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Abstract: Terrestrial enhanced weathering (EW) on agricultural land is a promising carbon 16 
dioxide removal (CDR) pathway with high potential to scale. Enhanced weathering also has the 17 
potential to provide significant agronomic co-benefits to farmers and producers. Today, most EW 18 
field trials are funded through the voluntary carbon market (VCM) with the purpose of generating 19 
carbon removal credits for corporate sustainability goals. As a result, monitoring, reporting, and 20 
verification (MRV) frameworks for EW are designed for attribution of tons of removal via 21 
weathering to individual fields. Here, we describe approaches for aggregation of weathering 22 
indicators across multiple fields using aqueous, solid, and gas phase measurements. First, we 23 
demonstrate that larger agricultural catchments are at least as suitable as smaller ones for detecting 24 
weathering signals in river chemistry, and in some cases may even offer advantages due to lower 25 
variability and background weathering fluxes. Second, we assess quantification uncertainty from 26 
in-field solid phase soil measurements at increasing scales and show that errors in CDR 27 
quantification can be reduced by aggregating signals over many fields. Third, we expand our in-28 
field analysis to consider the cost-uncertainty trade-offs of in-soil gas flux monitoring at scale. 29 
Critically, we also highlight that aggregation sets must be defined in advance and all plots included, 30 
as biased selection of fields can generate apparent removal signals out of statistical noise. Taken 31 
together, we find that aggregated monitoring of EW—quantifying CDR over multiple fields at 32 
once—can both improve existing MRV frameworks and support integration of EW practices with 33 
a broader array of government policies, unlocking funding and public support to achieve climate-34 
relevant scale.   35 
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1 Introduction 36 

Deep and immediate emissions reductions are needed to prevent the worst harms of climate change 37 
(UNEP 2024, IPCC 2018). In addition to emissions mitigation, there is growing scientific and 38 
political consensus that atmospheric carbon dioxide removal (CDR) will be necessary to stay 39 
within the temperature targets of the Paris Agreement (Luderer et al 2018, Rogelj et al 2018, IPCC 40 
2022). A range of carbon removal solutions are likely needed to achieve the gigaton-scale 41 
drawdown of carbon from the atmosphere proposed in net-zero and net-negative (overshoot) 42 
climate scenarios (IPCC 2022, Geden et al 2024, Lamb et al 2024) based on local energy, land, 43 
infrastructure and mineral resource availability. One promising approach for CDR is terrestrial 44 
enhanced weathering (EW) on agricultural land. In this process, crushed cation-rich rocks applied 45 
to fields react with dissolved atmospheric carbon in water, forming aqueous bicarbonate ions. 46 
Carbon is durably stored (longer than 10,000 years; Renforth and Henderson 2017) in the ocean 47 
as bicarbonate or in soils and sediments as solid carbonate. Global removal potential via EW is 48 
estimated to be 0.5- 2 Gt/yr per year (Beerling et al 2020), or 64-217 gigatons cumulatively by 49 
2080 (Baek et al 2023), meeting up to ~20% of expected CDR needs. Enhanced weathering can 50 
also deliver agronomic benefits, including soil pH management and improved crop yields (Levy 51 
et al 2024), increasing the likelihood of adoption of EW practices and projects in alignment with 52 
climate goals.  53 

Growing demand for carbon removal services, particularly from forward-looking buyers in the 54 
voluntary carbon market (VCM), has driven a rapid increase in investment in EW companies and 55 
projects. Over 25 EW companies are operating globally and ~600,000 tons of carbon removal 56 
credits have been sold, though only a small fraction (<2%) have been delivered (CDR.fyi 2025). 57 
This trend is promising but raises important questions about the ability to accurately estimate net 58 
carbon removal from the atmosphere via EW. This is particularly true when project outcomes (e.g. 59 
carbon credits delivered) are used to make investment decisions and, ultimately, claims about net-60 
zero targets, the primary use case of carbon removal projects to date. Historical precedent suggests 61 
that the incentive structure of the VCM drives towards low costs and inflated claims and has led 62 
to systematic failures in quantification (Gill-Wiehl et al 2023, Badgley et al 2022, Sanders-DeMott 63 
et al 2025) without rigorous monitoring of project impacts. Moreover, a growing body of evidence 64 
from soil organic carbon quantification (and carbon credit issuance) suggests that measurement 65 
across multiple fields (Bradford et al 2023, Potash et al 2025), using regional baselines (Oldfield 66 
et al 2022), can improve the accuracy of estimated carbon sequestration.  67 

Achieving large-scale, verifiable CDR via EW will require balancing accuracy and cost, using a 68 
mix of methods (gas, solid, and liquid phase measurements, as well as models) with context-69 
appropriate study design, across spatial and temporal scales (Clarkson et al 2024, Almaraz et al 70 
2022). Here, we explore the benefits of monitoring EW over multiple fields or a region - rather 71 
than treating individual field estimates as accurate - through the physical aggregation of weathering 72 
products in streams and the statistical aggregation of field-level data points, to reduce uncertainty 73 
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in carbon quantification. We also discuss the cost and scalability implications of these findings 74 
from both market and policy perspectives.   75 
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2 Methods 76 

This study evaluates the potential of aggregated monitoring—that is, quantifying carbon removal 77 
by monitoring multiple field sites together—of EW on croplands. We focus on the application of 78 
silicate materials and consider both in-field and downstream signals of weathering products, 79 
including cations and carbon species. To illustrate the utility of aggregation, we analyze 80 
monitoring approaches across three domains—streams, soils, and gas fluxes—using a series of 81 
simple models that capture first-order system behavior. These models are not intended to provide 82 
precise forecasts but rather to demonstrate how aggregation can improve detectability and reduce 83 
uncertainty in EW monitoring. 84 
 85 
In framing this analysis, it is worth distinguishing between two related but distinct challenges: (i) 86 
reducing statistical noise from spatial heterogeneity, for which aggregation across multiple fields 87 
or watersheds provides a tractable solution, and (ii) addressing system-level processes that can 88 
alter the effective permanence or transport of weathering products, which may require moving 89 
beyond near-field soil measurements to downstream integration in rivers or groundwater. Recent 90 
work has shown for example that solute export reflects not only soil-scale weathering reactions 91 
but also subsurface redox structure, mineral buffering, and hydrological residence times 92 
(Shaughnessy and Brantley 2023, Shaughnessy et al 2023), emphasizing the need to capture 93 
processes that integrate across critical zone compartments. In this study, we attempt to address (i) 94 
through analysis and simulations of water, soil, and gas datasets and processes, whereas (ii) is 95 
inherently captured only in the stream water approach, since by definition this medium integrates 96 
across subsurface transport, mineral buffering, and hydrological residence times. 97 

2.1 Watershed analysis 98 

Enhanced weathering can be quantified by tracking weathering products such as cations or 99 
alkalinity in the aqueous phase (Clarkson et al 2024, Almaraz et al 2022, Sutherland et al 2024). 100 
Tracking bicarbonate alkalinity in effluent water has the benefit of quantifying CDR after losses 101 
due to formation of secondary phases and other potential means for carbon loss within soils and 102 
upstream portions of rivers. Cation fluxes are also often used as a proxy for alkalinity (Bijma et al 103 
2025). However, this method of quantification introduces the challenge of detecting changes in 104 
riverine fluxes compared to baseline. Nevertheless, multiple studies have detected significant 105 
changes in riverine chemistry through time due to agricultural liming (Hamilton et al 2007, Oh 106 
and Raymond 2006, Barnes and Raymond 2009, Duan et al 2025), providing an example of the 107 
feasibility of this approach.   108 

Here we assess the feasibility of tracking weathering products in downstream waters as a method 109 
of estimating carbon removal from the large-scale field-application of silicate minerals. First, we 110 
use a large river database from the continental US (USGS 2016) to establish baseline riverine 111 
fluxes. To ensure baseline quality, we only considered stations with at least 10 years of baseline 112 
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data since 1990, where each year has at least 10 measurements distributed over all four seasons 113 
(n=95 sites for alkalinity, n=81sites for Ca, n=80 sites for Mg, 120 unique stations). We 114 
furthermore filtered out watersheds with less than 10% agricultural area (cropland and pasture; 115 
USGS 2024), leaving n=50 sites for alkalinity, n=26 sites for Ca, n=26 sites for Mg, and n=51 116 
unique sites in total. The locations of these stations are displayed in Figure 1a. Second, we calculate 117 
the increase in alkalinity, Ca, and Mg concentrations needed to produce a 2 standard deviations 118 
(σ) change relative to annual average baseline concentrations, assuming that a 2σ increase can be 119 
reliably detected. Third, the increase in riverine fluxes required to detect CDR is translated into an 120 
agricultural-area normalized basalt application rate based on US-average basalt composition 121 
(Lehnert et al 2000), watershed catchment size (USGS 2016), and areal extent of agriculture in 122 
each catchment (cropland and pasture area) (USGS 2024). For alkalinity, this is calculated based 123 
on charge balance from basalt base cation content. Note that some watersheds are nested within 124 
each other, not all datapoints are independent. 125 

The aim of this analysis is not estimating the exact basalt application rates whose dissolution could 126 
be detected, but rather to assess how the utility of stream-based MRV scales with catchment size. 127 
This analysis is built on a steady state assumption, which implies that (1) rock added dissolves 128 
quickly, (2) weathering products are transported quickly through into streams, and (3) that 129 
weathering products are transported in river water in a way that can be detected in downstream 130 
stations. Each of these assumptions can be challenged (Kanzaki et al 2025, Kirchner and Neal 131 
2013, Godsey and Kirchner 2014, Calabrese et al 2022, Power et al 2025) and the absolute values 132 
this analysis arrives at certainly underestimate required basalt application. However, we argue that 133 
these limitations should not scale with catchment size and that the trend of required basalt 134 
application, dissolution, and transport rates can nevertheless be informative to gauge the utility or 135 
river-water MRV at scale – see section 4.1 for a more detailed discussion of these limitations. 136 

2.2 Soil analysis 137 

An alternative way to quantify CDR via EW is the use of soil mass balance approaches (Kantola 138 
et al 2023, Reershemius and Suhrhoff 2023, Reershemius et al 2023, Clarkson et al 2024, Suhrhoff 139 
et al 2024, 2025) to assess the difference in feedstock concentration before and after weathering, 140 
by comparing changes in the total amount of mobile cations (e.g. Ca2+, Mg2+) in a soil sample 141 
relative to an immobile tracer (e.g. Ti.) Combined with other measurements and assumptions 142 
(Campbell et al 2023, Reershemius et al 2023, Clarkson et al 2024, Suhrhoff et al 2024, 2025), 143 
this dissolution fraction can act as a proxy for CDR. Here, we demonstrate that aggregating over 144 
multiple fields notably increases the accuracy of soil-based approaches to quantify rock powder 145 
dissolution, drawing from similar analysis for soil organic carbon accrual due to changes in land 146 
management practice (Potash et al 2025, Bradford et al 2023). We highlight that our approach here 147 
tests the ability to overcome high within- and among-field variability in cation concentrations 148 
through monitoring approaches. 149 
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We use existing data for the elemental composition of a large number of agricultural fields (Smith 150 
et al 2013) and basalt rock powder (Lehnert et al 2000). We also present recently generated data 151 
on in-field variance of elemental compositions resulting from spatial heterogeneity and analytical 152 
errors from 5 densely sampled field sites (Suhrhoff et al 2025; see supplement S2). Based on this 153 
data, we conduct a Monte Carlo simulation to assess the expected average error on detected 154 
dissolution fractions when using soil mass balance. Simulations are conducted at multiple rock 155 
powder application amounts (total amounts of 50 and 100 t ha-1; not annual rates), dissolution 156 
fractions (0.25 and 0.5), and spatial sampling frequencies (1 to 20 samples ha-1), where sampling 157 
frequency can be achieved either through independent point samples or by pooling sub-samples is 158 
subsamples are spaced far enough to capture in-field heterogeneity (ITRC 2020, Clausen et al 159 
2013b, 2013c, 2013a). For each simulation, the accuracy of detected dissolution fractions 160 
compared to the simulated known value is compared (1) based on the average absolute error for 161 
each individual field (corresponding to single-field MRV) and (2) after averaging over multiple 162 
(10, 50, and 100) fields. Simulations are then repeated 100 times, and we calculate for both 163 
approaches the average error on quantified dissolution fractions and the frequency of 164 
overestimating rock dissolution by more than 20%. The model assumes non-paired sampling 165 
approaches where baseline and post-weathering samples are taken at random locations–though for 166 
comparison we also model paired sampling. The workflow of the simulations as well as underlying 167 
data and assumptions are explained in detail in supplement S2 (see Figure S8 for a flow chart). All 168 
code can be found in the supplement. 169 

2.3 Gas analysis 170 

Enhanced weathering is commonly described as capturing atmospheric CO2 and converting it to 171 
bicarbonate. The more precise way to describe EW, however, is that it decreases the flux of CO2 172 
from soil that was produced largely by root respiration and degradation of organic matter. It 173 
follows that one of the most direct ways of tracking field EW CDR rates is by monitoring changes 174 
in CO2 fluxes coming from soils (Dietzen et al 2018, Stubbs et al 2022, Rausis et al 2022, Yan et 175 
al 2023, Vienne et al 2024, Kantola et al 2023). Embedded CO2 sensors can be used to reconstruct 176 
gas fluxes from soils using the gradient method  (Maier and Schack-Kirchner 2014). Initial work 177 
on this method in a basalt trial in the Southeastern US suggests that, with continuous data 178 
acquisition, it may be an effective means of estimating relative changes in carbon fluxes (Milliken 179 
et al 2025).  180 

Here we apply the same framework as solid-phase soil analysis to monitoring of CDR in-field via 181 
soil gas phase sensors. However, due to the current cost constraints (i.e., >1,000$ per sensor pair), 182 
we model much lower sensor densities and assess accuracy as a function of aggregation (number 183 
of grouped fields) to gauge if aggregation may make such an approach feasible at scale. For each 184 
simulated deployment we assume soil CO2 emissions of 3.5 t ha-1 yr-1 for control sites, 185 
representative of soils in corn-based cropping systems (Kazula and Lauer 2023). Due to spatial 186 
and temporal heterogeneity in gas fluxes, we assume a standard deviation of 1.5 t ha-1 yr-1 on such 187 
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measurements. We simulate treatment sites by deducting nominal amounts of CDR (0.1, 0.2, and 188 
0.5 t ha-1 yr-1) from control site emissions. Both the chosen variance as well as CDR rates 189 
detectable based on in-soil gas sensor MRV approaches are conservative compared to observed 190 
values (Kazula and Lauer 2023, Milliken et al 2025) and chosen specifically to not overestimate 191 
the utility of such a low-density sensor approach. To account for the fact that EW interventions 192 
likely increase variance of emissions (due to heterogeneous feedstock application, impacts on soil 193 
organic carbon, and changes in productivity) we add the nominal CDR rates to the assumed 194 
standard deviations (such that they are 1.6, 1.7, and 2.0 t ha-1 yr-1, respectively). From these 195 
distributions, we generate sets of control-treatment pairs, and calculate the detected CDR. We then 196 
average over increasing numbers of deployment sites (up to 10,000) and calculate the average error 197 
on detected CDR as well as the frequency with which CDR is overestimated by more than 20%. 198 
First, we simulate average CDR error and overestimation rates for 1 sensor pair per deployment 199 
(control and treatment) irrespective of field size. Second, we simulate error and overestimation for 200 
deployments with 1 sensor pair per 10 ha, assuming again field sizes between 10 and 100 ha.  201 
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3 Results 202 

3.1 Watershed analysis 203 

Our analysis indicates that basalt addition is more detectable (i.e., requires lower application rates) 204 
in watersheds with larger total agricultural area (Figure 2). Required basalt application rate to cause 205 
a 2σ increase compared to baseline river concentrations forms a significant trend for alkalinity (p 206 
< 0.001) though at low R2 (0.25). There is no significant trend with catchment size for Ca and Mg. 207 
Ignoring loss and lag processes due to slow weathering and retardation of weathering products, 208 
the average required basalt dissolution and transport rate (in tonnes per hectare per year) for 209 
watersheds with more than 1 km2 of agricultural area and more than 20% agricultural land cover 210 
(crop and hay/pasture) (USGS 2024) are 0.63 ± 0.68 (1σ) for alkalinity (n=45), 0.97 ± 0.87 (1σ) 211 
for Ca (n=23), and 0.53 ± 0.31 (1σ) for Mg (n=23). 212 

3.2 Soil analysis 213 

Aggregating soil mass balance approaches over multiple fields increases their robustness in 214 
quantifying CDR from EW. The primary measures deployed for robustness here are the average 215 
error over all model simulations, where error refers to the difference between the calculated rock 216 
powder dissolution fraction (τj) based on the Monte Carlo simulations and the assumed, simulated 217 
value (Figure 3). We also calculate the frequency with which rock powder dissolution is 218 
overestimated by more than 20% (Figure 3b), as an indicator of the risk of generating excess 219 
carbon credits when EW projects are developed for the voluntary carbon market. Both error and 220 
overestimation frequency are much lower when aggregating over multiple fields. Increasing the 221 
number of fields leads to a progressively smaller incremental increase in robustness. By 222 
aggregating over multiple fields, the average error at a sampling frequency of 10 samples ha-1 (100 223 
t ha-1 basalt application, τj of 0.25) can be reduced from >20% for individual fields to less than 224 
10% (10 fields) and to 5% (100 fields). The impact on the over-crediting frequency is even more 225 
extreme, where aggregating over multiple fields collapses the frequency from >20 % for individual 226 
fields to essentially zero when aggregating over at least 50 fields at the same sampling frequency.  227 

3.3 Gas analysis 228 

The average error on detected CDR from low-density in-soil gas sensor measurements decreases 229 
with increasing aggregation (number of fields) as well as observed CDR (Figure 4). Based on an 230 
individual sensor pair (for field sizes from 10 to 100 ha), the average error is >10 % even when 231 
1,000 fields are grouped and at 10,000 fields <10% only for 0.2 and 0.5 t ha-1 yr-1. The frequencies 232 
of overestimating CDR by at least 20% are approximately 10, 25, and 50% at 1,000 fields, and 0, 233 
5, and 20% at 10,000 fields for nominal CDR rates of 0.5, 0.2, and 0.1 t ha-1 yr-1, respectively. 234 
Using a sensor density of 1 sensor per 10 ha, both average error and CDR overestimation frequency 235 
decrease. In this case, at 10,000 fields, all nominal CDR rates are detected on average with less 236 
than 10% error. Carbon dioxide removal overestimation frequencies are approximately 0, 15, and 237 
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25% at 1,000 fields, and 0, 0, and 5% at 10,000 fields for nominal CDR rates of 0.5, 0.2, and 0.1 t 238 
ha-1 yr-1, respectively.  239 
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4 Discussion 240 

4.1 Watershed  241 

Our analysis indicates that within the existing set of USGS stream gage stations, detectable EW 242 
signals are impacted by catchment agricultural area (Figure 2) or catchment size (Figure S1) to 243 
some extent. For alkalinity, we find a statistically significant but relatively weak relationship 244 
between required basalt application rates and total agricultural area (p < 0.001, R² = 0.25; Figure 245 
2), indicating that less basalt may be required in larger watersheds for viable stream water MRV. 246 
However, there are no clear trends for Ca and M, suggesting that signal detectability is shaped by 247 
a combination of factors. 248 

One factor likely contributing to the significant trend for alkalinity appears to be that weathering 249 
rates (i.e., area normalized alkalinity fluxes) tend to be lower in large agricultural watersheds (p 250 
<0.05 but low R² of 0.09; Figure 5a; see Figure S5 for total-catchment area normalizations and 251 
Figure S6 for Ca and Mg data). This seems at least partially related to lower runoff with increasing 252 
catchment area p < 0.001, R² = 0.35; Figure 5b), runoff being a widely recognized control on 253 
weathering rates (White and Blum 1995, Gaillardet et al 1999, Gislason et al 2009, Hartmann 254 
2009, West 2012). By contrast, we do not observe a significant relationship with erosion rates (R² 255 
= 0.03, p = 0.19; Figure 5c). One additional factor that may help explain the relationship in Figure 256 
2a–i.e., lower required basalt application in larger agricultural catchments–could be that variability 257 
in stream chemistry appears to decline with catchment size, as suggested by the significant 258 
decrease in the relative standard deviation of annual baseline data (p < 0.001, R² = 0.21; Figure 259 
5d). 260 

Taken together, these observations suggest that larger agricultural watersheds are at least as 261 
suitable—and in some cases more advantageous—than small ones for aggregated monitoring of 262 
EW. When new monitoring stations are established directly within agricultural catchments, 263 
watersheds of different sizes may be similarly well suited for signal detection (see Figure S7 for 264 
stations with >50% ag-land fraction). While this conclusion is necessarily constrained to the 265 
specific set of USGS stations analyzed here, it highlights that large catchments can be promising 266 
candidates for steam-based MRV. The added advantage of large catchments is that the same 267 
infrastructure can monitor broader agricultural areas, lowering MRV costs per ton (see Section 268 
4.4), and making them particularly attractive for future deployment. 269 

We use this signal-to-noise analysis primarily to explore how area-normalized basalt application 270 
rates may relate to catchment size, with the aim of comparing the relative utility of different 271 
watershed contexts for monitoring. We do not aim to provide definitive estimates of the absolute 272 
application rates required for signal detection. The analysis presented here is based on a steady-273 
state assumption: the basalt that is added to fields dissolves immediately, and the dissolution 274 
products are transported through soils into streams where they impact river chemistry. We have 275 
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here neither modelled weathering processes as well as loss processes in soils such as due to the 276 
formation of secondary phases, uptake onto cation exchange sites, inclusion into biomass, or strong 277 
acid weathering (Clarkson et al 2024), nor lag times between weathering and the arrival of 278 
dissolution products because of interactions with exchangeable acidity (Kanzaki et al 2025). Hence, 279 
the analysis here should not be interpreted in terms of the absolute values indicated to be feasible 280 
from a signal-to-noise perspective, with realistic required rates certainly exceeding the 0.5-1 t ha-281 
1 yr-1 found here. What we primarily want to demonstrate here is that—provided river chemistry 282 
is going to be useful to monitor EW given all loss and lag processes—likely it is going to be as 283 
feasible to accurately detect the same area-normalized application rates in catchments with large 284 
areas (and proportions) of agricultural land. That said, the feasibility of detecting weathering 285 
signals at watershed scale is supported by historical observations, such as the documented increase 286 
in alkalinity in the Mississippi River following widespread liming in its basin, or responses to river 287 
chemistry to wollastonite application in the Hubbard Brook catchment (Hamilton et al 2007, Oh 288 
and Raymond 2006, Barnes and Raymond 2009, Duan et al 2025, Shao et al 2016, Taylor et al 289 
2021).  290 

One limitation of our analysis is that it assumes that weathering products generated in soils are 291 
efficiently transported into streams, irrespective of catchment size. In reality, larger watersheds 292 
may be more prone to transport limitations, where solute export is constrained by hydrological 293 
residence times or saturation of subsurface pathways. In such cases, even if weathering fluxes 294 
increase with basalt application, the resulting products may be retained within soils, groundwater, 295 
or riparian zones rather than exported to surface waters, potentially dampening the signal relative 296 
to our trend analysis. This possibility could be reflected in the increasing baseline concentrations 297 
observed in some larger catchments (p < 0.05 but low R² of 0.11; Figure 5e), which may indicate 298 
slower turnover of solute reservoirs. These scale-dependent effects are not captured in our steady-299 
state framework, but their impact can be mitigated by careful deployment choices, as laid out 300 
below. 301 

In addition to possible loss processes, lag of weathering products through soils and subsurface 302 
pathways can also complicate interpretation of absolute application rates required for signal 303 
detection. However, resulting lag times are not expected to systematically scale with catchment 304 
size, such that the general trends should nevertheless be valid provided export limitation does not 305 
significantly increase with watershed scale. Within the dataset considered, watersheds with greater 306 
agricultural area do not have a longer average distance to the closest river (Figure 5f), supporting 307 
the assumption that the likely overall transport rate limiting step—cation transport through topsoils 308 
(Kanzaki et al 2025) and from topsoils to rivers—should not increase with catchment size. If 309 
stream water is going to be a useful medium to quantify CDR from EW, within the existing 310 
network of USGS gauges, based on the signal-to-noise analysis of alkalinity fluxes, larger streams 311 
are hence more likely to yield a clear signal at equal area normalized application rates. 312 
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The adverse impact of these loss processes and related lag times on riverine signals can be 313 
minimized by deployment choices. A number of studies based on short-term (generally <6 months) 314 
core experiments have demonstrated the impact of cation storage in secondary phases on effluent 315 
water composition (Renforth et al 2015, Pogge von Strandmann et al 2022, Iff et al 2024, te Pas 316 
et al 2025, Vienne et al 2025). Model results suggest that lag times due to interactions with the 317 
soil exchangeable cation pool can for example exceed 30 years in the US corn belt (Kanzaki et al 318 
2025). However, this process is primarily controlled by the cation exchange capacity (CEC) as 319 
well as base saturation of soils, such that overall, the tropical soils of the south-eastern US are 320 
generally expected to have lower associated lag times (Kanzaki et al 2025). Similarly, precipitation 321 
of secondary carbonates is favored by high soil pH and carbonate content, both of which are 322 
generally higher in the western half of the US (Smith et al 2013, Wieczorek 2019), such that related 323 
losses are likely lower in the east, demonstrating the potential to reduce expected lags and losses 324 
by choosing suitable catchments (e.g. low CEC, high base saturation, high water infiltration; 325 
Kanzaki et al 2025). Loss processes are less likely to occur in catchments with high runoff and 326 
short hydrological residence times, although in practice deployment decisions will need to balance 327 
trade-offs among these parameters to identify the most suitable locations. In the context of 328 
watershed monitoring, it should be generally true that watersheds favorable for EW in terms of 329 
low loss processes and lag times are also the most suitable for detecting weathering signals 330 
downstream, demonstrating the potential to reduce expected lags and losses by choosing suitable 331 
catchments. 332 

In summary, our analysis does not provide evidence that larger watersheds are less effective than 333 
smaller ones for stream-based MRV at equal application rates. On the contrary, they appear often 334 
to be more suitable, with the added benefit that monitoring infrastructure can cover broader 335 
agricultural areas, lowering MRV costs per ton. Provided that EW signals can be reliably detected 336 
in streams—a conclusion supported by previous work showing measurable riverine responses to 337 
liming and mineral additions (Hamilton et al 2007, Oh and Raymond 2006, Barnes and Raymond 338 
2009, Duan et al 2025, Shao et al 2016, Taylor et al 2021)—this approach offers strong potential 339 
for monitoring EW at scale. 340 

4.2 Soil  341 

In statistics it is well known that individual-level “noise” typically obscures intervention effects, 342 
whereas representative sampling of individuals from a population can provide a robust and 343 
accurate average treatment effect (Holland 1986, Rothman et al 2008, Rubin 1974). We refer here 344 
to this fact as ‘aggregation’ and suggest it is a useful tool to estimate treatment effect size from a 345 
sample of a population that should be applicable to other parameters of interest for EW in 346 
agricultural settings, such as pH or base saturation. It has for example been extensively 347 
demonstrated in the context of soil organic carbon management (Potash et al 2025, Bradford et al 348 
2023), where it has been postulated that detection may not be reliable at a field level, but 349 
aggregation may facilitate identifying population-level trends.  350 
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We demonstrate here that this general principle also applies to soil-based MRV for EW: 351 
Aggregating soil based MRV over multiple fields decreases the average error on detected 352 
dissolution fractions as well as the frequency of overestimating weathering by more than 20% 353 
(Figure 3). Crucially, within the level of variability in soil elemental composition modeled here, 354 
high levels of accuracy on CDR numbers are only achievable by aggregating over multiple fields. 355 
It is a general feature of soil mass balance approaches that detectability increases over time as 356 
cumulative applications increase and more time has passed for weathering (Suhrhoff et al 2024). 357 
Even when increasing feedstock application (Figure 6a&b) and dissolution fraction (Figure 6c&d), 358 
aggregation over multiple fields reduces error and reduces over crediting.  359 

In our analysis we focus primarily on unpaired sampling, as a conservative estimate of potential 360 
errors in heterogeneous soils (Rogers and Maher 2025). For comparison, we also evaluate paired 361 
sampling (supplementary section S2.3). These results show that when paired sampling can be 362 
implemented reliably—whether through high-precision GPS or by physically marking sample 363 
locations—soil mass balance approaches may become feasible also at the individual field scale 364 
(Figure S12 ; Suhrhoff et al 2025). Importantly, one of the key advantages of aggregated 365 
monitoring is that it can achieve comparable accuracy at larger scales without depending on the 366 
success of paired sampling. 367 

Statistical models like those explored here can be used to inform required sampling protocols given 368 
prescribed levels of average error and uncertainty. For example, if baseline data of soil 369 
heterogeneity was available for a given field or sets of fields, our approach to statistical modeling 370 
could be used to estimate expected average errors as a function of sampling frequency and field 371 
aggregation. This approach is similar to a recent preprint aiming to provide constructive guidance 372 
on sampling protocols (Rogers and Maher 2025), but in our case agnostic to what is an 373 
“acceptable” level of uncertainty. In this context, it is important that the minimum requirements of 374 
sampling protocols are assessed prior to deployment, and that all uncertainties resulting from CDR 375 
quantifications are properly propagated, for example via Monte Carlo simulations (Derry et al 376 
2025). While we have only modeled “sampling frequency”, provided that field-scale heterogeneity 377 
is captured (i.e., sub sample radius > wavelength of in-field heterogeneity), the required sampling 378 
frequency can also be achieved by pooling sub-samples. In this context, a large body of literature 379 
exists on how to accurately sample heterogenous media from the context of soil pollution 380 
remediation (i.e., incremental sampling methodologies; (Clausen et al 2013b, ITRC 2020, Clausen 381 
et al 2013c, 2013a, Hadley et al 2011, Hewitt et al 2007).  382 

While our modeled results indicate that clear gains for MRV robustness may be achieved by 383 
aggregating over relatively small numbers of fields (e.g., 10), in practice, generating an accurate 384 
aggregate value for CDR presents several challenges. Given the unreliability of individual field-385 
level estimates, translating into CDR is not as simple as multiplying, for each field, τj with 386 
application amounts per area, the field size, and assumed carbon losses (incl. LCA emissions). 387 
When using arbitrary sets of fields, such a simple weighting approach risks making the aggregated 388 
CDR result disproportionately determined by the largest fields with the most deployed rock 389 
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powder—undermining the premise of aggregation. A more rigorous approach would be to define 390 
subsets of fields that are similar in relevant respects (e.g., size, application amounts, feedstock 391 
properties, soil type, initial soil conditions such as pH and base saturation, and any parameter used 392 
for MRV and its resolvability; Suhrhoff et al 2024), so that averaging or calculating the sum of 393 
individual CDR signals within these subsets produces a meaningful aggregate signal. Defining 394 
such subsets will require much larger datasets than the pure number of fields within any one 395 
aggregated set, enabling clustering analyses and other statistical approaches that can group fields 396 
in a defensible way. Furthermore, meaningful aggregation must be achieved by grouping multiple 397 
similar-sized fields into sets, rather than artificially subdividing individual fields into smaller sub-398 
fields, to benefit from the increase in sampling numbers that true multi-field aggregation entails. 399 
Finally, in EW projects there are typically control fields or plots, introducing additional variability 400 
and requiring still larger aggregation sets to achieve similar robustness and accuracy (Bradford et 401 
al 2023). In practice, unless extraordinary effort is devoted to scouting fields of comparable 402 
starting conditions, the need for large sets of fields to define meaningful aggregation subsets may 403 
naturally align more closely with frameworks suited to monitor the impact of pay-for-practice 404 
policies than with today’s VCM protocols.  405 

4.3 Gas  406 

As with most aspects of open system monitoring, even though this is a simple concept, monitoring 407 
implementation can be difficult. Agricultural soil CO2 fluxes—which are directly tied to 408 
management strategy, crop activity, soil moisture, and temperature—are highly variable (Barron-409 
Gafford et al 2011). Change in CO2 fluxes from soils can be detected in multiple ways. The eddy 410 
co-variance method has been used in a high application basalt trial in Illinois, the core of the corn 411 
belt in the central US (Kantola et al 2023). Soil chambers have also been employed in several 412 
studies, mostly in mesocosms (Clarkson et al 2024). These studies have had mixed results 413 
detecting signals of weathering. In-soil sensors have successfully been used to constrain CDR from 414 
EW in at least one field study (Milliken et al 2025). Nevertheless, it should be noted that while 415 
soil gas fluxes provide a direct link to surface–atmosphere exchange, their strong temporal 416 
variability and sensitivity to precipitation events make it challenging to integrate fluxes to annual 417 
or multi-year timescales (Hodges et al 2021). 418 

Estimating in-field CDR rates using gas phase sensors typically requires a control plot with soil 419 
and environmental conditions closely matching those of the deployment area, making this method 420 
most accurate for small portions of a field, such as experimental plots within a larger deployment. 421 
The high cost of current in-soil CO₂ sensors limits sensor deployment to small areas, which 422 
undermines accuracy for project-level accounting due to spatial variability in soil CO₂ fluxes and 423 
feedstock weathering. As a result, while this approach may provide localized insights, it is unlikely 424 
to yield reliable estimates for entire fields. However, regional or jurisdictional-scale monitoring 425 
may offer more accurate field-level CDR estimates, similar to the principles applied in soil data 426 
analysis, where aggregation across a large sample set improves the accuracy of mean estimates 427 
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(Bradford et al 2023). Realizing this potential will require continued innovation to lower sensor 428 
costs and improved durability, enabling deployment at higher densities and larger scales. 429 

While low-density in-soil gas sensors may not be an effective approach to monitor CDR at a field 430 
level, the analysis developed here suggests that when aggregating over many thousands of fields, 431 
it may be possible to accurately quantify CDR. The next step for evaluating whether soil CO2 432 
fluxes (via in situ sensors or gas flux chambers) can become an important component of EW MRV 433 
is estimating the scale of variability in fluxes in fields from multiple agronomic regions. This work 434 
is essential to generate an estimate of the efficacy and costs needed to accurately detect on field 435 
CDR rates using CO2 sensors before such an approach may be applied at scale based on a sparse 436 
data foundation. 437 

4.4 Accuracy, Cost, and Scale  438 

Deploying EW as a climate solution requires optimization of accuracy, cost, and scale. Accuracy 439 
is necessary to ensure true climate impact. Cost reductions are needed to enable projects at prices 440 
that are palatable to corporate buyers in the voluntary carbon market and, eventually, feasible for 441 
governments to undertake as a public good at climate-relevant scale. Given that current credit 442 
prices, generated from first-of-a-kind field trials, hover around $300-400/metric ton (CDR.fyi 443 
2025) and MRV is one of the largest cost drivers reported by CDR suppliers (Mercer et al 2024), 444 
novel measurement approaches are likely needed to achieve acceptable accuracy at reduced cost 445 
over time.  446 

Watershed monitoring is one appealing option because it provides a direct, lower-bound 447 
measurement of removal rates over large areas (e.g. entire catchments) and integrates over a chain 448 
of soil chemical processes that may constitute losses of carbon from EW which are hard to measure 449 
in situ. Although individual monitoring stations can be expensive (> 20-100k plus recurring lab 450 
costs depending on instrumentation, availability of local infrastructure, and target parameters; 451 
Harmel et al 2023) including time and labor for taking samples, gage stations can cover large 452 
agriculture areas, resulting in markedly lower monitoring costs overall. Crucially, the cost of such 453 
stations would not depend on the size of the catchment, translating into lower per-area and per-ton 454 
MRV cost for larger catchments, in addition to more favorable signal-to-noise (cf., section 4.1). 455 
Gage stations can also be used for multiple socially beneficial purposes (e.g. water quality 456 
monitoring), distributing costs over a range of stakeholders.  457 

In-field soil sampling and estimation of dissolution rates through soil mass balance is already a 458 
common practice in commercial enhanced weathering projects (Puro.Earth 2024, Sutherland et al 459 
2024). Accuracy is a challenge for this method, given the high spatial variability of soil 460 
composition. Building off a similar analysis for soil organic carbon (Potash et al 2025, Bradford 461 
et al 2023), we demonstrate that averaging over 10-100 fields significantly reduces estimation 462 
error. In the context of carbon markets, this translates to reduced risk of over crediting, or 463 
generating carbon removal credits that do not reflect a real change in atmospheric CO2 464 
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concentration. It is important to note that our results do not support trading off in-field sampling 465 
with multi-field averaging. Low in-field sampling densities (less than 2 samples/ha) consistently 466 
result in high error rates even when averaged over an increasing number of fields (Figure 3a).  467 

An alternative approach to scaling soil-based MRV is to measure intensively on a small plot (e.g., 468 
0.1 ha) and extrapolate those results linearly to larger deployments. However, this approach is 469 
unlikely to yield accurate estimates of carbon removal as soil composition, hydrology, and 470 
management practices vary substantially across fields, even within the same farm or watershed. 471 
This heterogeneity directly affects both the rate of weathering reactions and the detectability of 472 
their products. Empirical evidence from soil organic carbon projects shows that extrapolation from 473 
1 to 2 small plots per field produces unreliable data because such limited sampling is unlikely to 474 
be representative of a field (Heikkinen et al 2013, Maillard et al 2017, Poeplau and Don 2015). In 475 
the context of EW, this means that a small set of intensively monitored fields could overestimate 476 
removals if applied uniformly across thousands of ha. Robust estimates therefore require 477 
approaches that capture variability across landscapes—either through direct aggregation of field 478 
measurements or integration with downstream monitoring. 479 

It should be noted that aggregation of data from commercial deployments requires fields to be 480 
added to aggregation sets before post-treatment data is available (e.g. in the project design 481 
document), and all designated plots to be included in the final analysis for credit delivery. Due to 482 
statistical noise from soil heterogeneity and measurement error, detection of apparent CDR is 483 
expected in some cases, even when the true value is zero or the intervention is a net CO2 source. 484 
If such low or negative detected values are selectively omitted as “noise” or the corresponding 485 
projects never delivered/reported on, the resulting average will be biased upward, leading to 486 
systematic overestimation of carbon removal (Figure 7). To avoid this, crediting of EW must move 487 
beyond individual field scales and should always be done on a set of similar deployments. Strict 488 
criteria must be set for adding or excluding plots from project or control fields during the project 489 
period, such as unexpected and unavoidable land manager change in practice. Such criteria for 490 
aggregation exist in other land use carbon crediting frameworks (e.g. criteria for exclusion of 491 
control plots from dynamic baselines in forestry protocols (Shoch et al 2024). Guidance for EW 492 
projects will be needed as the industry moves towards large deployments. 493 

Lastly, we note that integration of modeling into monitoring frameworks can further optimize cost 494 
efficiency, though at present models are not a substitute for empirical approaches, neither at 495 
watershed nor field scale (Zhang et al 2025, Kanzaki et al 2025). Modeling, when paired with 496 
distributed sensor networks and targeted sampling, can strengthen robustness without dominating 497 
budgets. For example, the New York City watershed program invests ~$6.7 million annually in 498 
monitoring, of which ~10–15% supports modeling tools that provide real-time forecasting and 499 
operational guidance (NASEM 2020). For enhanced weathering, aggregated monitoring 500 
approaches that combine in-field sampling and watershed instrumentation with calibrated 501 
modeling frameworks to constrain downstream losses may provide a viable pathway for MRV at 502 
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scale and enable credible, lower-cost quantification of removals across large heterogeneous 503 
landscapes. 504 

4.5 Policy implications  505 

Government policy can support accurate estimation of carbon removal via enhanced weathering, 506 
at the scales discussed in this work (catchments and hundreds of agricultural fields) and beyond 507 
(eco-regions and thousands of fields within a jurisdiction and particular regulatory framework).  508 

For watershed monitoring in the US, this analysis builds directly on publicly funded, publicly 509 
available data collected through the US Geological Survey (USGS) stream gage network. This 510 
data serves a range of purposes (both economic and environmental) and serves a diverse set of 511 
stakeholders (governments, local community-based organizations, as well as commercial entities). 512 
Though the US has a uniquely robust stream gaging network, other countries support similar public 513 
water monitoring (Barker et al 2022).   514 

Expansion of water monitoring networks serves two important needs for enhanced weathering. 515 
First, before widespread deployment of EW, water monitoring enables accurate assessment of 516 
background weathering rates. This in turn enables optimal site selection for deployment and 517 
watershed pairing to assess counterfactuals. Second, after deployment, watershed-scale monitoring 518 
is the most direct measurement of carbon removal and storage in the aqueous bicarbonate reservoir, 519 
which can be used for direct estimation of removal rates as well as providing a conservative check 520 
on removal rates determined through in-field soil-based measurements.  521 

However, if multiple projects introduce bicarbonate ions (or alkalinity) to the same waterway in 522 
the same period, fair attribution of carbon removal cannot rely solely on deployed rock amounts 523 
or treated area. This approach overlooks differences in deployment strategies that may impact net 524 
carbon storage capacity and/or losses to outgassing. A more rigorous approach would be to 525 
standardize the use of publicly available reactive transport models—expanded and cross-calibrated 526 
from existing frameworks such as SCEPTER (Kanzaki et al 2022, 2025, 2024), CrunchFlow 527 
(Steefel and Molins 2009), or PFLOTRAN (Mills et al 2007, Hammond et al 2007) amongst others 528 
(Taylor et al 2017)—to allocate watershed-scale CDR based on modeled realized fluxes. Where 529 
additional alkalinity inputs occur (e.g., from wastewater treatment or other engineered CDR 530 
methods), attribution frameworks will also need to adjust EW-derived fluxes accordingly to avoid 531 
overestimation. Watershed level monitoring of EW may require novel governance mechanisms, 532 
beyond the scope of the current VCM, to address these challenges (Woollen and Planavsky 2024). 533 
 534 
Policy can also play a key role in supporting soil-based MRV by enabling widespread sampling 535 
and aggregation of soil data across large areas. Large-scale, publicly maintained datasets—such as 536 
those generated through national soil censuses—could provide critical baselines for site selection, 537 
monitoring, and attribution of climate impacts (Smith et al 2013, USGS 2024, 2023). We stress, 538 
however, that large datasets are not in themselves a panacea because robust and accurate estimation 539 
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at population scales requires representative sampling of individuals (Bradley et al 2021). In 540 
particular, systematic collection of soil pH and related parameters would greatly improve the 541 
accuracy of EW deployment assessments. Beyond public programs, substantial amounts of 542 
valuable soil data already exist within commercial laboratories–Waypoint (US) and the Tentamus 543 
Group (global) each analyze >1.5 million soil samples annually. Policy could unlock this resource 544 
by providing incentives for data sharing, similar to strategies used in medicine, energy, and other 545 
domains for public-private data partnerships (Susha et al 2023). In the US agricultural extension 546 
officers could further amplify these efforts by advising farmers on when and where to sample, 547 
ensuring that monitoring programs capture regional variability while minimizing redundancy. 548 
Together, these measures would lower barriers to building robust, aggregated soil datasets, reduce 549 
uncertainty in CDR estimates, and create shared public goods that benefit both carbon markets and 550 
broader agricultural management. 551 

Aggregated monitoring can, in turn, enable policies that stimulate deployment of EW techniques 552 
across geographies and agricultural contexts by enabling lower cost, large (and possibly 553 
jurisdiction) scale assessment of removal fluxes. Removal fluxes can be reported in national 554 
greenhouse gas inventories towards meeting countries’ Nationally Determined Contributions for 555 
the Paris Agreement. One such policy mechanism, already used across jurisdictions (CRSI 2025) 556 
are subsidies for the application of agricultural lime for soil pH management. Such subsidies, if 557 
adapted for a range of weathering feedstocks, could be structured as pay-for-practice (an area-558 
based payment to farmers for spreading materials that remove carbon via weathering, decoupled 559 
from measurement) or pay-for-results (a base payment for spreading materials and an additional 560 
payment after verification of carbon removal via soil- and/or aqueous-phase measurement at 561 
scale).  562 

It is important to note that the efficacy of policy to optimize soil pH management to bring about 563 
CDR will vary on a regional level and may not align with existing monitoring infrastructure. For 564 
example, there is a mismatch between the US regions (primarily in the Southeast) with highest 565 
weathering potential (Moosdorf et al 2011, Kanzaki et al 2025) and existing USGS sites with a 566 
high amount of baseline data (Figure 1a), indicating that an expansion of the current USGS river 567 
gauging network may be necessary for watershed monitoring. Moreover, use of alternative policy 568 
mechanisms (beyond carbon crediting) would benefit from consistent IPCC guidance on the 569 
accounting of EW practices in national inventories, a process that is currently underway (IPCC 570 
2024). 571 

In summary, there is a synergistic relationship between policy to support aggregated monitoring 572 
(e.g. expanded water quality monitoring infrastructure, public-private data sharing partnerships) 573 
and policy to support deployment of enhanced weathering. Careful consideration of CDR 574 
potential, measurement accuracy, and cost is needed to optimize across this opportunity space.  575 
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5 Conclusion 576 

Enhanced weathering has emerged as a promising strategy for atmospheric carbon dioxide 577 
removal, yet its scalability is constrained by the accuracy, cost, and robustness of MRV. Our 578 
analysis highlights how aggregated monitoring—both through the physical integration of 579 
weathering products in streams and rivers and the statistical aggregation (i.e. averaging) of field-580 
level measurements—can provide a pathway toward credible, lower-cost MRV at scale. By 581 
leveraging existing infrastructure and methodological advances, aggregation addresses some of 582 
the central barriers to EW deployment while aligning with practices already common in soil carbon 583 
and forestry protocols. 584 

At the watershed level, we find no evidence that larger agricultural catchments have a lower utility 585 
of detecting EW signals in stream waters based on equal rock application, dissolution, and 586 
transport rates. In contrast, in some cases signal detection may be favorable in larger catchments 587 
due to lower variability in stream chemistry and lower background weathering fluxes. Because the 588 
fixed cost of installing and operating monitoring infrastructure is independent of catchment size, 589 
per-hectare and per-ton MRV costs are minimized in larger watersheds. This makes watershed 590 
monitoring a particularly appealing approach for large scale—possible jurisdictional—591 
deployment, where results can serve both as direct measurements of CDR and as “top-down” 592 
validation of field-based approaches. At the field scale, soil sampling and mass-balance analysis 593 
remain among the most widely practiced MRV approaches (Clarkson et al 2024) in current EW 594 
projects, but our results show that accuracy is strongly constrained by spatial heterogeneity. 595 
Aggregation across multiple fields substantially increases the robustness and accuracy of soil-596 
based CDR, reducing both the average error and the risk of over-crediting, particularly when 597 
combined with adequate in-field sampling densities. While direct soil CO₂ flux measurements 598 
using in-situ sensors are currently limited by cost and variability, the same statistical principle 599 
applies. Aggregation across larger numbers of fields or regions can transform noisy local 600 
measurements into reliable population-level estimates; though the required number of gas sensor 601 
pairs (i.e., 10k fields) may remain prohibitive of low-density gas sensor MRV approaches at 602 
acceptable accuracy. Continued innovation in low-cost sensor technology, coupled with 603 
appropriate sampling design and statistical modeling, has the potential to reduce MRV costs while 604 
improving accuracy through enabling higher density sensor networks. 605 

Together, these findings suggest that aggregation is not simply a technical workaround but a 606 
fundamental principle for robust EW monitoring. Whether through hydrological integration at the 607 
catchment scale or statistical integration across sets of fields, aggregation lowers variance, reduces 608 
the risk of systematic bias, and enables credible estimates of CDR. Equally important, aggregation 609 
sets must be defined a priori and all predesignated plots—controls and treatments—must be 610 
included in analysis and crediting. Otherwise, biased selection (e.g., omitting low values or 611 
detected emissions) can manufacture apparent signals out of statistical noise and systematically 612 
overstate removals. Finally, for some MRV approaches, aggregation also shifts the cost structure 613 
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of MRV: rather than scaling linearly with the number of participating fields, costs can be amortized 614 
across larger areas and multiple stakeholders, making EW more feasible for inclusion in both 615 
VCMs and national greenhouse gas inventories. 616 

Looking forward, further work is needed to refine the economic and policy frameworks that could 617 
support aggregated monitoring. Quantitative comparisons of MRV costs across monitoring 618 
approaches—soil, aqueous, and gas flux—will help identify optimal deployment strategies under 619 
different agronomic and hydrological contexts. At the policy level, expansion of public water and 620 
soil monitoring infrastructure, combined with protocols that mandate inclusion of all fields within 621 
predefined aggregation sets, can provide the transparency and rigor necessary for credit issuance 622 
at scale while also providing societal co-benefits. Integration with existing agricultural support 623 
mechanisms, such as liming subsidies or soil census programs, offers a ready avenue for 624 
embedding EW within established governance structures. 625 

In sum, while uncertainty remains regarding the absolute rates of CDR achievable through EW, 626 
our results demonstrate that aggregated monitoring provides a viable path toward accurate, 627 
scalable, and cost-effective MRV. By combining physical integration in watersheds with statistical 628 
integration across landscapes, this approach can underpin the credibility of EW as a climate 629 
solution that brings real benefits to farmers, while simultaneously lowering costs and facilitating 630 
policy uptake. As deployment scales up, aggregation may prove to be the key enabling principle 631 
that bridges the gap between scientific rigor, economic feasibility, and climate impact.  632 
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10 Figures 662 

 663 

 664 

Figure 1: Map of the selected USGS sites for the watershed analysis (a; some watersheds smaller than 665 
marker size). Watersheds are color coded by the fraction of land that is classified as cultivated vegetation 666 
(Tuanmu and Jetz 2014). Panel (b) shows soil samples used to model aggregated monitoring of soil-based 667 
quantification approaches. 668 
a (USGS 2016) b (Tuanmu and Jetz 2014) c (Smith et al 2013) d (Potapov et al 2022) 669 

 670 

 671 

Figure 2: Required agricultural area-normalized basalt dissolution and transport rates to cause a 2σ increase 672 
in river alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state. A version of this Figure but 673 
normalized to total catchment area can be found in the supplement (Figure S1) 674 
a (USGS 2024) 675 
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 676 

Figure 3: Panel a) shows the error on detected mass transfer coefficients τj one would get on average if one 677 
applied a soil mass balance approach to quantify rock powder dissolution once for individual as well as sets 678 
of fields. The frequency of overestimating τj by at least 20% as a function of sampling density and number 679 
of aggregated fields is shown in panel b). The plots for the remaining combinations of application amounts 680 
and dissolution fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired 681 
sampling (see supplement S2.3 for paired sampling). 682 

 683 
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 684 

Figure 4: Modeled average error on detected CDR rates using a single pair of control and treatment in-soil 685 
CO2 sensors per deployment as a function of the number of fields being aggregated over as well as 686 
nominal CDR rates (a). Panel (b) shows the frequency of overestimating CDR by at least 20% for the 687 
same model runs. Panels (c) and (d) simulate the same processes but based on a sensor density of 1 sensor 688 
pair per 10 ha. 689 
 690 
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 691 

Figure 5: The top row shows agricultural area normalized alkalinity fluxes (a), average annual alkalinity 692 
concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have sufficient 693 
alkalinity baseline data (n=89). These trends are generally similar for Ca and Mg (Figure S3). The bottom 694 
row shows area normalized runoff (calculated from discharge and catchment area) (d), average distance to 695 
the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for alkalinity, Ca, 696 
or Mg as well as a non-zero proportion of agricultural land (n=56). A version of this figure based on total 697 
catchment area, not catchment agricultural area, is included in the supplement (Figure S5). 698 
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 699 

Figure 6: Average error on detected mass transfer coefficients (i.e., dissolution fractions; a and c) as well 700 
as the frequency of overestimating mass transfer coefficients by more than 20% (b and d) for constant τj 701 
but variable application amounts (a and b) as well as at constant application amount but carriable τj (c and 702 
d). These simulations are based on un-paired sampling (see supplement S2.3 for paired sampling). 703 

 704 
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 705 

Figure 7: Panel a) shows hypothetical EW deployments where no CDR has occurred. Fields of different 706 
heterogeneities (or possibly temporal variability in case of water-based approaches) have varying spread 707 
around the mean when samples are used to constrain CDR. If only positive realizations of these random 708 
distributions are considered, CDR rates are generated from noise (b). This effect increases the more noise 709 
is in the system. Collectively, this demonstrates the necessity to include all fields included in a set when 710 
issuing credits as well as that field sets may not be defined based on apparent signal emergence (or exclusion 711 
from lack thereof). This effect is not only relevant for no-CDR cases but as long as “negative CDR”, i.e., 712 
CO2 emissions, is within uncertainty of detected CDR rates. 713 

  714 
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S1 Supplementary Figures 1019 

 1020 
Figure S1: Required total catchment area normalized basalt dissolution and transport rates to cause a 2σ 1021 
increase in river alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state. 1022 

 1023 

 1024 

Figure S2: Equivalent to Figure 3 but for τj = 0.25 and a = 50 t ha-1. Panel a) shows the error on detected 1025 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 1026 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 1027 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 1028 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 1029 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 1030 
supplement S2.3 for paired sampling). 1031 

 1032 
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 1033 

Figure S3: Equivalent to Figure 3 but for τj = 0.5 and a = 50 t ha-1. Panel a) shows the error on detected 1034 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 1035 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 1036 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 1037 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 1038 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 1039 
supplement S2.3 for paired sampling). 1040 

 1041 

 1042 

Figure S4: Equivalent to Figure 3 but for τj = 0.25 and a = 50 t ha-1. Panel a) shows the error on detected 1043 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 1044 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 1045 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 1046 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 1047 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 1048 
supplement S2.3 for paired sampling).  1049 
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 1050 

Figure S5: The top row shows total catchment area normalized alkalinity fluxes (a), average annual 1051 
alkalinity concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have 1052 
sufficient alkalinity baseline data (n=89). The bottom row shows area normalized runoff (d), average 1053 
distance to the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for 1054 
alkalinity, Ca, or Mg as well as a non-zero proportion of agricultural land (n=118). The equivalent 1055 
information of panels a, d, and e for Ca and Mg can be found in Figure S6. 1056 
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 1057 
Figure S6: The top row shows agricultural area normalized Ca fluxes (a), average annual Ca concentration 1058 
(b), and the variability of baseline Ca data (c). The bottom row shows the same type of data but for Mg (d-1059 
f).  1060 

 1061 

 1062 

Figure S7: Required basalt application rates to cause a 2σ increase in river alkalinity (a), Ca (b) and Mg (c) 1063 
concentrations in catchments where more than 50% of the area is classified as crop or hay/pasture land. 1064 
a(USGS, 2024) 1065 

  1066 
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S2 Soil signal-to-noise Monte Carlo simulations 1067 

S2.1 Method details 1068 

To complement the simplified description of our soil analysis framework presented in the main text, we 1069 
provide here a more detailed account of the data sources, assumptions, and modeling steps underlying the 1070 
Monte Carlo simulations. This expanded description also outlines how baseline and post-weathering sample 1071 
compositions are generated, how heterogeneity is parameterized, and how error metrics are derived for both 1072 
single-field and aggregated-field applications. 1073 

The analysis uses multiple data sources to constrain the elemental composition of agricultural fields, rock 1074 
powder, and expected in-field heterogeneity. To ground this analysis in realistic data of soil composition, 1075 
we use US soil data classified as “Row Crops” and “Small Grains” (LandCover2) within the “Geochemical 1076 
and mineralogical data for soils of the conterminous United States” database (Smith et al 2013). These 1077 
samples are treated as the “true” baseline composition of fields, each datapoint in the database being used 1078 
as one representative field composition. The composition for rock powder is based on the average 1079 
composition of all samples contained in the GEOROC database that are classified as basalt and contained 1080 
within the conterminous US (Lehnert et al 2000). Because the framework only works for feedstock-soil 1081 
combinations whose composition is sufficiently different (Suhrhoff et al 2024), we only consider soil 1082 
compositions where both base cation (here Ca2+ and Mg2+) as well as immobile element (Ti) concentrations 1083 
are at least 4 times lower than for basalt (n=302; see Figure 1b). 1084 

For each field, we calculate a “true” post-weathering soil-feedstock mix composition based on assumed 1085 
application amounts (a= 50 and 100 t ha-1) and dissolution fractions (τj = 0.25 and 0.5) (Suhrhoff et al 2025). 1086 
Note that application amount corresponds to the total cumulative amount deployed. Many EW studies apply 1087 
40 t ha-1 yr-1 such that even the highest rate modeled here may be realistic after multiple years of 1088 
deployments (Beerling et al 2020, 2025). Furthermore, for each field a size between 10 and 100 ha is 1089 
randomly generated (uniform distributions), which is a compromise between skewed US farm size 1090 
distributions with most farm land being in farms larger than 2,000 ha but most farms being smaller than 72 1091 
ha (USDA 2022, 2024).  1092 

To constrain variance on field-level sample compositions resulting from spatial heterogeneity, we use a 1093 
new dataset based on high-density spatial sampling (Suhrhoff et al 2025; cf. S2.2 below). This dataset of 1094 
soil heterogeneity is based on new ICP-MS soil composition measurements (residual phase after 1095 
exchangeable cations were leached with 1M ammonium acetate) from 5 field sites in the US with spatial 1096 
sampling frequencies ranging from 0.6 – 19.8 samples ha-1 (7.1 – 39.6 pooled sub samples ha-1). We fit log-1097 
normal distributions to field data (using the Python scipy.stats module), and use fitted shape parameters 1098 
representing the standard deviations (σ) of the underlying normal distribution to model in-field variance–1099 
see section S2.2 for more detail on log-normal fits to field data. The shape parameters corresponding to 1100 
field data are shown in Figure S9 and Figure S10, and uniform distributions between the range of observed 1101 
shape parameters is used to generate synthetic σ values for Monte Carlo simulations of baseline soils where 1102 
the resulting distributions are scaled such that the mean of the log normal distribution is equivalent to the 1103 
field mean (see supplement S2.2). For feedstocks, heterogeneity is introduced by generating shape 1104 
parameters of 5–10% (uniform distribution, i.e. σ values of 0.05 to 0.1 for generated log normal 1105 
distributions).  1106 
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 1107 

Figure S8: Flow chart of the Monte Carlo simulation algorithm used for the main analysis. This approach 1108 
assumes non-paired sampling 1109 

We use these data to generate a simple statistical model based on nested Monte Carlo simulations (see 1110 
Figure S8) to assess expected errors on calculated dissolution fractions. The simulated in-field 1111 
heterogeneity is used to generate baseline and post-weathering soil sample compositions for a range of 1112 
sampling frequencies. To reflect increasing thoroughness of the sampling approach, as soil sampling 1113 
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frequency increases from 1 to 20 samples ha-1 we also increase the number of total samples that the 1114 
composition of the feedstock endmember is calculated from (from 1 to 20 samples). Next, the average 1115 
composition of the realized samples is used to calculate the corresponding dissolution fraction. This is 1116 
compared to the assumed, true value. This is done for each field 100 times, and we 1) calculate the average 1117 
error over all fields for each sampling frequency as a realistic error estimate given US soil composition and 1118 
realistic spatial heterogeneity, and 2) based on first averaging the calculated dissolution fraction based on 1119 
realized sample composition over multiple fields (10, 25, and 50, done 100 fields based on random pulls 1120 
from the 302 fields; 100 times) before computing the average error on the dissolution fraction (see Figure 1121 
S8 for details). These reflect the error that one would get if applying such soil-based mass balance 1122 
framework as the basis to quantifying CDR on average if applying it once either to an individual field or 1123 
an aggregated set of fields at the same time. We use these error rates to assess the frequency with which 1124 
rock powder dissolution is overestimated by 20% or more.  1125 

While the dissolution fraction is only a proxy for CDR, this approach can be translated to CDR as well 1126 
using generated field sizes, application amounts, dissolution fractions, and assumed loss fractions, but we 1127 
focus here on the dissolution fraction (or mass transfer coefficient) as it is the primary measured quantity. 1128 
Note that by independently generating baseline and post-weathering samples, we model a non-paired 1129 
sampling approach reflecting the worst case scenario where paired sampling is either not attempted or 1130 
prevented due to bad GPS accuracy (typical GPS accuracy of 5 m). We also include additional analysis of 1131 
paired sampling (cf. S2.3; Figure S11 and Figure S12). 1132 

S2.2 Implementation of soil heterogeneity in Monte Carlo simulations 1133 
We use soil composition data from five novel field sites sampled at high spatial densities to constrain in-1134 
field heterogeneity for the Monte Carlo signal-to-noise analysis. The data are normalized by the field mean 1135 
concentration (Figure S9) before we fit log-normal distributions to make sure the population means are 1. 1136 
The use of log-normal (rather than normal) distributions is intentional because samples generated from log-1137 
normal distributions always have positive values, preventing the occurrence of non-physical negative soil 1138 
concentrations in the signal-to-noise analysis without having to filter some data. For normal distributions, 1139 
this could be achieved by simply filtering out negative model occurrences, but this would change the mean 1140 
of generated sample distributions and cause a systematic error in calculated dissolution fractions. In 1141 
addition, using log-normal compared to normal fits also represents a conservative choice for the signal-to-1142 
noise analysis due to the generally higher variance, as well has overall better fits compared to normal 1143 
distributions (R2 better for 11 out of 20 elemental field distributions).  1144 
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 1145 
Figure S9: Distributions of baseline data for the 5 field sites (see Table S1 and Suhrhoff et al (2025) for 1146 
more details) including log-normal fits to the data. The shape parameters, corresponding to the standard 1147 
deviation of the normal distribution of the logarithm of the data, are plotted in Figure S10.  1148 
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Table S1: Information on the field sites used to constrain spatial heterogeneity in the signal-to-noise 1149 
analysis. The number of pooled cores corresponds to the number of-sub sample cores that were combined 1150 
for each measured sample. Soil heterogeneity refers to the σ of log-normal fits to soil concentration 1151 
distributions normalized to the field mean such that the resulting distribution has a mean of 1 (Figure S9). 1152 
Site names are anonymized and location data are rounded to one decimal degree to protect farmer privacy. 1153 

        
soil heterogeneity (σ; log-

normal) 
Site 
name 

Lat Lon size 
# 
samples 

# pooled 
cores 

sample 
density 

core 
density  

Ca  Mg Na Ti 

  [°] [°] [ha]   [ha-1] [ha-1] [] [] [] [] 

Site 1 
45.
3 

-
87.6 

6.42 40 2 6.23 12.46 0.493 0.278 0.072 0.120 

Site 2 
42.
3 

-
73.6 

5.08 41 2 8.07 16.14 0.395 0.309 0.250 0.288 

Site 3 
31.
3 

-
84.4 

2.02 40 2 19.80 39.60 0.582 0.218 0.630 0.264 

Site 4 
35.
8 

-
78.2 

42.4
4 

25 12 0.59 7.07 0.519 0.523 0.510 0.154 

Site 5 
35.
8 

-
78.2 

26.8
5 

38 12 1.42 16.98 0.355 0.687 0.391 0.177 

 1154 

 1155 

Generally, a random variable is log-normally distributed if: 1156 

 1157 

𝑋	~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)          1 1158 

 1159 

Which means that: 1160 

 1161 

𝑙𝑛(𝑋)	~𝑁(𝜇, 𝜎!)          2 1162 

 1163 

where μ is the mean, σ the standard deviation, and σ2 the variance of the respective distributions, with log-1164 

normal distributions conventionally defined via the standard deviation of the underlaying normal 1165 

distribution. The expected value (mean) of a log-normal variable X can be calculated as: 1166 

 1167 

E[X] = e"#$
!"

" %           3 1168 

 1169 

Hence, when using the parameters of log-normal fits to populations with a given mean (Figure S9) to 1170 

generate synthetic data for the Monte Carlo simulations, if generating μ and σ independently, the mean of 1171 

the resulting populations will not be the same as of the initial distribution (i.e., 1). Or said differently, if we 1172 

want the mean of a synthetic distribution to be a specific value, μ and σ are not independent—only one can 1173 
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be randomly generated. We implement this into the Monte Carlo simulation by randomly generating shape 1174 

parameters (σsyn) and then calculating μsyn such that E(X) = 1:   1175 

 1176 

E[X] = e
&##$%$

!#$%"

" '
= 1         4 1177 

 1178 

Now, taking the natural logarithm: 1179 

 1180 

ln ;e
&##$%$

!#$%"

" '
< = ln(1)⇒ 	 𝜇()* +

+#$%"

!
= 0	⇒	𝜇()* =	−

+#$%"

!
	    5 1181 

 1182 

The empirically constrained simulated μsyn and σsyn describe log-normal distributions with a mean of 1 and 1183 

σ (shape) parameters constrained from field data (with a mean of 1), and are used to randomly generate sets 1184 

of samples by multiplying these in-field variance factors with true “true” sample compositions. 1185 

 1186 

Because the σ values from the fit to field data (Figure S9) are neither normally nor log-normally distributed 1187 

(negative R2; Figure S10), in the Monte Carlo simulations we generate synthetic σsyn values by randomly 1188 

pulling from uniform distributions set out by the minimum and maximum observed σ values observed in 1189 

field data (for Ca, Mg, and Na the used values are 0.072402 and 0.687422, and for Ti 0.119775 and 1190 

0.288003). 1191 

 1192 

 1193 
Figure S10: Histograms as well as normal and log-normal fits to the shape parameters from log-normal fits 1194 
to soil data. The signal-to-noise analysis and related Monte Carlo simulations use uniform distribution set 1195 
out by the minimum and maximum Ca, Mg, and Na shape values (b) as well as Ti shape values (c) due to 1196 
low fit of both normal and log-normal distributions. 1197 
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S2.3 Implementation of paired sampling in Monte Carlo simulations 1198 
In addition to the Monte Carlo signal-to-noise analyses that assume un-paired sampling (i.e., independently 1199 
generate log-normal distributions for baseline and post–weathering soil compositions), we also simulate 1200 
expected errors of the soil MRV approach when using paired samples. 1201 

Here, the work flow is adjusted for the generation of post-weathering samples (Fig S10, flowchart). As 1202 
before, field data is used to generate synthetic log-normal distribution parameters for baseline samples (see 1203 
methods and S2). However, for paired sampling, for each individual synthetic baseline sample the “true” 1204 
post weathering composition based on the simulated feedstock application amount and dissolution fraction 1205 
is calculated first. Next, we generate variance around “true” post-weathering compositions of baseline 1206 
samples by generating a multiplier for each sample based on the generated log-normal shape parameter for 1207 
this simulation, scaled such that the mean of the generated factors is 1 (eq. S51 (update from above)). 1208 
Compared to the shape parameters used to simulate the baseline samples, the value of the shape parameter 1209 
is reduced by 50% reflecting the efficacy of a paired sampling approach to reduce sampling variance. While 1210 
arbitrary, this can be tested for any real deployment. 1211 

As expected, the paired sampling approach drastically reduces expected errors (Fig S11). While for 1212 
individual fields, paired sampling is necessary to yield adequate errors, for aggregated monitoring lower 1213 
errors are possible even when using a non-paired approach. Hence, the analysis suggests that paired 1214 
sampling may not be necessary when using an aggregated monitoring approach. 1215 
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 1216 

Figure S11: Flow chart for the Monte Carlo type signal-to-noise analysis using a paired sampling approach 1217 
where post-weathering samples are taken at the same sites as baseline samples. 1218 



Suhrhoff et al. – Aggregated monitoring of EW on agricultural lands (SI) – V1 (September 21) 

 1219 

Figure S12: Comparison of selected signal-to-noise simulations between simulated to paired sampling (top 1220 
row) and non-paired sampling (bottom row). Panels a and c show average error on detected mass transfer 1221 
coefficients (i.e., dissolution fraction), b and d the frequency of overestimating mass transfer coefficients 1222 
by more than 20% for constant τj but variable application amounts (a and b) as well as at constant application 1223 
amount but carriable τj (c and d).  1224 


