial heterogeneity should be factored into estimates for feedstock weathering 501 

generated using SOMBA; and results treated with caution where a mechanistic understanding of 502 

the elemental concentration change of the system cannot be found.  503 

 504 

We have not included baseline trend corrections in the signal-to-noise analysis presented here due 505 

to a lack of data on covariance for temporal trends in adjacent fields. Any simulation would hence 506 

depend more on our assumptions than realistic processes. As has been demonstrated, e.g., for soil 507 

organic carbon monitoring 76, including such a correction would increase average detection errors 508 

but not systematically change trends relating to different application amounts and sampling 509 

protocols. Importantly, we suggest that for the purpose of crediting, cation losses from control sites 510 

should be deducted from treatment site EW signals, but that control site gains in base cations must 511 

not be used to increase weathering signals from treatment sites unless the cation gain in control 512 

site composition can be explained by known manipulations that has also occurred on treatment 513 

sites (e.g., fertilizer input etc.).   514 
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4 Implications 515 

We have presented an updated framework for using SOMBA to quantify rock powder dissolution 516 

in EW field settings and provide Python code for implementing this framework. The updated 517 

framework explicitly accounts for the enrichment of immobile elements in topsoils due to 518 

feedstock mass loss 34,40. Failing to account for these processes can cause detected dissolution 519 

fractions to be up to ~0.12 too high. Depending on deployment parameters, this may be an error 520 

of up to 100%. 521 

 522 

We strongly suggest that the framework presented here should only be used when post-weathering 523 

sample compositions fall robustly within the mass balance constraints defined by the endmember 524 

mixing approach. Solutions are unstable outside of this parameter space, which may yield 525 

dissolution fractions that are unphysically high or low and should not be used to estimate CDR. 526 

The code presented here generates sensible dissolution fractions when the post-weathering 527 

composition falls within the mass balance dictated mixing triangle. However, this does not 528 

necessarily mean that this signal can be resolved statistically. It is the responsibility of practitioners 529 

to thoroughly investigate the statistical significance of changes in soil compositions and deduced 530 

rock dissolution parameters, for example through stochastic simulations that propagate 531 

uncertainties pertaining to all relevant parameters (Derry et al., 2025), including resulting from 532 

trends in control sites and through downsampling statistical tests. Sampling protocols should 533 

generally be defined a priori informed by desired sampling power 77. Lastly, we suggest that the 534 

framework should always be applied to calculate dissolution fractions based on the sample 535 

population mean, rather than for each individual sample. This consideration will change the 536 

statistical modelling of weathering dynamics, e.g. via Monte Carlo simulations. Future studies 537 

should include incremental sampling strategies at predefined field and sub-field scales. In effect, 538 

averaging strategies should be fit-for-purpose and built in concert with the soil sampling 539 

procedures that researchers or EW suppliers design. We would also like to stress that alternative 540 

parametrizations of SOMBA are feasible and may be advantageous for certain settings such that 541 

the framework presented here should not be viewed as un-amendable.  542 

 543 
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Our signal-to-noise analysis suggests that field-level quantification of rock powder dissolution 544 

based on SOMBA is possible when application amounts, dissolution fractions, soil-feedstock 545 

compositional differences, and sampling frequencies are sufficient. This may for example imply 546 

that signal emergence will only become resolvable after multiple years of repeated deployments 547 

and after substantial feedstock weathering. Our analysis suggests that SOMBA can be a useful tool 548 

in tracking weathering rates, but it must be acknowledged that this approach will not work in all 549 

settings and will typically require higher sampling densities than those currently being 550 

implemented in commercial deployments. Signal emergence can furthermore be optimized using 551 

tailored sampling strategies 51 as well as feedstock-soil-matching 31.  552 
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8 Figures 826 

 827 
Figure 1: Sketch of the soil-based mass balance framework to quantify rock powder dissolution in soils. After rock powder of an 828 
elevated base cation and immobile element concentration compared to baseline soils is added to a field, the composition of the 829 
initial soil-feedstock mix falls on the mixing line between both endmembers (a). As feedstock dissolves base cations are released 830 
and either stored on the soil exchange complex or flushed out of topsoils. At the same time immobile element concentrations 831 
increase as a result of feedstock mass and volume loss, resulting in a vector starting at the pre-weathering soil-feedstock mix 832 
composition towards the bottom right (b). This is important to take into account, because simply projecting the post-weathering 833 
soil-feedstock mix composition from its immobile element concentration up to the mixing line between soil and feedstock 834 
endmembers will cause inflated estimates of cation mass loss and deduced dissolution fractions (c). One way to estimate the 835 
dissolution fraction while taking into account the impact of feedstock mass loss is to use a three endmember mixing model where 836 
the post-weathering composition is described as a mix of the baseline soil, pure feedstock, and a hypothetical weathered feedstock 837 
residue endmember (d). Note that the offset in immobile element concentrations (i.e., enrichment of immobile element 838 
concentrations due to mass loss) for the post-weathering soil-feedstock mix sample is exaggerated in panels b-d for the purpose of 839 
visualization. In a realistic system the horizontal component of this vector would be smaller compared to the vector between basalt 840 
as well as soil + weathered basalt residue (proportionally to the position of the pre-weathering soil-feedstock mix composition on 841 
the missing line). 842 
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 844 
Figure 2: The dissolution of added rock powder increases the immobile element concentration of topsoils of constant volume as 845 
the lost rock powder is replaced by soil from the bottom of the soil column (a). The difference between erroneously high τj* when 846 
not taking this process into account and the actual τj is shown in b for absolute values (τj* - τj) and in c relative to the respective τj. 847 
((τj* - τj ) / τj).  848 

  849 
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 850 
Figure 3: Quantified feedstock dissolution fractions (τj) for a hypothetical soil and rock powder for a range of immobile element 851 
(i) and base cation (j) concentrations. The framework developed here should only be applied within the mixing triangle set out by 852 
baseline soil, rock powder, and the hypothetical weathered feedstock residue endmember. Outside of this domain, the results of the 853 
framework are unstable, and absolute values can approach infinity because negative contributions of endmembers can cause the 854 
dominator of equation 9 to approach 0. Generally, the framework developed here should only be applied when post-weathering 855 
soil-feedstock mix composition robustly falls within the mixing triangle. 856 

  857 
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 858 
Figure 4: Average errors on detected dissolution fractions for two simulated mass transfer coefficients (τj = 0.25 in a and c, τj = 859 
0.5 in b and d). The top row shows simulations where the variance imposed onto paired samples is equivalent to the variance of 860 
initial baseline samples. Because is likely an overestimate for accurate sample and resample strategies, the lower row shows the 861 
same simulations based on reduced variance for resampled sample composition (σ/2). The simulations are based on compositions 862 
of US soil 60 and basalt 63 considering soils with base cation and Ti concentrations at least 5 times lower than basalt. The simulated 863 
in-field soil heterogeneity is based on the novel field trial dataset presented in Table 1. 864 

  865 
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9 Tables 866 

Table 1: Information on the field sites used to constrain spatial heterogeneity in the signal-to-noise analysis. The number of pooled cores corresponds to the number of-sub sample 867 
cores that were combined for each measured sample. Soil heterogeneity refers to the σ of log-normal fits to soil concentration distributions normalized to the field mean such that 868 
the resulting distribution has a mean of 1 (Figure S3). Site names are anonymized and location data are rounded to one decimal degree to protect farmer privacy. 869 

        soil heterogeneity (σ; log-normal) 

Site name Lat Lon size # samples # pooled cores sample density core density  Ca  Mg Na Ti 
  [°] [°] [ha]   [ha-1] [ha-1] [] [] [] [] 
Site 1 45.3 -87.6 6.42 40 2 6.23 12.46 0.493 0.278 0.072 0.120 
Site 2 42.3 -73.6 5.08 41 2 8.07 16.14 0.395 0.309 0.250 0.288 
Site 3 31.3 -84.4 2.02 40 2 19.80 39.60 0.582 0.218 0.630 0.264 
Site 4 35.8 -78.2 42.44 25 12 0.59 7.07 0.519 0.523 0.510 0.154 
Site 5 35.8 -78.2 26.85 38 12 1.42 16.98 0.355 0.687 0.391 0.177 

 870 
 871 
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Table 2: Realized sample compositions and their calculated τj as well as population average sample composition and its τj for two 872 
hypothetical EW deployments (50 t ha-1, τj = 0.25, SD of randomly generated soil compositions = 25% as well as 250 t ha-1, τj = 873 
0.5, 1SD = 10%).  874 

 
example deployment 1 

50 t ha-1, τj = 0.25, SD = 0.25 
example deployment 2 

250 t ha-1, τj = 0.5, SD = 0.1 

 i [mol kg-1] j [mol kg-1] τj [] i [mol kg-1] j [mol kg-1] τj [] 

I. random samples (post-deployment composition) 

 0.033 0.569 1.300 0.089 0.707 0.652 

 0.054 0.777 -1.525 0.082 0.808 0.400 

 0.053 0.389 8.379 0.093 0.698 0.694 

 0.076 0.522 0.940 0.085 0.764 0.515 

 0.078 0.365 1.374 0.096 0.924 0.413 

 0.035 0.723 2.392 0.096 0.893 0.452 

 0.061 0.564 0.631 0.072 0.846 0.078 

 0.051 0.455 6.083 0.079 0.880 0.217 

 0.063 0.641 0.313 0.096 0.751 0.635 

 0.066 0.623 0.506 0.093 0.817 0.519 

random sample average τj  2.039   0.457 

       
II. sample average [i], [j], and related τj 

 0.057 0.563 0.433 0.088 0.809 0.481 

       
III. calculated true composition 

 0.057 0.591 0.25 0.089 0.802 0.5 
 875 
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Supplementary information to 876 

 877 

Updated framework and signal-to-noise analysis of soil mass balance 878 

approaches for quantifying enhanced weathering on managed lands 879 

 880 

Tim Jesper Suhrhoff1,2 *, Tom Reershemius3, 2, Jacob Jordan4, Shihan Li5, Shuang Zhang5, Ella 881 

Milliken2, Boriana Kalderon-Asael2, Christopher T. Reinhard6, Noah J. Planavsky2,1 882 
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2 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA 885 
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England NE1 7RU, United Kingdom 887 
4 Mati Carbon, Houston, TX, USA 888 
5 Department of Oceanography, Texas A&M University, College Station, TX 77843, USA 889 
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USA 891 

 892 

* corresponding author: timjesper.suhrhoff@yale.edu 893 

 894 

Python code and Excel templates for the soil mass balance framework can be found here: 895 

 896 

 897 

Content of this file: 898 

S1: Additional derivations of the soil mass balance framework (incl. Figure S1) 899 

S2: Soil data (incl. Figure S3 & Figure S4) 900 

S3: Impact of feedstock mass loss on base cation and immobile element concentrations (incl. 901 

Figure S5 & Figure S6) 902 

S4: Impact of soil composition on signal-to-noise analysis (incl. Figure S8 & Figure S9)  903 
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S1 Additional derivations of the soil mass balance framework 904 

 905 

This supplement contains all derivations relating to section 2.1 of the manuscript. In addition to 906 

quantifying rock powder dissolution and deployment parameters based on post-weathering soil 907 

sample composition (see section 2.1 of the main text), we also present a framework to calculate 908 

expected pre- and post-weathering compositions for soil-feedstock mixtures. The associated 909 

Python functions are included in the Python file SOMBA.py and were used in the analyses 910 

presented here. The code can be assessed here: 911 

https://doi.org/10.5281/zenodo.15696933 912 

 913 

S1.1 Derivation of soil mass balance framework 914 
 915 

We continue from section 2.1 after the introduction of the hypothetical weathered feedstock 916 

endmember. The composition of this hypothetical endmember is defined to be the composition 917 

that a layer of soil would have after a layer of pure feedstock (corresponding to the soil sampling 918 

depth, dsample) has dissolved. 919 

 920 

Since cations are assumed to be lost from the system, it has the same cation content as an equivalent 921 

layer of pure soil, i.e.: 922 

 923 

[𝑗]*) = [𝑗](           S1 924 

 925 

where the subscripts wf and s correspond to weathered feedstock residue and baseline soil (and f 926 

denotes pure feedstock in the following equations). The immobile element concentration of this 927 

endmember is given by summing the amount of immobile elements in the fully weathered 928 

feedstock as well as the soil that has replaced the feedstock in the reference volume, and dividing 929 

by the system mass after weathering (assumed to be the same as background soil mass/density for 930 

the equivalent soil volume):  931 

 932 

[𝑖]*) =
4&@&!'234"	3!647	[,]&?4.@&!'234"	3!647[,].

4&@&!'234"	3!647
= 4&[,]&?4.[,].

4&
= [𝑖]( +

𝜌)
𝜌(1 [𝑖])  S2 933 

https://doi.org/10.5281/zenodo.15696933
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 934 

where vsampled layer corresponds to the sampled soil volume and ρ to the density of feedstock and 935 

soil. We make the assumption that post-weathering density is equivalent to background soil density 936 

(see also eq. S6b) within the frame of reference assuming no change in porosity, though we note 937 

that this ignores weathering congruency and compositional difference between the soil parent 938 

material and the rock feedstock applied.  939 

 940 

Assuming mass and volume conservation, this endmember mixing approach can be described by 941 

a system of equations such that each endmember contributes a volume proportion (X) to the 942 

observed post-weathering composition, which together sum to unity: 943 

 944 

𝑋( + 𝑋) + 𝑋*) = 1          S3 945 

 946 

Because in practical field sampling based on constant soil sampling depths, a system of constant 947 

volume is sampled, these endmember contributions reflect volume contributions to the sampled 948 

soil volume defined by the sampling depth over a given area (all calculations and code shared here 949 

use 1 hectare (ha) by default). The endmember contributions reflect three unknowns. Hence, we 950 

set up two additional equations reflecting mass conservation of immobile elements as well as 951 

mobile base cations respectively.  952 

 953 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗]*)𝑋*)𝜌*) = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  S4 954 

[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌*) = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌*))  S5 955 

 956 

Assuming that: 957 

 958 

[𝑗]*) =	 [𝑗](		, 𝑎𝑛𝑑          S6a 959 

	𝜌*) = 𝜌(           S6b 960 

 961 

gives: 962 

 963 

[𝑗](𝑋(𝜌( + [𝑗])𝑋)𝜌) + [𝑗](𝑋*)𝜌( = [𝑗]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌()   S7 964 
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[𝑖](𝑋(𝜌( + [𝑖])𝑋)𝜌) + [𝑖]*)𝑋*)𝜌( = [𝑖]+,-,/01(𝑋(𝜌( + 𝑋)𝜌) + 𝑋*)𝜌()   S8 965 

 966 

Now, rearranging eq. S7 and S8 to isolate the endmember contributions on one side of the 967 

equation: 968 

 969 

𝑋(𝜌(5[𝑗]+,-,/01 − [𝑗](6 + 𝑋)𝜌)5[𝑗]+,-,/01 − [𝑗])6 + 𝑋*)𝜌(5[𝑗]+,-,/01 − [𝑗](6 = 0  S9 970 

𝑋(𝜌(5[𝑖]+,-,/01 − [𝑖](6 + 𝑋)𝜌)5[𝑖]+,-,/01 − [𝑖])6 + 𝑋*)𝜌(5[𝑖]+,-,/01 − [𝑖]*)6 = 0 S10 971 

 972 

Next, we substitute [i]wf from eq. S2 into S10:  973 

 974 

𝑋!𝜌!#[𝑖]"#$,&'( − [𝑖]!( + 𝑋)𝜌)#[𝑖]"#$,&'( − [𝑖])( + 𝑋*)𝜌! *[𝑖]"#$,&'( − [𝑖]𝑠 −
𝜌𝑓

𝜌𝑠+ [𝑖]𝑓, = 0 S11 975 

 976 

For clarity, we rewrite the system of equations (S3, S7, S8) in matrix form: 977 

 978 

!
𝜌8#[𝑗]9:;,<=> − [𝑗]8( 𝜌?#[𝑗]9:;,<=> − [𝑗]?( 𝜌8#[𝑗]9:;,<=> − [𝑗]8(

𝜌8#[𝑖]9:;,<=> − [𝑖]8( 𝜌?#[𝑖]9:;,<=> − [𝑖]?( 𝜌8 *[𝑖]9:;,<=> − [𝑖]8 −
𝜌? 𝜌8+ [𝑖]?,

1 1 1

. 	 ∗ 	 1
𝑋8
𝑋?
𝑋@?

3 = 	 5
0
0
1
7 S12 979 

 980 

For clarity, defining the following shorthand notions: 981 

 982 

𝑎 = 𝜌(5[𝑗]+,-,/01 − [𝑗](6         S13a 983 

𝑏 = 𝜌)5[𝑗]+,-,/01 − [𝑗])6         S13b 984 

𝑐 = 𝜌(5[𝑖]+,-,/01 − [𝑖](6         S13c 985 

𝑑 = 𝜌)5[𝑖]+,-,/01 − [𝑖])6         S13d 986 

𝑒 = 	𝜌)[𝑖])           S13e 987 

 988 

With these shorthand notations, equation S12 becomes: 989 

 990 

;
𝑎 𝑏 𝑎
𝑐 𝑑 𝑐 − 𝑒
1 1 1

< 	 ∗ 	 >
𝑋(
𝑋)
𝑋*)

? = 	 ;
0
0
1
<        S14 991 
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 992 

Now defining a new variable reflecting the sum of the soil and weathered feedstock residue 993 

endmembers: 994 

 995 

𝑋(A = 𝑋( + 𝑋*)          S15 996 

 997 

Inserting S15 into S14, the system of equations reduces to: 998 

 999 

𝑎𝑋(A + 𝑏𝑋) = 0          S16 1000 

𝑐𝑋(A + 𝑑𝑋) − 𝑒𝑋*) = 0         S17 1001 

𝑋(A + 𝑋) = 1           S18 1002 

 1003 

Now we solve for 𝑋(A by substituting 𝑋) = 1 − 𝑋(A from equation S18 into S16: 1004 

 1005 

𝑎𝑋(A + 𝑏(1 − 𝑋(A) = 0          S19a 1006 

𝑎𝑋(A + 𝑏 − 𝑏𝑋(A = 0          S19b 1007 

(𝑎 − 𝑏)𝑋(A + 𝑏 = 0          S19c 1008 

𝑋(A =
5B
%5B

           S19d 1009 

 1010 

Now, substituting, S19d into 𝑋) = 1 − 𝑋(A from equation S18: 1011 

 1012 

𝑋) = 1 − 5B
%5B

= %5B
%5B

− 5B
%5B

= %5B?B
%5B

= %
%5B

       S20 1013 

 1014 

Substituting S13a and S13b into S20: 1015 

 1016 

𝑋) =
4&2[#]'(),+,-5[#]&3

C4&2[#]'(),+,-5[#]&354.2[#]'(),+,-5[#].3D
       S21 1017 

 1018 

Now we substitute S20 and S19d into S17 to solve for 𝑋*): 1019 

 1020 
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𝑐 5B
%5B

+ 𝑑 %
%5B

− 𝑒𝑋*) = 0         S22 1021 

5BE?%&
%5B

− 𝑒𝑋*) = 0          S23 1022 

𝑋*) =
%&5BE
:(%5B)

           S24 1023 

 1024 

Finally, substituting S13a-S13e into S24: 1025 

 1026 

𝑋*) =
4&2[#]'(),+,-5[#]&34.2[,]'(),+,-5[,].354.2[#]'(),+,-5[#].34&2[,]'(),+,-5[,]&3

4.[,].(4&2[#]'(),+,-5[#]&354.2[#]'(),+,-5[#].3)
		 	 	 S25	1027 

 1028 

S1.2 Calculation of deployment parameters from post-weathering samples 1029 
 1030 

From the estimates of endmember contributions to the post-weathering soil-feedstock mix sample 1031 

as well as the rock powder dissolution calculated using the approach outlined above, additional 1032 

deployment parameters can be calculated that may be valuable for the purposes of MRV. First, we 1033 

can calculate the mass of rock powder initially added to the sampled soil volume (a, t ha-1): 1034 

 1035 

𝑎	 = 𝑓𝑉),/0'	𝑣(%+89:&	9%<:= 	𝜌)        S26 1036 

 1037 

where fVf,t=0 is the pre-weathering feedstock volume fraction, defined as the sum of the volume 1038 

fraction comprising residual feedstock as well as the initial feedstock present that has since 1039 

weathered:  1040 

 1041 

𝑓𝑉),/0' = 𝑋) + 𝑋*)          S27 1042 

 1043 

and the sampled layer volume per hectare is calculated from the sampling depth (dsampling): 1044 

 1045 

𝑣(%+89:&	9%<:=[𝑚F	ℎ𝑎5G] = 10000	𝑚Hℎ𝑎5G ∗ 𝑑(%+89,1I[𝑚]    S28 1046 

 1047 

Note that in cases where the sampling depth is not the same as the soil mixing depth, it is important 1048 

to use the depth of soil sampling. If the two depths are not the same, using calculated parameters 1049 
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that are based only on the sampled layer for the entire mixed layer assumes that the sampled layer 1050 

composition is representative of the entire mixed layer. This is not necessarily the case, particularly 1051 

when feedstock distribution is not uniform with depth. In cases where the mixing depth is larger 1052 

than the sampling depth, one could assume that the calculated dissolution fraction (τj) applies to 1053 

the known application amount, but this would trade off against the benefit that feedstock addition 1054 

can be calculated from the enrichment of immobile elements. To make sure that the calculation of 1055 

initial CDR from a combination of τj with the applied feedstock mass is entirely constrained in 1056 

empirical measurements the choice of sampling depth should ideally be equal to the mixing depth.  1057 

 1058 

In addition, we can calculate the initial soil-feedstock mix composition from the post-weathering 1059 

composition and mixing model outputs. Initial concentrations can be calculated by combining the 1060 

amounts of base cations as well as immobile elements contributed to the initial mix from both soil 1061 

and feedstock divided by the mass of the system: 1062 

 1063 

[𝑗]+,-,		/0' =
4&	@&,+,A	[#]&?4.	@.,+,A	[#].

4&	@&,+,A	?4.	@.,+,A	
         S30 1064 

[𝑖]+,-,		/0' = 	 4&	@&,+,A
[,]&?4.	@.,+,A	[,].

4&	@&,+,A	?4.	@.,+,A	
        S31 1065 

 1066 

where vs,t=0 and vf,t=0 are the area normalized volumes (m3 ha-1) of soil and feedstock within the 1067 

sampled topsoil volume: 1068 

 1069 

𝑣(,/0' = 𝑣(%+89:&	9%<:= 	𝑋(         S32 1070 

𝑣),/0' = 𝑣(%+89:&	9%<:= 	𝑓𝑉),/0' =	𝑣(%+89:&	9%<:=(𝑋) + 𝑋*))    S33 1071 

 1072 

Substituting 20 and 21 in 18 and 19: 1073 

 1074 

[𝑗]+,-,	/0' =
4&	@&!'234"	3!647	>&	[#]&?4.	@&!'234"	3!647(>.?>1.)[#].

4&	@&!'234"	3!647	>&?4.	@&!'234"	3!647(>.?>1.)
=	 4&	>&	

[#]&?4.2>.?>1.3[#].
4&	>&?4.2>.?>1.3

 S34 1075 

[𝑖]+,-,/0' =
4&@&!'234"	3!647	>&	[,]&?4.	@&!'234"	3!6472>.?>1.3[,].

4&	@&!'234"	3!647	>&?4.@&!'234"	3!6472>.?>1.3
=	 4&	>&	

[,]&?4.2>.?>1.3[,].
4&	>&?4.2>.?>1.3

 S35 1076 

 1077 
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The calculation of feedstock application mass as well as pre-weathering composition from post-1078 

weathering composition and deployment data is included in the SOMBA_TAU_meta function 1079 

defined in the SOMBA.py file in the supplement.  1080 

 1081 

 1082 

S1.3 Pre-weathering mix composition 1083 
 1084 

After addition of rock powder to soils, the composition of the soil-rock-powder mix falls on a 1085 

mixing line between both endmembers (Figure 1a). Provided the rock powder is enriched in both 1086 

base cations as well as at least one immobile element compared to the baseline soil, the addition 1087 

of rock powder causes an increase of both base cation and immobile element concentrations. The 1088 

pre-weathering mix concentrations of both major cations (j) and an immobile element (i; both in 1089 

mol/kg) can be calculated from the mix of both endmembers: 1090 

 1091 

𝑗+,-,/0' = 𝑗)	𝑟+,/0' + 𝑗(	(1 − 𝑓𝑀),/0')       S36 1092 

𝑖+,-,/0' = 𝑖)	𝑟+,/0' + 𝑖(	(1 − 𝑓𝑀),/0')       S37 1093 

 1094 

Where the subscripts f and s denote feedstock and soil respectively, and fMf refers to the mass 1095 

mixing ratio of feedstock in the soil-feedstock mix, which can be calculated as: 1096 

 1097 

𝑓𝑀),/0' =	
%

(%?+&B(3,+,A)
         S38 1098 

 1099 

where a is the application amount of rock powder (in t ha-1), and mtopsoil,t=0 is the mass of soil in 1100 

the mixed soil rock powder topsoil layer right after deployment (in t ha-1). The application amount 1101 

a is in this case given from deployment data, while the mass of topsoil can be calculated from the 1102 

topsoil volume that is not rock powder (units in square brackets): 1103 

 1104 

𝑚(J,9,/0'	[𝑡	ℎ𝑎5G] = 𝑣(J,9,/0'[𝑚Fℎ𝑎5G]	𝜌(J,9[𝑡	𝑚5F]     S39 1105 

𝑣(J,9,/0'[𝑚Fℎ𝑎5G] = 𝑣+,-:&	9%<:=[𝑚Fℎ𝑎5G] − 𝑣)[𝑚Fℎ𝑎5G]     S40 1106 

𝑣),/0'[𝑚Fℎ𝑎5G] = %	[/	K%CD]
4.	[/	+E]

         S41 1107 
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𝑣+,-:&	9%<:=[𝑚Fℎ𝑎5G] = 10000	[𝑚Hℎ𝑎5G]	𝑑+,-	[𝑚]     S42 1108 

 1109 

where m refers to mass, v to volume, and ρ to density of the soil within the mixed layer (subscript 1110 

topsoil), the total mixed layer (mixed layer) as defined by the mixing depth (dmix), as well as the 1111 

feedstock (f). Substituting S39-42 into S38:  1112 

 1113 

𝑓𝑀),/0' =	
%

(%?(G''''	&'()5% 4.L )	4&B(3)
        S43 1114 

 1115 

 1116 

S1.4 Post-weathering composition 1117 
 1118 

As feedstock dissolves, both base cation as well as immobile element concentrations change. 1119 

While base cation concentrations decrease as these mobile elements are leached from topsoils, 1120 

immobile element concentrations increase due to the loss of feedstock mass (and volume) from 1121 

topsoils, resulting in a vector originating at the pre-weathering composition towards the bottom 1122 

right in j vs. i space (Figure 1a). The post-weathering soil-rock powder mix composition can be 1123 

calculated as a function of feedstock dissolution (mass transfer coefficient τj) fraction through 1124 

system mass conservation where the denominate describes the mass of the post-weathering mix 1125 

and the numerator its amount base cations or immobile elements: 1126 

 1127 

𝑗+,-,/01 =
4&@&,+,-[#]&	?	4.@.,+,-[#].

4&@&,+,-	?	4.@.,+,-
        S44 1128 

𝑖+,-,/01 =
4&@&,+,-[,]&	?	4.@.,+,A[,].

4&@&,+,-	?	4.@.,+,-
        S45 1129 

 1130 

where the t = 0 in the numerator of eq. S45 reflects the fact that immobile elements added through 1131 

feedstock are retained within topsoils upon weathering. Post-weathering soil and feedstock 1132 

volumes can be calculated as: 1133 

 1134 

𝑣),/01 = 𝑣),/0'	(1 − 𝜏#)         S46 1135 

𝑣(,/01 =	𝑣),/0' + 𝑣),/0' −	𝑣),/01 = 𝑣(,/0' + 𝑣),/0'	𝜏#     S47 1136 
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 1137 

 1138 

S1.5 Internal consistency of the SOMBA framework 1139 
 1140 

One of the script contained in the code supplement (SOMBA_verification.py) demonstrates the 1141 

internal consistency of the SOMBA framework. In the first part of the script, an example dataset 1142 

is generated based on assumed deployment parameters. Some of these parameters—such as the 1143 

amount of feedstock applied, the dissolution fraction, and others—are specifically required for the 1144 

SOMBA_start and SOMBA_end functions. These functions estimate the composition of the soil-1145 

feedstock mix before and after weathering, respectively, using deployment-specific inputs. 1146 

However, when using the soil mass balance framework to estimate rock powder dissolution 1147 

fractions from post-weathering samples, these parameters may not be necessary.  1148 

 1149 

In the second part of the script, the generated dataset is used to sequentially call a series of soil 1150 

mass balance functions defined in the SOMBA.py file, which are derived here. The functions 1151 

called include: (1) SOMBA_start, which calculates the pre-weathering soil-feedstock mix 1152 

composition from deployment parameters; (2) SOMBA_end, which estimates the post-weathering 1153 

composition based on the output from SOMBA_start and an assumed rock powder dissolution 1154 

fraction; (3) SOMBA_tau, which calculates the rock powder dissolution fraction from deployment 1155 

data, including baseline soil, feedstock, and post-weathering compositions; and (4) 1156 

SOMBA_tau_meta, which performs the same calculation as SOMBA_tau but also provides 1157 

metadata such as endmember contributions and detected feedstock amounts.  1158 

 1159 

Finally, the exported Figure S1 demonstrates that the calculated from the SOMBA framework 1160 

(such as τj and pre-weathering concentrations) are equivalent to the values assumed or calculated 1161 

a-priori. The same is true for the estimate rock powder application amount—in this case it is 1162 

important to consider potential mismatches between mixing and sampling depth, where the 1163 

detected rock powder amount is going to be less than the amount assumed a-priori if the sampling 1164 

depth is less than the mixing depth.  1165 

 1166 
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 1167 
Figure S1: This figure demonstrates that the soil mass balance framework developed here is internally consistent. The calculated 1168 
dissolution fraction τj (a) and pre-weathering soil concentration (b) are equivalent to the values assumed a-priori. The same is true 1169 
for detected rock powder application amounts (c) when taking into account potential mismatches between soil mixing and sampling 1170 
depth. 1171 

  1172 
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S2 Soil data  1173 

 1174 
 1175 

S2.1 Site and sampling information 1176 
 1177 

Site 1: This field is classified as loamy-sand, with a mean pH of 7.0, and is on a corn-yellow pea 1178 

rotation. The only fertilizer used is chicken litter.  1179 

Site 2: This field is classified as silt-loam, with a mean pH of 6.4. This field is used as 1180 

pastureland, growing native grasses for grazing. There is no tillage, irrigation, fertilizer, or 1181 

liming use.  1182 

Site 3: This field is classified as loamy-sand. This field is used for peanuts, and is irrigated by a 1183 

center pivot. There is no tillage, regular nitrogen application, and highly infrequent liming.  1184 

Site 4 and 5: Both fields are managed by the same farmer. The fields are no-till and are ripped 1185 

every 3 years. Both fields are on a corn-soy rotation, and receive nitrogen fertilizer during corn 1186 

season. There is no irrigation. No pH data is available for this field. 1187 
 1188 

The first 3 sites were sampled in a grid array across the entire field region, with 2 cores taken at 1189 

each sampling location and homogenized. Samples were dried at 60 °C, sieved to 2mm and 1190 

ground prior to analysis. Site 4 and 5 samples were collected by randomly pooling 12 15-cm drill 1191 

cores from a 1m radius circle. Samples were dried at 60 °C, sieved to 2mm and ground prior to 1192 

analysis. 1193 

 1194 

The locations of the field sites as well as of the soil samples used to constrain field composition 1195 

are shown in Figure S2 below. 1196 

 1197 
 1198 
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 1199 
Figure S2: Sites of the data utilized to constrain soil composition as well as in-field spatial heterogeneity (Table 1). 1200 
a Novel soil heterogeneity dataset reported here. 1201 
b 60 1202 
c 78 1203 

 1204 
 1205 

S2.2 Analytical information 1206 
 1207 

Powdered soil samples (typically 0.1 g) were leached in 12 ml of 1M Ammonium Acetate (trace 1208 

metal grade) and centrifuged in 15 ml polypropylene tubes for 5 minutes at 4000 rpm to release 1209 

any adsorbed cations (i.e, the exchangeable fraction) and subsequently washed in 2 ml of 2X 1210 

MilliQ H2O (18.2MΩcm at 25 °C) and centrifuged again. The soil was then transferred into pre-1211 

acid-cleaned quartz crucibles, dried at 60 °C and ashed at 600 °C to incinerate any organic matter 1212 

(and release volatiles). The dried residue was weighed for insoluble content and to estimate the 1213 

LOI. The residue was then transferred into pre-acid-cleaned teflon beakers and dissolved 1214 

completely using a mixture of 5 ml distilled hydrochloric acid (HCl), 5 ml distilled nitric acid 1215 

(HNO3) and 1 ml of trace metal grade hydrofluoric acid (HF), capped, heated at 100 °C for 24 1216 

hours. The samples were then uncapped and evaporated to dryness at 90 °C and redissolved in 5 1217 

ml of 6N HCl.  1218 

 1219 
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Splits were taken for elemental concentrations measurements. For analysis on the Agilent 8900 1220 

Triple Quadrupole ICP-MS, a split of 15 μl from each sample was evaporated, diluted 1000 1221 

times with 1% HNO3 (v/v) and spiked with 26Mg and 49Ti. Indium was introduced externally as 1222 

an internal standard. For analysis on the Thermo Scientific Element XR ICP-MS, a split of 10 μl 1223 

from each sample was evaporated, diluted 400 times with 5% HNO3 (v/v) and spiked with 26Mg, 1224 
42Ca, 49Ti and 1ppb In. Values were normalized using routine measurements of USGS 1225 

geostandards BHVO-2 and SGR-1b (processed with each batch of samples throughout the entire 1226 

procedure), whose precision was within 1% of certified values (4% for Al) on the Agilent (LL). 1227 

For more information on the analytical procedure see also Reershemius et al. (2023). 1228 

 1229 

 1230 

S2.3 Implementation of soil heterogeneity in Monte Carlo simulations 1231 
 1232 

We use soil composition data from five novel field sites sampled at high spatial densities to 1233 

constrain in-field heterogeneity for the Monte Carlo signal-to-noise analysis. The data are 1234 

normalized by the field mean concentration (Figure S3) before we fit log-normal distributions to 1235 

make sure the population means are 1. The use of log-normal (rather than normal) distributions is 1236 

intentional because samples generated from log-normal distributions always have positive values, 1237 

preventing the occurrence of non-physical negative soil concentrations in the signal-to-noise 1238 

analysis without having to filter some data. For normal distributions, this could be achieved by 1239 

simply filtering out negative model occurrences, but this would change the mean of generated 1240 

sample distributions and cause a systematic error in calculated dissolution fractions. In addition, 1241 

using log-normal compared to normal fits also represents a conservative choice for the signal-to-1242 

noise analysis due to the generally higher variance, as well has overall better fits compared to 1243 

normal distributions (R2 better for 11 out of 20 elemental field distributions). 1244 

 1245 
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 1246 
Figure S3: Distributions of baseline data for the 5 field sites (Table 1) including log-normal fits to the data. The shape parameters, 1247 
corresponding to the standard deviation of the normal distribution of the logarithm of the data, are plotted in Figure S4. 1248 

 1249 

Generally, a random variable is log-normally distributed if: 1250 

 1251 

𝑋	~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)         S48 1252 

 1253 

Which means that: 1254 

 1255 

𝑙𝑛(𝑋)	~𝑁(𝜇, 𝜎H)          S49 1256 
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 1257 

where μ is the mean, σ the standard deviation, and σ2 the variance of the respective distributions, 1258 

with log-normal distributions conventionally defined via the standard deviation of the underlaying 1259 

normal distribution. The expected value (mean) of a log-normal variable X can be calculated as: 1260 

 1261 

E[X] = eMN?
FG

G O          S50a 1262 

 1263 

Hence, when using the parameters of log-normal fits to populations with a given mean (Figure S3) 1264 

to generate synthetic data for the Monte Carlo simulations, if generating μ and σ independently, 1265 

the mean of the resulting populations will not be the same as of the initial distribution (i.e., 1). Or 1266 

said differently, if we want the mean of a synthetic distribution to be a specific value, μ and σ are 1267 

not independent—only one can be randomly generated. We implement this into the Monte Carlo 1268 

simulation by randomly generating shape parameters (σsyn) and then calculating μsyn such that E(X) 1269 

= 1:   1270 

 1271 

E[X] = e
PN&6-?

F&6-G

G Q
= 1         S50b 1272 

 1273 

Now, taking the natural logarithm: 1274 

 1275 

ln ;e
PN&6-?

F&6-G

G Q
< = ln(1)⇒ 	 𝜇(<1 +

R&6-G

H
= 0	⇒	𝜇(<1 =	−

R&6-G

H
	    S51 1276 

 1277 

The empirically constrained simulated μsyn and σsyn describe log-normal distributions with a mean 1278 

of 1 and σ (shape) parameters constrained from field data (with a mean of 1), and are used to 1279 

randomly generate sets of samples by multiplying these in-field variance factors with true “true” 1280 

sample compositions. 1281 

 1282 

Because the σ values from the fit to field data (Figure S3) are neither normally nor log-normally 1283 

distributed (negative R2; Figure S4), in the Monte Carlo simulations we generate synthetic σsyn 1284 

values by randomly pulling from uniform distributions set out by the minimum and maximum 1285 
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observed σ values observed in field data (for Ca, Mg, and Na the used values are 0.072402 and 1286 

0.687422, and for Ti 0.119775 and 0.288003). 1287 

 1288 

 1289 
Figure S4: Histograms as well as normal and log-normal fits to the shape parameters from log-normal fits to soil data. The signal-1290 
to-noise analysis and related Monte Carlo simulations use uniform distribution set out by the minimum and maximum Ca, Mg, and 1291 
Na shape values (b) as well as Ti shape values (c) due to low fit of both normal and log-normal distributions. 1292 

  1293 
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S3 Impact of feedstock mass loss on base cation and immobile element 1294 

concentrations  1295 

 1296 
Figure S5 Change of base cation concentration as a result of feedstock mass/volume loss from the system considering constant 1297 
feedstock compositions.  1298 

 1299 

Calculated as: 1300 

 1301 

𝛥𝑗 = [𝑗]10/ − [𝑗]∗10/          S52 1302 

 1303 

Where [𝑗]10/ is equation from S44, and [𝑗]∗10/ calculated from a linear loss of base cations 1304 

relative to the dissolution fraction: 1305 

 1306 

[𝑗]∗10/ = [𝑗]( + ([𝑗]10' − [𝑗]()(1 − 𝜏#)       S53 1307 

 1308 

Where [𝑗]10' is equation from S36. 1309 

 1310 
  1311 



Supplement | Suhrhoff et al. | V2 | August 4th, 2025 

 54 

 1312 
Figure S6: Sketch of the impact of enrichment of post-weathering soil immobile element concentrations when the feedstock 1313 
immobile element concentration is lower than in soil. 1314 

 1315 
 1316 
 1317 
  1318 

[m
ob

ile
 m

aj
or

 c
at

io
ns

; c
at

]

[immobile element; i]

Enrichment of [i] when [i]s < [i]f   

soil

basalt

soil + basalt (pre-weathering)

soil + basalt (post-weathering)



Supplement | Suhrhoff et al. | V2 | August 4th, 2025 

 55 

S4 Impact of deployment parameters and soil composition on signal-to-1319 

noise analysis  1320 

 1321 
Figure S7: Two exemplary EW deployments of 50 t ha-1, τj of 0.25 and relative 1SD on sampled soil compositions of 25% (a and 1322 
c) and 250 t ha-1, τj of 0.5 and 1SD on soil samples of 10% (b and d), representative for a low- and high- resolvability scenarios. 1323 
Panels c and d show the compositions of 10 random samples generated for the post-weathering soil-feedstock mixture (exact 1324 
composition and associated sample τj values listed in Table 2). 1325 

  1326 
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 1327 

 1328 
Figure S8: Cumulative distribution plot of the ratio of agricultural soil (LandCover2 = “Row Crops” and “Small Grains”) 1329 
composition 60 to US-basalt composition 63. As the ratio increases above the value of 0.2 defined here as a cut off for soils suitable 1330 
for SOMBA, the fraction of soils fulfilling this condition quickly increases. 1331 

  1332 
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 1333 

 1334 
Figure S9: Average errors on detected dissolution fractions for two simulated mass transfer coefficients (τj = 0.25 in a, τj = 0.5 in 1335 
b). The simulations are based on US soil 60 and basalt 63 compositions considering soils with base cation and Ti concentrations at 1336 
least 2 times lower than basalt (in contrast to Figure 4, which shows the same for soil concentrations that are at least 5 times 1337 
lower). The simulated in-field soil heterogeneity is based on the novel dataset presented in Table 1.  1338 


