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Abstract: Terrestrial enhanced weathering (EW) on agricultural land is a promising carbon 16 
dioxide removal (CDR) pathway with high potential to scale. Enhanced weathering also has the 17 
potential to provide significant agronomic co-benefits to farmers and producers. Today, most EW 18 
field trials are funded through the voluntary carbon market (VCM) with the purpose of generating 19 
carbon removal credits for corporate sustainability goals. As a result, monitoring, reporting, and 20 
verification (MRV) frameworks for EW are designed for attribution of tons of removal via 21 
weathering to individual fields. Here, we describe approaches for aggregation of weathering 22 
indicators across multiple fields using aqueous and solid phase measurements. First, we 23 
demonstrate that larger agricultural catchments are at least as suitable as smaller ones for detecting 24 
weathering signals in river chemistry, and in some cases may even offer advantages due to lower 25 
variability and background weathering fluxes. Second, we assess quantification uncertainty from 26 
in-field solid phase soil measurements at increasing scales and show that errors in CDR 27 
quantification can be reduced by aggregating signals over many fields. Critically, we also highlight 28 
that aggregation sets must be defined in advance and all plots included, as biased selection of fields 29 
can generate apparent removal signals out of statistical noise. Taken together, we find that 30 
aggregated monitoring of EW—quantifying CDR over multiple fields at once—can both improve 31 
existing MRV frameworks and support integration of EW practices with a broader array of 32 
government policies, unlocking funding and public support to achieve climate-relevant scale.   33 
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1 Introduction 34 

Deep and immediate emissions reductions are needed to prevent the worst harms of climate change 35 
(UNEP 2024, IPCC 2018). In addition to mitigation, there is growing consensus that atmospheric 36 
carbon dioxide removal (CDR) will be necessary to stay within Paris Agreement temperature 37 
targets (Luderer et al 2018, Rogelj et al 2018, IPCC 2022). Multiple CDR approaches will be 38 
required to achieve the gigaton-scale drawdown proposed in net-zero and net-negative climate 39 
scenarios (IPCC 2022, Geden et al 2024, Lamb et al 2024), depending on local energy, land, 40 
infrastructure, and mineral resources.  41 

One promising CDR approach is terrestrial enhanced weathering (EW) on agricultural land. 42 
Crushed cation-rich rocks applied to fields react with dissolved atmospheric carbon in water, 43 
forming aqueous bicarbonate ions. Carbon is durably stored for 1,000s of years (Renforth and 44 
Henderson 2017) in oceans as bicarbonate or in soils and sediments as solid carbonates. Global 45 
EW removal potential is estimated at 0.5–2 Gt CO₂ yr⁻¹ (Beerling et al 2020), or 64–217 Gt 46 
cumulatively by 2080 (Baek et al 2023), meeting up to ~20% of expected CDR needs. EW can 47 
also deliver agronomic benefits, including soil pH management and improved yields (Levy et al 48 
2024), increasing the likelihood of adoption in alignment with climate goals. 49 

Growing demand for CDR, especially from voluntary carbon market (VCM) buyers, has rapidly 50 
increased investment in EW. Over 25 companies now operate globally, with ~600,000 t CO₂ 51 
credits sold, though <2% are delivered (CDR.fyi 2025). This expansion raises critical questions 52 
about the ability to accurately estimate CDR via EW. Experience shows that VCM incentives can 53 
favor low-cost, inflated claims, leading to systematic quantification failures (Gill-Wiehl et al 2023, 54 
Badgley et al 2022, Sanders-DeMott et al 2025). Achieving large-scale, verifiable CDR via EW 55 
will require balancing accuracy and cost, using a mix of methods (e.g., solid, and liquid phase 56 
measurements, as well as models) with context-appropriate study design, across spatial and 57 
temporal scales (Clarkson et al 2024, Almaraz et al 2022). Here, we examine the benefits of 58 
monitoring EW across multiple fields or regions—through physical aggregation of weathering 59 
products in streams and statistical aggregation of field data—to reduce uncertainty in carbon 60 
quantification, and discuss cost and scalability implications from market and policy perspectives.  61 
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2 Methods 62 

This study evaluates the potential of aggregated monitoring—quantifying carbon removal by 63 
jointly monitoring multiple field sites—of EW on croplands. We focus on silicate rock applications 64 
and consider both in-field and downstream signals of weathering products, including cations and 65 
carbon species. To illustrate the utility of aggregation, we analyze monitoring approaches in 66 
streams and soils using simple models that capture first-order system behavior. These models are 67 
not meant to yield precise forecasts but to demonstrate how aggregation can improve detectability 68 
and reduce uncertainty in EW monitoring. 69 

Two distinct challenges frame this analysis: (i) reducing statistical noise from spatial 70 
heterogeneity, where aggregation across multiple fields or watersheds provides a tractable 71 
solution, and (ii) addressing system-level processes that affect permanence and transport of 72 
weathering products, which require moving beyond near-field soil measurements to downstream 73 
integration in rivers or groundwater. Recent work shows that solute export reflects not only soil-74 
scale weathering but also subsurface redox structure, mineral buffering, and hydrological residence 75 
times (Shaughnessy and Brantley 2023, Shaughnessy et al 2023), underscoring the need to capture 76 
processes integrating across critical zone compartments. We attempt to address (i) through 77 
analyses and simulations of water and soil datasets, while (ii) is inherently only represented in the 78 
stream-water approach, which integrates across subsurface transport, buffering, and residence 79 
times. 80 

2.1 Watershed analysis 81 

Enhanced weathering can be quantified by tracking weathering products such as cations or 82 
alkalinity in the aqueous phase (Clarkson et al 2024, Almaraz et al 2022, Sutherland et al 2024). 83 
Monitoring bicarbonate alkalinity in effluent water captures CDR after losses to secondary phase 84 
formation and other soil or upstream processes, while cation fluxes can serve as alkalinity proxies 85 
(Bijma et al 2025). Detecting such riverine changes against baseline conditions is challenging, yet 86 
multiple studies document measurable shifts in river chemistry from agricultural liming (Hamilton 87 
et al 2007, Oh and Raymond 2006, Barnes and Raymond 2009, Duan et al 2025), demonstrating 88 
the feasibility of this approach. 89 

Here, we assess the potential of downstream water monitoring to estimate CDR from large-scale 90 
silicate application. Using a continental US river database (USGS 2016), we establish baseline 91 
fluxes from stations with ≥10 years of data since 1990 and ≥10 measurements per year across all 92 
seasons (n = 95 for alkalinity, 81 for Ca, 80 for Mg; 120 stations total). After excluding catchments 93 
with <10% agricultural land (cropland and pasture; USGS 2024), 51 sites remained (50 for 94 
alkalinity, 26 for Ca, 26 for Mg; Figure 1a). We then calculate the concentration increase in 95 
alkalinity, Ca, and Mg required for a detectable 2σ deviation from baseline, and translate the 96 
resulting fluxes into agricultural-area-normalized basalt application rates using average US basalt 97 
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composition (Lehnert et al 2000), watershed area (USGS 2016), and cropland or pasture extent 98 
(USGS 2024). For alkalinity, this is calculated based on charge balance from basalt base cation 99 
content. Some watersheds are nested; not all datapoints are independent. 100 

Our goal is not to define exact detectable application rates but to evaluate how the utility of stream-101 
based MRV scales with catchment size. The analysis assumes steady-state conditions—rapid 102 
dissolution, transport, and downstream detection of weathering products. While these assumptions 103 
underestimate required absolute application rates (Kanzaki et al 2025, Kirchner and Neal 2013, 104 
Godsey and Kirchner 2014, Calabrese et al 2022, Power et al 2025), they should not vary 105 
systematically with catchment size. Hence, the trends derived here remain informative for 106 
assessing the feasibility of river-based MRV as a function of scale (see Section 4.1). 107 

2.2 Soil analysis 108 

An alternative approach to quantify CDR via EW is using soil mass balance approaches (Kantola 109 
et al 2023, Reershemius and Suhrhoff 2023, Reershemius et al 2023, Clarkson et al 2024, Suhrhoff 110 
et al 2024, 2025), which assess differences in feedstock concentration before and after weathering 111 
by comparing mobile cations (e.g., Ca²⁺, Mg²⁺) to an immobile tracer (e.g., Ti). Combined with 112 
supporting measurements and assumptions (Campbell et al 2023, Reershemius et al 2023, 113 
Clarkson et al 2024, Suhrhoff et al 2024, 2025), the resulting dissolution fraction serves as a proxy 114 
for CDR. We demonstrate that aggregating results across multiple fields substantially improves 115 
the accuracy of soil-based quantification of rock powder dissolution, consistent with findings from 116 
soil organic carbon studies (Potash et al 2025, Bradford et al 2023). This analysis tests the ability 117 
of monitoring approaches to overcome high within- and among-field variability in cation 118 
concentrations. 119 

We use elemental composition data from agricultural soils (Smith et al 2013) and basalt rock 120 
powder (Lehnert et al 2000), supplemented by new data on in-field compositional variance from 121 
five densely sampled sites (Suhrhoff et al 2025; see supplement S2). Using these datasets, we 122 
perform Monte Carlo simulations to estimate average error in detected dissolution fractions under 123 
varying conditions: rock powder applications of 50 and 100 t ha⁻¹, dissolution fractions of 0.25 124 
and 0.5, and sampling frequencies from 1–20 samples ha⁻¹. For each simulation, we compare 125 
calculated dissolution fractions to known inputs to quantify (1) mean absolute error for single-field 126 
MRV and (2) accuracy after averaging across 10, 50, or 100 fields. Simulations were repeated 100 127 
times to derive average errors and the frequency of >20% overestimation. The model assumes non-128 
paired sampling (baseline and post-weathering samples at random locations) but includes a paired-129 
sampling comparison. Detailed workflow and assumptions are provided in Supplement S2 (see 130 
Figure S8). 131 
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3 Results 132 

Our analysis indicates that basalt addition is more detectable (i.e., requires lower application rates) 133 
in watersheds with larger total agricultural area (Figure 2). Required basalt application rate to cause 134 
a 2σ increase compared to baseline river concentrations forms a significant trend for alkalinity (p 135 
< 0.001) though at low R2 (0.25). There is no significant trend with catchment size for Ca and Mg. 136 
Excluding loss and lag effects from slow weathering or solute retention, the average basalt 137 
dissolution and transport rates (t ha⁻¹ yr⁻¹) for watersheds with >1 km² of agricultural area and 138 
>20% agricultural land cover (USGS 2024) are 0.63 ± 0.68 (1σ) for alkalinity (n = 45), 0.97 ± 0.87 139 
(1σ) for Ca (n = 23), and 0.53 ± 0.31 (1σ) for Mg (n = 23). 140 

Aggregating soil mass balance results across multiple fields substantially increases the robustness 141 
of CDR estimates from EW. Robustness is measured as (i) the average absolute error between 142 
simulated and calculated dissolution fractions (τⱼ) and (ii) the frequency of overestimating 143 
dissolution by >20% (Figure 3). Both metrics improve markedly with aggregation: at a sampling 144 
density of 10 samples ha⁻¹ (100 t ha⁻¹ application, τⱼ = 0.25), average error declines from >20% for 145 
single fields to <10% (10 fields) and ≈5% (100 fields). Over-crediting frequency collapses from 146 
>20% for individual fields to near zero when data from ≥50 fields are aggregated.  147 
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4 Discussion 148 

4.1 Watershed  149 

Our analysis indicates that within the existing set of USGS stream gage stations, detectable EW 150 
signals are impacted by catchment agricultural area (Figure 2) or catchment size (Figure S1) to 151 
some extent. For alkalinity, we find a statistically significant but relatively weak relationship 152 
between required basalt application rates and total agricultural area (p < 0.001, R² = 0.25; Figure 153 
2), indicating that less basalt may be required in larger watersheds for viable stream-water MRV. 154 
No significant trends are observed for Ca or Mg, suggesting that signal detectability is shaped by 155 
a combination of factors. 156 

One likely contributor to the alkalinity trend is that weathering rates (area-normalized alkalinity 157 
fluxes) tend to be lower in large agricultural watersheds (p < 0.05, R² = 0.09; Figure 4a), potentially 158 
reflecting lower runoff with increasing catchment area (p < 0.001, R² = 0.35; Figure 4b). Runoff 159 
is a well-established control on weathering rates (White and Blum 1995, Gaillardet et al 1999, 160 
Gislason et al 2009, Hartmann 2009, West 2012). By contrast, we find no significant relationship 161 
with erosion rates (R² = 0.03, p = 0.19; Figure 4c). Another factor that may help explain lower 162 
required basalt application in larger agricultural catchments could be that variability in stream 163 
chemistry appears to decline with catchment size, as indicated by decreasing relative standard 164 
deviation in annual baseline data (p < 0.001, R² = 0.21; Figure 4d). 165 

Taken together, these results suggest that larger agricultural watersheds are at least as suitable—166 
and often more advantageous—than smaller ones for aggregated monitoring of EW. When new 167 
monitoring stations are located directly within agricultural catchments, watersheds of varying sizes 168 
may be similarly suited for signal detection (see Figure S7 for stations with >50 % agricultural 169 
land). Although this conclusion is limited to the specific set of USGS stations analyzed, it 170 
highlights that large catchments can be promising candidates for stream-based MRV. The added 171 
advantage is that the same infrastructure can monitor broader agricultural areas, lowering MRV 172 
costs per ton (see Section 4.4) and making large catchments particularly attractive for deployment. 173 

We use this signal-to-noise analysis to explore how area-normalized basalt application rates relate 174 
to catchment size and to compare the relative utility of different watershed contexts. We do not 175 
aim to provide definitive estimates of the absolute application rates required for signal detection. 176 
The analysis assumes steady-state conditions: basalt dissolves rapidly, and dissolution products 177 
are transported to streams where they influence river chemistry. We did not model loss processes 178 
such as secondary phase formation, cation exchange, biomass uptake, or strong-acid weathering 179 
(Clarkson et al 2024), nor lag times between weathering and solute export due to interactions with 180 
exchangeable acidity (Kanzaki et al 2025). Consequently, the absolute rates reported here 181 
underestimate true requirements, but we argue the trends remain informative for assessing the 182 
utility of river-based MRV as a function of scale. The results presented here suggest it is going to 183 
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be as feasible to accurately detect the same area-normalized application rates in catchments with 184 
large areas (and proportions) of agricultural land.   185 

This conclusion is based on the two assumptions that neither loss processes nor lag times co-vary 186 
with catchment size. Relating to the first, in reality, larger watersheds may experience some 187 
transport limitations where solute export is constrained by longer hydrological residence times or 188 
subsurface saturation, leading to higher retention of weathering products in soils, groundwater, or 189 
riparian zones and thus a dampened downstream signal. This possibility may be reflected in 190 
slightly higher baseline concentrations in some larger catchments (p < 0.05, R² = 0.11; Figure 4e), 191 
potentially suggesting slower solute turnover. Such scale-dependent effects are not captured by 192 
our steady-state framework. Consistent with the second assumption, data in Figure 4f show that 193 
watersheds with greater agricultural area do not have longer average distances to the nearest river, 194 
supporting the assumption that the primary transport-limiting step—cation movement through 195 
topsoils and from topsoils to rivers (Kanzaki et al 2025)—should not increase with catchment size.  196 

The impact of these two assumptions—and the challenges they represent—can furthermore be 197 
mitigated through deployment choices. Experimental studies (generally <6 months) have shown 198 
that cation storage in secondary phases can alter effluent water composition (Renforth et al 2015, 199 
Pogge von Strandmann et al 2022, Iff et al 2024, te Pas et al 2025, Vienne et al 2025), while 200 
models indicate that interactions with soil exchangeable cation pools can extend lag times beyond 201 
30 years in high-CEC regions such as the U.S. Corn Belt (Kanzaki et al 2025). Because this process 202 
is largely governed by soil cation exchange capacity (CEC) and base saturation, lag times are 203 
expected to be shorter in the tropical soils of the southeastern U.S. (Kanzaki et al 2025). Similarly, 204 
precipitation of secondary carbonates is promoted by high pH and carbonate content, more 205 
common in western soils (Smith et al 2013, Wieczorek 2019), suggesting lower losses in the east. 206 
Catchments with low CEC, high base saturation, high infiltration, and short residence times are 207 
therefore most suitable for minimizing lag and losses. In practice, watersheds favorable for EW 208 
from a geochemical perspective are also those best suited for detecting downstream weathering 209 
signals, emphasizing the potential to optimize monitoring efficacy through informed site selection. 210 

In summary, we find no evidence that larger watersheds are less effective than smaller ones for 211 
stream-based MRV at equal application rates. In many cases, they appear more suitable, offering 212 
the additional benefit of broader spatial coverage and lower per-ton monitoring costs. Provided 213 
EW signals can be reliably detected in streams—as supported by previous studies (Hamilton et al 214 
2007, Oh and Raymond 2006, Barnes and Raymond 2009, Duan et al 2025, Shao et al 2016, Taylor 215 
et al 2021)—this approach shows strong potential for large-scale monitoring of EW. 216 

4.2 Soil  217 

In statistics it is well known that individual-level “noise” can obscure intervention effects, whereas 218 
representative sampling across a population yields a robust average treatment effect (Holland 219 
1986, Rothman et al 2008, Rubin 1974). We refer to this as “aggregation” and suggest it is a useful 220 
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tool for estimating treatment effects and other parameters relevant to EW in agricultural systems, 221 
such as pH or base saturation. This has been well demonstrated for soil organic carbon 222 
management (Potash et al 2025, Bradford et al 2023), where it has been postulated that detection 223 
may not be reliable at a field level, but aggregation may facilitate identifying population-level 224 
trends. 225 

We demonstrate that the same principle applies to soil-based MRV for EW: aggregating data from 226 
multiple fields reduces both the average error in detected dissolution fractions and the frequency 227 
of overestimating weathering by >20% (Figure 3). Within the level of variability modeled here, 228 
high accuracy in CDR estimates is only achievable through multi-field aggregation. As 229 
demonstrated in other soil mass balance analyses, detectability improves over time as cumulative 230 
application and weathering progress (Suhrhoff et al 2024). Even at higher feedstock applications 231 
(Figure 5a–b) and dissolution fractions (Figure 5c–d), aggregation reduces both error and over-232 
crediting frequency. 233 

Our analysis focuses primarily on unpaired sampling, representing a conservative estimate of 234 
potential errors in heterogeneous soils (Rogers and Maher 2025). For comparison, we also evaluate 235 
paired sampling (supplement S2.3). When paired sampling is implemented reliably—via high-236 
precision GPS or permanent markers—soil mass balance approaches can become feasible at the 237 
field scale (Figure S12; Suhrhoff et al 2025). Importantly, aggregation can achieve comparable 238 
accuracy at larger scales without depending on the success of paired sampling. 239 

The statistical framework used here can inform sampling protocols given target uncertainty levels. 240 
If baseline data on soil heterogeneity are available, the model can estimate expected errors as a 241 
function of sampling frequency and field aggregation, similar to approaches proposed by Rogers 242 
and Maher (2025; preprint) but in our case agnostic to what is an “acceptable” level of uncertainty. 243 
Minimum sampling requirements should be defined before deployment, and uncertainties in CDR 244 
quantification propagated, for example via Monte Carlo simulations (Derry et al 2025). While we 245 
have only modeled “sampling frequency”, provided that field-scale heterogeneity is captured (i.e., 246 
sub sample radius > wavelength of in-field heterogeneity), the required sampling frequency can 247 
also be achieved by pooling sub-samples. In this context, a large body of literature exists on how 248 
to accurately sample heterogenous media from the context of soil pollution remediation (i.e., 249 
incremental sampling methodologies; (Clausen et al 2013b, ITRC 2020, Clausen et al 2013c, 250 
2013a, Hadley et al 2011, Hewitt et al 2007). 251 

While our modeled results indicate that clear gains for MRV robustness may be achieved by 252 
aggregating over relatively small numbers of fields (e.g., 10), in practice, generating an accurate 253 
aggregate value for CDR presents several challenges. Given the unreliability of single-field 254 
estimates, simple area-weighted multiplication of τj by application rate, field size, and assumed 255 
carbon losses (incl. LCA emissions) can bias results toward the largest fields with the most applied 256 
material. A more rigorous approach is to define subsets of fields with similar characteristics (e.g., 257 
size, application amount, feedstock, soil type, pH, base saturation, and any parameter used for 258 
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MRV and its resolvability; Suhrhoff et al 2024) so that aggregating within these subsets yields 259 
meaningful signals. Defining such subsets requires large datasets that enable clustering and 260 
defensible grouping of comparable fields, rather than aggregating a random set of fields. 261 
Moreover, true multi-field aggregation should combine multiple same-sized independent fields 262 
rather than subdividing single fields into smaller sub-fields to benefit from the increase in sampling 263 
numbers that true multi-field aggregation entails. Furthermore, EW projects typically include 264 
control plots, introducing additional variability and requiring larger aggregation sets to maintain 265 
robustness (Bradford et al 2023). In practice, unless extraordinary effort is devoted to scouting 266 
fields of comparable starting conditions, the need for large sets of fields to define meaningful 267 
aggregation subsets may naturally align more closely with frameworks suited to monitor the 268 
impact of pay-for-practice policies than with today’s VCM protocols. 269 

4.3 Accuracy, Cost, and Scale  270 

Deploying EW as a climate solution requires optimizing accuracy, cost, and scale. Accuracy 271 
ensures genuine climate impact, while cost reductions are essential to make projects affordable for 272 
voluntary carbon market buyers and, ultimately, feasible as public investments. Current credit 273 
prices from first-of-a-kind field trials remain high (~$300–400 t⁻¹ CO₂; CDR.fyi 2025), and MRV 274 
is one of the largest cost drivers (Mercer et al 2024). Novel measurement approaches are therefore 275 
needed to maintain acceptable accuracy at lower cost over time. 276 

Watershed monitoring is one promising option, providing direct, lower-bound measurements of 277 
removal rates over large areas and integrating across soil chemical processes that may otherwise 278 
lead to unobserved carbon losses. Although individual gage stations can be expensive ($20–100k 279 
plus recurring lab costs; Harmel et al 2023), each can represent vast agricultural areas, yielding 280 
substantially lower per-area monitoring costs. Because station costs do not scale with catchment 281 
size, larger watersheds achieve lower per-ton MRV costs and improved signal-to-noise ratios (see 282 
Section 4.1). Moreover, gage stations serve multiple public functions—such as water-quality 283 
monitoring—allowing costs to be shared among stakeholders. 284 

In-field soil sampling and dissolution estimation via soil mass balance are already common in 285 
commercial EW projects (Puro.Earth 2024, Sutherland et al 2024). Accuracy is a challenge for 286 
this method, given the high spatial variability of soil composition. Building off a similar analysis 287 
for soil organic carbon (Potash et al 2025, Bradford et al 2023), we demonstrate that averaging 288 
over 10-100 fields significantly reduces estimation error. In the context of carbon markets, this 289 
translates to reduced risk of over crediting, or generating carbon removal credits that do not reflect 290 
a real change in atmospheric CO2 concentration. It is important to note that our results do not 291 
support trading off in-field sampling with multi-field averaging. Low in-field sampling densities 292 
(less than 2 samples/ha) consistently result in high error rates even when averaged over an 293 
increasing number of fields (Figure 3a). Furthermore, suppliers would need to ensure that fields 294 
are sufficiently similar to warrant grouping in aggregation sets and must not simply group any set 295 
of given fields such that the required high total numbers may be prohibitive for VCM suppliers. 296 
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An alternative scaling approach—intensive sampling on a small plot (e.g., 0.1 ha) and linear 297 
extrapolation to larger areas—is unlikely to yield accurate results because soil composition, 298 
hydrology, and management vary widely across fields, even within the same farm or watershed. 299 
Such heterogeneity affects both weathering rates and detectability of products. Evidence from soil-300 
organic-carbon projects shows that extrapolation from one or two small plots per field produces 301 
unreliable estimates (Heikkinen et al 2013, Maillard et al 2017, Poeplau and Don 2015). In EW, 302 
this means that a few intensively monitored fields could overestimate removals if scaled to 303 
thousands of hectares. Robust estimates therefore require methods that capture landscape 304 
variability—either through direct aggregation of field measurements or integration with 305 
downstream monitoring. 306 

Aggregation of commercial deployment data also requires clear statistical protocols. Fields must 307 
be assigned to aggregation sets prior to post-treatment data becoming available, and all plots must 308 
be included in the final analysis for credit delivery. Because soil heterogeneity and measurement 309 
error can yield apparent CDR even when true removal is zero, selectively excluding low or 310 
negative values would bias results upward (Figure 6). Importantly, quantifying CDR for individual 311 
fields rather than aggregation sets causes more frequent overestimation of CDR (Figure 3 and 312 
Figure 5), i.e. landing on the right-hand side of the distribution in Figure 6a. In such occurrences 313 
there will be no statistical indication that CDR is overestimated. However, while suppliers are not 314 
required to deduct CDR emissions from fields with no or negative CDR signals from project 315 
deliveries where signals are apparent, the ability to deliver on such individual field sites will 316 
invariably inflate credit deliveries. Hence, EW crediting must move beyond individual fields and 317 
assess sets of comparable deployments. Strict criteria should define when plots can be added or 318 
excluded (e.g., land-management changes), as in existing land-use crediting systems that exclude 319 
control plots from dynamic baselines (Shoch et al 2024). Such guidance will be essential as the 320 
industry scales. 321 

Lastly, we note that integration of modeling into monitoring frameworks can further optimize cost 322 
efficiency, though at present models are not a substitute for empirical approaches, neither at 323 
watershed nor field scale (Zhang et al 2025, Kanzaki et al 2025). Modeling, when paired with 324 
distributed sensor networks and targeted sampling, can strengthen robustness without dominating 325 
budgets. For example, the New York City watershed program invests ~$6.7 million annually in 326 
monitoring, with 10–15 % allocated to modeling tools that enable real-time forecasting (NASEM 327 
2020). Similarly, aggregated EW monitoring that combines field sampling, watershed 328 
instrumentation, and calibrated models to constrain downstream losses could offer a credible, 329 
lower-cost pathway for large-scale MRV across heterogeneous landscapes. 330 

4.4 Policy implications  331 

Government policy can support accurate estimation of CDR via EW at the scales discussed here—332 
catchments and hundreds of agricultural fields—and beyond, including eco-regions or 333 
jurisdictions encompassing thousands of fields. In the U.S., this analysis builds directly on publicly 334 
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funded, openly available data from the U.S. Geological Survey (USGS) stream-gage network, 335 
which supports economic and environmental decision-making for governments, communities, and 336 
commercial users. While the U.S. network is uniquely extensive, other countries maintain 337 
comparable public water-monitoring programs (Barker et al 2022). 338 

Expanding water-quality monitoring networks serves two critical purposes for EW. Before large-339 
scale deployment, they enable accurate assessment of background weathering rates, guiding 340 
optimal site selection and watershed pairing for counterfactual comparisons. After deployment, 341 
watershed-scale monitoring provides a direct measure of carbon removal and storage in the 342 
aqueous bicarbonate pool, allowing estimation of CDR and offering a conservative check on soil-343 
based measurements.  344 

When multiple projects introduce alkalinity into the same waterway, attribution cannot rely solely 345 
on deployed rock amounts or treated area, as deployment strategies affect both storage efficiency 346 
and potential outgassing. A more rigorous approach would standardize the use of publicly 347 
available reactive-transport models—expanded and cross-calibrated from frameworks such as 348 
SCEPTER (Kanzaki et al 2022, 2025, 2024), CrunchFlow (Steefel and Molins 2009), or 349 
PFLOTRAN (Mills et al 2007, Hammond et al 2007) amongst others (Taylor et al 2017) —to 350 
allocate watershed-scale CDR proportional to modeled realized fluxes. Where additional alkalinity 351 
inputs occur (e.g., wastewater treatment or other engineered CDR methods), attribution 352 
frameworks must adjust EW-derived fluxes accordingly to prevent overestimation. Watershed-353 
level EW monitoring may ultimately require new governance mechanisms beyond the current 354 
VCM (Woollen and Planavsky 2024) . 355 

Policy can likewise advance soil-based MRV by enabling extensive sampling and aggregation of 356 
soil data. Large, publicly maintained datasets—such as national soil censuses—could establish 357 
baselines for site selection and monitoring (Smith et al 2013, USGS 2024, 2023). Systematic 358 
collection of soil pH and related parameters would substantially improve EW assessment accuracy. 359 
We stress, however, that large datasets are not in themselves a panacea because robust and accurate 360 
estimation at population scales requires representative sampling of individuals (Bradley et al 361 
2021). Beyond public programs, substantial amounts of valuable soil data already exist within 362 
commercial laboratories–Waypoint (US) and the Tentamus Group (global) each analyze >1.5 363 
million soil samples annually. Policy could unlock these data through incentives for sharing, 364 
following models from medicine, energy, and other public-private data partnerships (Susha et al 365 
2023). In the U.S., agricultural extension officers could further support this effort by advising 366 
farmers on sampling timing and locations, improving regional coverage while minimizing 367 
redundancy. Together, such measures would enable robust, aggregated soil datasets, reduce 368 
uncertainty in CDR estimates, and create shared public goods benefiting both carbon markets and 369 
agricultural management. 370 

Aggregated monitoring, in turn, enables policies that accelerate EW deployment across regions by 371 
supporting lower-cost, large-scale assessment of removal fluxes. These fluxes could contribute to 372 
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national greenhouse-gas inventories toward meeting Nationally Determined Contributions under 373 
the Paris Agreement. A relevant precedent is the widespread use of subsidies for agricultural 374 
liming (CRSI 2025). Similar mechanisms could extend to silicate or mixed-feedstock applications, 375 
structured as pay-for-practice (area-based payments for spreading material, independent of MRV) 376 
or pay-for-results (base payments plus performance incentives following verified removal via soil- 377 
or water-phase MRV). 378 

Policy effectiveness will vary regionally and may not align with existing monitoring infrastructure. 379 
In the U.S., for instance, regions with the highest weathering potential (primarily the Southeast; 380 
Moosdorf et al 2011, Kanzaki et al 2025) do not coincide with areas of dense USGS baseline data 381 
(Figure 1a), indicating a need to expand the stream-gaging network. Moreover, use of alternative 382 
policy mechanisms (beyond carbon crediting) would benefit from consistent IPCC guidance on 383 
the accounting of EW practices in national inventories, a process that is currently underway (IPCC 384 
2024). 385 

In summary, there is a synergistic relationship between policies that support aggregated monitoring 386 
(e.g., expanded water-quality networks, public-private data sharing) and those that promote EW 387 
deployment. Optimizing across this opportunity space requires balancing CDR potential, 388 
measurement accuracy, and cost.  389 
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5 Conclusion 390 

Enhanced weathering is a promising strategy for atmospheric CO₂ removal, but its scalability 391 
remains constrained by the accuracy, cost, and robustness of MRV. Our analysis shows that 392 
aggregated monitoring—via physical integration of weathering products in streams and rivers and 393 
statistical aggregation of field-level measurements—offers a credible, lower-cost pathway to MRV 394 
at scale. By leveraging existing infrastructure and established methods, aggregation helps 395 
overcome central barriers to EW deployment while aligning with approaches already used in soil 396 
carbon and forestry frameworks. 397 

At the watershed level, we find no evidence that larger agricultural catchments have a lower utility 398 
of detecting EW signals in stream waters based on equal rock application, dissolution, and 399 
transport rates. In contrast, in some cases signal detection may be favorable in larger catchments 400 
due to lower variability in stream chemistry and lower background weathering fluxes. Because 401 
installation and operation costs are largely fixed, MRV costs per hectare and per ton decrease with 402 
catchment size, making watershed monitoring an attractive option for large-scale or jurisdictional 403 
deployment. Results from such monitoring can serve both as direct CDR measurements and as 404 
“top-down” validation for field-based estimates. At the field scale, soil sampling and mass-balance 405 
analysis remain standard MRV tools (Clarkson et al 2024) but are limited by spatial heterogeneity. 406 
Aggregation across multiple fields markedly improves accuracy and robustness, lowering both 407 
average error and the risk of over-crediting, particularly when paired with sufficient in-field 408 
sampling density. 409 

Together, these findings indicate that aggregation is not merely a technical workaround but a 410 
foundational principle for robust EW monitoring. Whether through hydrological integration at the 411 
catchment scale or statistical integration across fields, aggregation lowers variance, mitigates 412 
systematic bias, and enables credible CDR estimates. Aggregation sets must be defined a priori, 413 
with all predesignated plots—controls and treatments—included in final analyses. Selectively 414 
excluding low or negative results risks inflating average removals and undermining integrity. 415 
Importantly, aggregation also shifts MRV cost structures: rather than scaling linearly with the 416 
number of participating fields, costs can be amortized across larger areas and multiple 417 
stakeholders, making EW more feasible for inclusion in both VCMs and national greenhouse gas 418 
inventories. 419 

More work is needed to refine not only the economic and policy frameworks that could support 420 
aggregated monitoring, but also the statistical foundations underlying it. This includes developing 421 
guidance on how similar fields must be to form valid aggregation groups, defining sufficient field 422 
sets as a function of within- and among-field variance, and establishing stratification approaches 423 
that account for potential co-variance among parameters influencing field-level CDR. In parallel, 424 
quantitative comparisons of soil- and water-based MRV costs can help identify optimal 425 
deployment strategies across agronomic and hydrological contexts. Expanding public water and 426 
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soil monitoring infrastructure—together with protocols mandating inclusion of all fields within 427 
predefined aggregation sets and clear criteria for group formation—can enhance transparency and 428 
crediting rigor while generating wider societal benefits. Integration with existing agricultural 429 
support mechanisms, such as liming subsidies or soil census programs, offers a practical path for 430 
embedding EW monitoring within established governance structures. 431 

In sum, while uncertainties remain about absolute CDR rates, our results demonstrate that 432 
aggregated monitoring provides a viable route to accurate, scalable, and cost-effective MRV for 433 
EW. By coupling hydrological integration in watersheds with statistical integration across 434 
landscapes, aggregation can anchor EW’s credibility as a climate solution that benefits farmers, 435 
reduces costs, and facilitates policy adoption. As deployment scales up, aggregation may prove to 436 
be the key enabling principle that bridges the gap between scientific rigor, economic feasibility, 437 
and climate impact.  438 
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10 Figures 468 

 469 

 470 

Figure 1: Map of the selected USGS sites for the watershed analysis (a; some watersheds smaller than 471 
marker size). Watersheds are color coded by the fraction of land that is classified as cultivated vegetation 472 
(Tuanmu and Jetz 2014). Panel (b) shows soil samples used to model aggregated monitoring of soil-based 473 
quantification approaches. 474 
a (USGS 2016) b (Tuanmu and Jetz 2014) c (Smith et al 2013) d (Potapov et al 2022) 475 

 476 

 477 

Figure 2: Required agricultural area-normalized basalt dissolution and transport rates to cause a 2σ increase 478 
in river alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state. A version of this Figure but 479 
normalized to total catchment area can be found in the supplement (Figure S1) 480 
a (USGS 2024) 481 
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 482 

Figure 3: Panel a) shows the error on detected mass transfer coefficients τj one would get on average if one 483 
applied a soil mass balance approach to quantify rock powder dissolution once for individual as well as sets 484 
of fields. The frequency of overestimating τj by at least 20% as a function of sampling density and number 485 
of aggregated fields is shown in panel b). The plots for the remaining combinations of application amounts 486 
and dissolution fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired 487 
sampling (see supplement S2.3 for paired sampling). 488 

 489 
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 490 

Figure 4: The top row shows agricultural area normalized alkalinity fluxes (a), average annual alkalinity 491 
concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have sufficient 492 
alkalinity baseline data (n=89). These trends are generally similar for Ca and Mg (Figure S3). The bottom 493 
row shows area normalized runoff (calculated from discharge and catchment area) (d), average distance to 494 
the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for alkalinity, Ca, 495 
or Mg as well as a non-zero proportion of agricultural land (n=56). A version of this figure based on total 496 
catchment area, not catchment agricultural area, is included in the supplement (Figure S5). 497 
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 498 

Figure 5: Average error on detected mass transfer coefficients (i.e., dissolution fractions; a and c) as well 499 
as the frequency of overestimating mass transfer coefficients by more than 20% (b and d) for constant τj 500 
but variable application amounts (a and b) as well as at constant application amount but carriable τj (c and 501 
d). These simulations are based on un-paired sampling (see supplement S2.3 for paired sampling). 502 

 503 
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 504 

Figure 6: Panel a) shows hypothetical EW deployments where no CDR has occurred. Fields of different 505 
heterogeneities (or possibly temporal variability in case of water-based approaches) have varying spread 506 
around the mean when samples are used to constrain CDR. If only positive realizations of these random 507 
distributions are considered, CDR rates are generated from noise (b). This effect increases the more noise 508 
is in the system. Collectively, this demonstrates the necessity to include all fields included in a set when 509 
issuing credits as well as that field sets may not be defined based on apparent signal emergence (or exclusion 510 
from lack thereof). This effect is not only relevant for no-CDR cases but as long as “negative CDR”, i.e., 511 
CO2 emissions, is within uncertainty of detected CDR rates. 512 

  513 
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S1 Supplementary Figures 788 

 789 
Figure S1: Required total catchment area normalized basalt dissolution and transport rates to cause a 2σ 790 
increase in river alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state. 791 

 792 

 793 

Figure S2: Equivalent to Figure 3 but for τj = 0.25 and a = 50 t ha-1. Panel a) shows the error on detected 794 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 795 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 796 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 797 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 798 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 799 
supplement S2.3 for paired sampling). 800 

 801 
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 802 

Figure S3: Equivalent to Figure 3 but for τj = 0.5 and a = 50 t ha-1. Panel a) shows the error on detected 803 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 804 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 805 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 806 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 807 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 808 
supplement S2.3 for paired sampling). 809 

 810 

 811 

Figure S4: Equivalent to Figure 3 but for τj = 0.25 and a = 50 t ha-1. Panel a) shows the error on detected 812 
mass transfer coefficients τj one would get on average if one applied a soil mass balance approach to 813 
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of 814 
overestimating τj by at least 20% as a function of sampling density and number of aggregated fields is 815 
shown in panel b). The plots for the remaining combinations of application amounts and dissolution 816 
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see 817 
supplement S2.3 for paired sampling).  818 
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 819 

Figure S5: The top row shows total catchment area normalized alkalinity fluxes (a), average annual 820 
alkalinity concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have 821 
sufficient alkalinity baseline data (n=89). The bottom row shows area normalized runoff (d), average 822 
distance to the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for 823 
alkalinity, Ca, or Mg as well as a non-zero proportion of agricultural land (n=118). The equivalent 824 
information of panels a, d, and e for Ca and Mg can be found in Figure S6. 825 
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 826 
Figure S6: The top row shows agricultural area normalized Ca fluxes (a), average annual Ca concentration 827 
(b), and the variability of baseline Ca data (c). The bottom row shows the same type of data but for Mg (d-828 
f).  829 

 830 

 831 

Figure S7: Required basalt application rates to cause a 2σ increase in river alkalinity (a), Ca (b) and Mg (c) 832 
concentrations in catchments where more than 50% of the area is classified as crop or hay/pasture land. 833 
a(USGS, 2024) 834 

  835 
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S2 Soil signal-to-noise Monte Carlo simulations 836 

S2.1 Method details 837 

To complement the simplified description of our soil analysis framework presented in the main text, we 838 
provide here a more detailed account of the data sources, assumptions, and modeling steps underlying the 839 
Monte Carlo simulations. This expanded description also outlines how baseline and post-weathering sample 840 
compositions are generated, how heterogeneity is parameterized, and how error metrics are derived for both 841 
single-field and aggregated-field applications. 842 

The analysis uses multiple data sources to constrain the elemental composition of agricultural fields, rock 843 
powder, and expected in-field heterogeneity. To ground this analysis in realistic data of soil composition, 844 
we use US soil data classified as “Row Crops” and “Small Grains” (LandCover2) within the “Geochemical 845 
and mineralogical data for soils of the conterminous United States” database (Smith et al 2013). These 846 
samples are treated as the “true” baseline composition of fields, each datapoint in the database being used 847 
as one representative field composition. The composition for rock powder is based on the average 848 
composition of all samples contained in the GEOROC database that are classified as basalt and contained 849 
within the conterminous US (Lehnert et al 2000). Because the framework only works for feedstock-soil 850 
combinations whose composition is sufficiently different (Suhrhoff et al 2024), we only consider soil 851 
compositions where both base cation (here Ca2+ and Mg2+) as well as immobile element (Ti) concentrations 852 
are at least 4 times lower than for basalt (n=302; see Figure 1b). 853 

For each field, we calculate a “true” post-weathering soil-feedstock mix composition based on assumed 854 
application amounts (a= 50 and 100 t ha-1) and dissolution fractions (τj = 0.25 and 0.5) (Suhrhoff et al 2025). 855 
Note that application amount corresponds to the total cumulative amount deployed. Many EW studies apply 856 
40 t ha-1 yr-1 such that even the highest rate modeled here may be realistic after multiple years of 857 
deployments (Beerling et al 2020, 2025). Furthermore, for each field a size between 10 and 100 ha is 858 
randomly generated (uniform distributions), which is a compromise between skewed US farm size 859 
distributions with most farm land being in farms larger than 2,000 ha but most farms being smaller than 72 860 
ha (USDA 2022, 2024).  861 

To constrain variance on field-level sample compositions resulting from spatial heterogeneity, we use a 862 
new dataset based on high-density spatial sampling (Suhrhoff et al 2025; cf. S2.2 below). This dataset of 863 
soil heterogeneity is based on new ICP-MS soil composition measurements (residual phase after 864 
exchangeable cations were leached with 1M ammonium acetate) from 5 field sites in the US with spatial 865 
sampling frequencies ranging from 0.6 – 19.8 samples ha-1 (7.1 – 39.6 pooled sub samples ha-1). We fit log-866 
normal distributions to field data (using the Python scipy.stats module), and use fitted shape parameters 867 
representing the standard deviations (σ) of the underlying normal distribution to model in-field variance–868 
see section S2.2 for more detail on log-normal fits to field data. The shape parameters corresponding to 869 
field data are shown in Figure S9 and Figure S10, and uniform distributions between the range of observed 870 
shape parameters is used to generate synthetic σ values for Monte Carlo simulations of baseline soils where 871 
the resulting distributions are scaled such that the mean of the log normal distribution is equivalent to the 872 
field mean (see supplement S2.2). For feedstocks, heterogeneity is introduced by generating shape 873 
parameters of 5–10% (uniform distribution, i.e. σ values of 0.05 to 0.1 for generated log normal 874 
distributions).  875 
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 876 

Figure S8: Flow chart of the Monte Carlo simulation algorithm used for the main analysis. This approach 877 
assumes non-paired sampling 878 

We use these data to generate a simple statistical model based on nested Monte Carlo simulations (see 879 
Figure S8) to assess expected errors on calculated dissolution fractions. The simulated in-field 880 
heterogeneity is used to generate baseline and post-weathering soil sample compositions for a range of 881 
sampling frequencies. To reflect increasing thoroughness of the sampling approach, as soil sampling 882 
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frequency increases from 1 to 20 samples ha-1 we also increase the number of total samples that the 883 
composition of the feedstock endmember is calculated from (from 1 to 20 samples). Next, the average 884 
composition of the realized samples is used to calculate the corresponding dissolution fraction. This is 885 
compared to the assumed, true value. This is done for each field 100 times, and we 1) calculate the average 886 
error over all fields for each sampling frequency as a realistic error estimate given US soil composition and 887 
realistic spatial heterogeneity, and 2) based on first averaging the calculated dissolution fraction based on 888 
realized sample composition over multiple fields (10, 25, and 50, done 100 fields based on random pulls 889 
from the 302 fields; 100 times) before computing the average error on the dissolution fraction (see Figure 890 
S8 for details). These reflect the error that one would get if applying such soil-based mass balance 891 
framework as the basis to quantifying CDR on average if applying it once either to an individual field or 892 
an aggregated set of fields at the same time. We use these error rates to assess the frequency with which 893 
rock powder dissolution is overestimated by 20% or more.  894 

While the dissolution fraction is only a proxy for CDR, this approach can be translated to CDR as well 895 
using generated field sizes, application amounts, dissolution fractions, and assumed loss fractions, but we 896 
focus here on the dissolution fraction (or mass transfer coefficient) as it is the primary measured quantity. 897 
Note that by independently generating baseline and post-weathering samples, we model a non-paired 898 
sampling approach reflecting the worst case scenario where paired sampling is either not attempted or 899 
prevented due to bad GPS accuracy (typical GPS accuracy of 5 m). We also include additional analysis of 900 
paired sampling (cf. S2.3; Figure S11 and Figure S12). 901 

S2.2 Implementation of soil heterogeneity in Monte Carlo simulations 902 
We use soil composition data from five novel field sites sampled at high spatial densities to constrain in-903 
field heterogeneity for the Monte Carlo signal-to-noise analysis. The data are normalized by the field mean 904 
concentration (Figure S9) before we fit log-normal distributions to make sure the population means are 1. 905 
The use of log-normal (rather than normal) distributions is intentional because samples generated from log-906 
normal distributions always have positive values, preventing the occurrence of non-physical negative soil 907 
concentrations in the signal-to-noise analysis without having to filter some data. For normal distributions, 908 
this could be achieved by simply filtering out negative model occurrences, but this would change the mean 909 
of generated sample distributions and cause a systematic error in calculated dissolution fractions. In 910 
addition, using log-normal compared to normal fits also represents a conservative choice for the signal-to-911 
noise analysis due to the generally higher variance, as well has overall better fits compared to normal 912 
distributions (R2 better for 11 out of 20 elemental field distributions).  913 
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 914 
Figure S9: Distributions of baseline data for the 5 field sites (see Table S1 and Suhrhoff et al (2025) for 915 
more details) including log-normal fits to the data. The shape parameters, corresponding to the standard 916 
deviation of the normal distribution of the logarithm of the data, are plotted in Figure S10.  917 
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Table S1: Information on the field sites used to constrain spatial heterogeneity in the signal-to-noise 918 
analysis. The number of pooled cores corresponds to the number of-sub sample cores that were combined 919 
for each measured sample. Soil heterogeneity refers to the σ of log-normal fits to soil concentration 920 
distributions normalized to the field mean such that the resulting distribution has a mean of 1 (Figure S9). 921 
Site names are anonymized and location data are rounded to one decimal degree to protect farmer privacy. 922 

        
soil heterogeneity (σ; log-

normal) 
Site 
name 

Lat Lon size 
# 
samples 

# pooled 
cores 

sample 
density 

core 
density  

Ca  Mg Na Ti 

  [°] [°] [ha]   [ha-1] [ha-1] [] [] [] [] 

Site 1 
45.
3 

-
87.6 

6.42 40 2 6.23 12.46 0.493 0.278 0.072 0.120 

Site 2 
42.
3 

-
73.6 

5.08 41 2 8.07 16.14 0.395 0.309 0.250 0.288 

Site 3 
31.
3 

-
84.4 

2.02 40 2 19.80 39.60 0.582 0.218 0.630 0.264 

Site 4 
35.
8 

-
78.2 

42.4
4 

25 12 0.59 7.07 0.519 0.523 0.510 0.154 

Site 5 
35.
8 

-
78.2 

26.8
5 

38 12 1.42 16.98 0.355 0.687 0.391 0.177 

 923 

 924 

Generally, a random variable is log-normally distributed if: 925 

 926 

𝑋	~𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎)          1 927 

 928 

Which means that: 929 

 930 

𝑙𝑛(𝑋)	~𝑁(𝜇, 𝜎!)          2 931 

 932 

where μ is the mean, σ the standard deviation, and σ2 the variance of the respective distributions, with log-933 

normal distributions conventionally defined via the standard deviation of the underlaying normal 934 

distribution. The expected value (mean) of a log-normal variable X can be calculated as: 935 

 936 

E[X] = e"#$
!"

" %           3 937 

 938 

Hence, when using the parameters of log-normal fits to populations with a given mean (Figure S9) to 939 

generate synthetic data for the Monte Carlo simulations, if generating μ and σ independently, the mean of 940 

the resulting populations will not be the same as of the initial distribution (i.e., 1). Or said differently, if we 941 

want the mean of a synthetic distribution to be a specific value, μ and σ are not independent—only one can 942 
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be randomly generated. We implement this into the Monte Carlo simulation by randomly generating shape 943 

parameters (σsyn) and then calculating μsyn such that E(X) = 1:   944 

 945 

E[X] = e
&##$%$

!#$%"

" '
= 1         4 946 

 947 

Now, taking the natural logarithm: 948 

 949 

ln ;e
&##$%$

!#$%"

" '
< = ln(1)⇒ 	 𝜇()* +

+#$%"

!
= 0	⇒	𝜇()* =	−

+#$%"

!
	    5 950 

 951 

The empirically constrained simulated μsyn and σsyn describe log-normal distributions with a mean of 1 and 952 

σ (shape) parameters constrained from field data (with a mean of 1), and are used to randomly generate sets 953 

of samples by multiplying these in-field variance factors with true “true” sample compositions. 954 

 955 

Because the σ values from the fit to field data (Figure S9) are neither normally nor log-normally distributed 956 

(negative R2; Figure S10), in the Monte Carlo simulations we generate synthetic σsyn values by randomly 957 

pulling from uniform distributions set out by the minimum and maximum observed σ values observed in 958 

field data (for Ca, Mg, and Na the used values are 0.072402 and 0.687422, and for Ti 0.119775 and 959 

0.288003). 960 

 961 

 962 
Figure S10: Histograms as well as normal and log-normal fits to the shape parameters from log-normal fits 963 
to soil data. The signal-to-noise analysis and related Monte Carlo simulations use uniform distribution set 964 
out by the minimum and maximum Ca, Mg, and Na shape values (b) as well as Ti shape values (c) due to 965 
low fit of both normal and log-normal distributions. 966 
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S2.3 Implementation of paired sampling in Monte Carlo simulations 967 
In addition to the Monte Carlo signal-to-noise analyses that assume un-paired sampling (i.e., independently 968 
generate log-normal distributions for baseline and post–weathering soil compositions), we also simulate 969 
expected errors of the soil MRV approach when using paired samples. 970 

Here, the work flow is adjusted for the generation of post-weathering samples (Fig S10, flowchart). As 971 
before, field data is used to generate synthetic log-normal distribution parameters for baseline samples (see 972 
methods and S2). However, for paired sampling, for each individual synthetic baseline sample the “true” 973 
post weathering composition based on the simulated feedstock application amount and dissolution fraction 974 
is calculated first. Next, we generate variance around “true” post-weathering compositions of baseline 975 
samples by generating a multiplier for each sample based on the generated log-normal shape parameter for 976 
this simulation, scaled such that the mean of the generated factors is 1 (eq. S51 (update from above)). 977 
Compared to the shape parameters used to simulate the baseline samples, the value of the shape parameter 978 
is reduced by 50% reflecting the efficacy of a paired sampling approach to reduce sampling variance. While 979 
arbitrary, this can be tested for any real deployment. 980 

As expected, the paired sampling approach drastically reduces expected errors (Fig S11). While for 981 
individual fields, paired sampling is necessary to yield adequate errors, for aggregated monitoring lower 982 
errors are possible even when using a non-paired approach. Hence, the analysis suggests that paired 983 
sampling may not be necessary when using an aggregated monitoring approach. 984 
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 985 

Figure S11: Flow chart for the Monte Carlo type signal-to-noise analysis using a paired sampling approach 986 
where post-weathering samples are taken at the same sites as baseline samples. 987 
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 988 

Figure S12: Comparison of selected signal-to-noise simulations between simulated to paired sampling (top 989 
row) and non-paired sampling (bottom row). Panels a and c show average error on detected mass transfer 990 
coefficients (i.e., dissolution fraction), b and d the frequency of overestimating mass transfer coefficients 991 
by more than 20% for constant τj but variable application amounts (a and b) as well as at constant application 992 
amount but carriable τj (c and d).  993 


