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Abstract: Terrestrial enhanced weathering (EW) on agricultural land is a promising carbon
dioxide removal (CDR) pathway with high potential to scale. Enhanced weathering also has the
potential to provide significant agronomic co-benefits to farmers and producers. Today, most EW
field trials are funded through the voluntary carbon market (VCM) with the purpose of generating
carbon removal credits for corporate sustainability goals. As a result, monitoring, reporting, and
verification (MRV) frameworks for EW are designed for attribution of tons of removal via
weathering to individual fields. Here, we describe approaches for aggregation of weathering
indicators across multiple fields using aqueous and solid phase measurements. First, we
demonstrate that larger agricultural catchments are at least as suitable as smaller ones for detecting
weathering signals in river chemistry, and in some cases may even offer advantages due to lower
variability and background weathering fluxes. Second, we assess quantification uncertainty from
in-field solid phase soil measurements at increasing scales and show that errors in CDR
quantification can be reduced by aggregating signals over many fields. Critically, we also highlight
that aggregation sets must be defined in advance and all plots included, as biased selection of fields
can generate apparent removal signals out of statistical noise. Taken together, we find that
aggregated monitoring of EW—quantifying CDR over multiple fields at once—can both improve
existing MRV frameworks and support integration of EW practices with a broader array of
government policies, unlocking funding and public support to achieve climate-relevant scale.
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1 Introduction

Deep and immediate emissions reductions are needed to prevent the worst harms of climate change
(UNEP 2024, IPCC 2018). In addition to mitigation, there is growing consensus that atmospheric
carbon dioxide removal (CDR) will be necessary to stay within Paris Agreement temperature
targets (Luderer et al 2018, Rogelj et al 2018, IPCC 2022). Multiple CDR approaches will be
required to achieve the gigaton-scale drawdown proposed in net-zero and net-negative climate
scenarios (IPCC 2022, Geden et al 2024, Lamb et al 2024), depending on local energy, land,
infrastructure, and mineral resources.

One promising CDR approach is terrestrial enhanced weathering (EW) on agricultural land.
Crushed cation-rich rocks applied to fields react with dissolved atmospheric carbon in water,
forming aqueous bicarbonate ions. Carbon is durably stored for 1,000s of years (Renforth and
Henderson 2017) in oceans as bicarbonate or in soils and sediments as solid carbonates. Global
EW removal potential is estimated at 0.5-2 Gt CO: yr' (Beerling et al 2020), or 64-217 Gt
cumulatively by 2080 (Baek et al 2023), meeting up to ~20% of expected CDR needs. EW can
also deliver agronomic benefits, including soil pH management and improved yields (Levy et al
2024), increasing the likelihood of adoption in alignment with climate goals.

Growing demand for CDR, especially from voluntary carbon market (VCM) buyers, has rapidly
increased investment in EW. Over 25 companies now operate globally, with ~600,000 t CO-
credits sold, though <2% are delivered (CDR.fyi 2025). This expansion raises critical questions
about the ability to accurately estimate CDR via EW. Experience shows that VCM incentives can
favor low-cost, inflated claims, leading to systematic quantification failures (Gill-Wiehl et al 2023,
Badgley et al 2022, Sanders-DeMott et al 2025). Achieving large-scale, verifiable CDR via EW
will require balancing accuracy and cost, using a mix of methods (e.g., solid, and liquid phase
measurements, as well as models) with context-appropriate study design, across spatial and
temporal scales (Clarkson et al 2024, Almaraz et al 2022). Here, we examine the benefits of
monitoring EW across multiple fields or regions—through physical aggregation of weathering
products in streams and statistical aggregation of field data—to reduce uncertainty in carbon
quantification, and discuss cost and scalability implications from market and policy perspectives.
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2 Methods

This study evaluates the potential of aggregated monitoring—quantifying carbon removal by
jointly monitoring multiple field sites—of EW on croplands. We focus on silicate rock applications
and consider both in-field and downstream signals of weathering products, including cations and
carbon species. To illustrate the utility of aggregation, we analyze monitoring approaches in
streams and soils using simple models that capture first-order system behavior. These models are
not meant to yield precise forecasts but to demonstrate how aggregation can improve detectability
and reduce uncertainty in EW monitoring.

Two distinct challenges frame this analysis: (i) reducing statistical noise from spatial
heterogeneity, where aggregation across multiple fields or watersheds provides a tractable
solution, and (ii) addressing system-level processes that affect permanence and transport of
weathering products, which require moving beyond near-field soil measurements to downstream
integration in rivers or groundwater. Recent work shows that solute export reflects not only soil-
scale weathering but also subsurface redox structure, mineral buffering, and hydrological residence
times (Shaughnessy and Brantley 2023, Shaughnessy ef a/ 2023), underscoring the need to capture
processes integrating across critical zone compartments. We attempt to address (i) through
analyses and simulations of water and soil datasets, while (ii) is inherently only represented in the
stream-water approach, which integrates across subsurface transport, buffering, and residence
times.

2.1 Watershed analysis

Enhanced weathering can be quantified by tracking weathering products such as cations or
alkalinity in the aqueous phase (Clarkson et al 2024, Almaraz et al 2022, Sutherland et al 2024).
Monitoring bicarbonate alkalinity in effluent water captures CDR after losses to secondary phase
formation and other soil or upstream processes, while cation fluxes can serve as alkalinity proxies
(Bijma et al 2025). Detecting such riverine changes against baseline conditions is challenging, yet
multiple studies document measurable shifts in river chemistry from agricultural liming (Hamilton
et al 2007, Oh and Raymond 2006, Barnes and Raymond 2009, Duan et a/ 2025), demonstrating
the feasibility of this approach.

Here, we assess the potential of downstream water monitoring to estimate CDR from large-scale
silicate application. Using a continental US river database (USGS 2016), we establish baseline
fluxes from stations with >10 years of data since 1990 and >10 measurements per year across all
seasons (n =95 for alkalinity, 81 for Ca, 80 for Mg; 120 stations total). After excluding catchments
with <10% agricultural land (cropland and pasture; USGS 2024), 51 sites remained (50 for
alkalinity, 26 for Ca, 26 for Mg; Figure la). We then calculate the concentration increase in
alkalinity, Ca, and Mg required for a detectable 2c deviation from baseline, and translate the
resulting fluxes into agricultural-area-normalized basalt application rates using average US basalt
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composition (Lehnert et al 2000), watershed area (USGS 2016), and cropland or pasture extent
(USGS 2024). For alkalinity, this is calculated based on charge balance from basalt base cation
content. Some watersheds are nested; not all datapoints are independent.

Our goal is not to define exact detectable application rates but to evaluate how the utility of stream-
based MRV scales with catchment size. The analysis assumes steady-state conditions—rapid
dissolution, transport, and downstream detection of weathering products. While these assumptions
underestimate required absolute application rates (Kanzaki et a/ 2025, Kirchner and Neal 2013,
Godsey and Kirchner 2014, Calabrese et al 2022, Power et al 2025), they should not vary
systematically with catchment size. Hence, the trends derived here remain informative for
assessing the feasibility of river-based MRV as a function of scale (see Section 4.1).

2.2 Soil analysis

An alternative approach to quantify CDR via EW is using soil mass balance approaches (Kantola
et al 2023, Reershemius and Suhrhoff 2023, Reershemius ef al 2023, Clarkson et al 2024, Suhrhoff
et al 2024, 2025), which assess differences in feedstock concentration before and after weathering
by comparing mobile cations (e.g., Ca?>", Mg?") to an immobile tracer (e.g., Ti). Combined with
supporting measurements and assumptions (Campbell et al 2023, Reershemius et al 2023,
Clarkson et al 2024, Suhrhoff et al 2024, 2025), the resulting dissolution fraction serves as a proxy
for CDR. We demonstrate that aggregating results across multiple fields substantially improves
the accuracy of soil-based quantification of rock powder dissolution, consistent with findings from
soil organic carbon studies (Potash ef a/ 2025, Bradford et al 2023). This analysis tests the ability
of monitoring approaches to overcome high within- and among-field variability in cation
concentrations.

We use elemental composition data from agricultural soils (Smith et a/ 2013) and basalt rock
powder (Lehnert et a/ 2000), supplemented by new data on in-field compositional variance from
five densely sampled sites (Suhrhoff et al 2025; see supplement S2). Using these datasets, we
perform Monte Carlo simulations to estimate average error in detected dissolution fractions under
varying conditions: rock powder applications of 50 and 100 t ha™, dissolution fractions of 0.25
and 0.5, and sampling frequencies from 1-20 samples ha™'. For each simulation, we compare
calculated dissolution fractions to known inputs to quantify (1) mean absolute error for single-field
MRYV and (2) accuracy after averaging across 10, 50, or 100 fields. Simulations were repeated 100
times to derive average errors and the frequency of >20% overestimation. The model assumes non-
paired sampling (baseline and post-weathering samples at random locations) but includes a paired-
sampling comparison. Detailed workflow and assumptions are provided in Supplement S2 (see
Figure S8).
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3 Results

Our analysis indicates that basalt addition is more detectable (i.e., requires lower application rates)
in watersheds with larger total agricultural area (Figure 2). Required basalt application rate to cause
a 20 increase compared to baseline river concentrations forms a significant trend for alkalinity (p
<0.001) though at low R? (0.25). There is no significant trend with catchment size for Ca and Mg.
Excluding loss and lag effects from slow weathering or solute retention, the average basalt
dissolution and transport rates (t ha™ yr') for watersheds with >1 km? of agricultural area and
>20% agricultural land cover (USGS 2024) are 0.63 + 0.68 (1) for alkalinity (n =45), 0.97 + 0.87
(1o) for Ca (n=23), and 0.53 £ 0.31 (10) for Mg (n = 23).

Aggregating soil mass balance results across multiple fields substantially increases the robustness
of CDR estimates from EW. Robustness is measured as (i) the average absolute error between
simulated and calculated dissolution fractions (t;) and (ii) the frequency of overestimating
dissolution by >20% (Figure 3). Both metrics improve markedly with aggregation: at a sampling
density of 10 samples ha™* (100 t ha™* application, t; = 0.25), average error declines from >20% for
single fields to <10% (10 fields) and =5% (100 fields). Over-crediting frequency collapses from
>20% for individual fields to near zero when data from >50 fields are aggregated.



148

149

150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173

174
175
176
177
178
179
180
181
182
183

Suhrhoff et al. (2025) — Aggregated monitoring of EW on agricultural lands — V2 (October 11)

4 Discussion
4.1 Watershed

Our analysis indicates that within the existing set of USGS stream gage stations, detectable EW
signals are impacted by catchment agricultural area (Figure 2) or catchment size (Figure S1) to
some extent. For alkalinity, we find a statistically significant but relatively weak relationship
between required basalt application rates and total agricultural area (p < 0.001, R? = 0.25; Figure
2), indicating that less basalt may be required in larger watersheds for viable stream-water MRV.
No significant trends are observed for Ca or Mg, suggesting that signal detectability is shaped by
a combination of factors.

One likely contributor to the alkalinity trend is that weathering rates (area-normalized alkalinity
fluxes) tend to be lower in large agricultural watersheds (p <0.05, R?=0.09; Figure 4a), potentially
reflecting lower runoff with increasing catchment area (p < 0.001, R? = 0.35; Figure 4b). Runoff
is a well-established control on weathering rates (White and Blum 1995, Gaillardet et al 1999,
Gislason et a/ 2009, Hartmann 2009, West 2012). By contrast, we find no significant relationship
with erosion rates (R? = 0.03, p = 0.19; Figure 4c). Another factor that may help explain lower
required basalt application in larger agricultural catchments could be that variability in stream
chemistry appears to decline with catchment size, as indicated by decreasing relative standard
deviation in annual baseline data (p < 0.001, R? = 0.21; Figure 4d).

Taken together, these results suggest that larger agricultural watersheds are at least as suitable—
and often more advantageous—than smaller ones for aggregated monitoring of EW. When new
monitoring stations are located directly within agricultural catchments, watersheds of varying sizes
may be similarly suited for signal detection (see Figure S7 for stations with >50 % agricultural
land). Although this conclusion is limited to the specific set of USGS stations analyzed, it
highlights that large catchments can be promising candidates for stream-based MRV. The added
advantage is that the same infrastructure can monitor broader agricultural areas, lowering MRV
costs per ton (see Section 4.4) and making large catchments particularly attractive for deployment.

We use this signal-to-noise analysis to explore how area-normalized basalt application rates relate
to catchment size and to compare the relative utility of different watershed contexts. We do not
aim to provide definitive estimates of the absolute application rates required for signal detection.
The analysis assumes steady-state conditions: basalt dissolves rapidly, and dissolution products
are transported to streams where they influence river chemistry. We did not model loss processes
such as secondary phase formation, cation exchange, biomass uptake, or strong-acid weathering
(Clarkson et al 2024), nor lag times between weathering and solute export due to interactions with
exchangeable acidity (Kanzaki et al 2025). Consequently, the absolute rates reported here
underestimate true requirements, but we argue the trends remain informative for assessing the
utility of river-based MRV as a function of scale. The results presented here suggest it is going to
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be as feasible to accurately detect the same area-normalized application rates in catchments with
large areas (and proportions) of agricultural land.

This conclusion is based on the two assumptions that neither loss processes nor lag times co-vary
with catchment size. Relating to the first, in reality, larger watersheds may experience some
transport limitations where solute export is constrained by longer hydrological residence times or
subsurface saturation, leading to higher retention of weathering products in soils, groundwater, or
riparian zones and thus a dampened downstream signal. This possibility may be reflected in
slightly higher baseline concentrations in some larger catchments (p < 0.05, R?=0.11; Figure 4e),
potentially suggesting slower solute turnover. Such scale-dependent effects are not captured by
our steady-state framework. Consistent with the second assumption, data in Figure 4f show that
watersheds with greater agricultural area do not have longer average distances to the nearest river,
supporting the assumption that the primary transport-limiting step—cation movement through
topsoils and from topsoils to rivers (Kanzaki et al 2025)—should not increase with catchment size.

The impact of these two assumptions—and the challenges they represent—can furthermore be
mitigated through deployment choices. Experimental studies (generally <6 months) have shown
that cation storage in secondary phases can alter effluent water composition (Renforth ez a/ 2015,
Pogge von Strandmann et al 2022, Iff et al 2024, te Pas et al 2025, Vienne et al 2025), while
models indicate that interactions with soil exchangeable cation pools can extend lag times beyond
30 years in high-CEC regions such as the U.S. Corn Belt (Kanzaki et a/ 2025). Because this process
is largely governed by soil cation exchange capacity (CEC) and base saturation, lag times are
expected to be shorter in the tropical soils of the southeastern U.S. (Kanzaki et a/ 2025). Similarly,
precipitation of secondary carbonates is promoted by high pH and carbonate content, more
common in western soils (Smith et al 2013, Wieczorek 2019), suggesting lower losses in the east.
Catchments with low CEC, high base saturation, high infiltration, and short residence times are
therefore most suitable for minimizing lag and losses. In practice, watersheds favorable for EW
from a geochemical perspective are also those best suited for detecting downstream weathering
signals, emphasizing the potential to optimize monitoring efficacy through informed site selection.

In summary, we find no evidence that larger watersheds are less effective than smaller ones for
stream-based MRV at equal application rates. In many cases, they appear more suitable, offering
the additional benefit of broader spatial coverage and lower per-ton monitoring costs. Provided
EW signals can be reliably detected in streams—as supported by previous studies (Hamilton et al
2007, Oh and Raymond 2006, Barnes and Raymond 2009, Duan et al 2025, Shao et al 2016, Taylor
et al 2021)—this approach shows strong potential for large-scale monitoring of EW.

4.2 Soil

In statistics it is well known that individual-level “noise” can obscure intervention effects, whereas
representative sampling across a population yields a robust average treatment effect (Holland
1986, Rothman et a/ 2008, Rubin 1974). We refer to this as “aggregation” and suggest it is a useful
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tool for estimating treatment effects and other parameters relevant to EW in agricultural systems,
such as pH or base saturation. This has been well demonstrated for soil organic carbon
management (Potash et al 2025, Bradford et al 2023), where it has been postulated that detection
may not be reliable at a field level, but aggregation may facilitate identifying population-level
trends.

We demonstrate that the same principle applies to soil-based MRV for EW: aggregating data from
multiple fields reduces both the average error in detected dissolution fractions and the frequency
of overestimating weathering by >20% (Figure 3). Within the level of variability modeled here,
high accuracy in CDR estimates is only achievable through multi-field aggregation. As
demonstrated in other soil mass balance analyses, detectability improves over time as cumulative
application and weathering progress (Suhrhoff ef al 2024). Even at higher feedstock applications
(Figure 5a-b) and dissolution fractions (Figure 5c—d), aggregation reduces both error and over-
crediting frequency.

Our analysis focuses primarily on unpaired sampling, representing a conservative estimate of
potential errors in heterogeneous soils (Rogers and Maher 2025). For comparison, we also evaluate
paired sampling (supplement S2.3). When paired sampling is implemented reliably—via high-
precision GPS or permanent markers—soil mass balance approaches can become feasible at the
field scale (Figure S12; Suhrhoff et al 2025). Importantly, aggregation can achieve comparable
accuracy at larger scales without depending on the success of paired sampling.

The statistical framework used here can inform sampling protocols given target uncertainty levels.
If baseline data on soil heterogeneity are available, the model can estimate expected errors as a
function of sampling frequency and field aggregation, similar to approaches proposed by Rogers
and Maher (2025; preprint) but in our case agnostic to what is an “acceptable” level of uncertainty.
Minimum sampling requirements should be defined before deployment, and uncertainties in CDR
quantification propagated, for example via Monte Carlo simulations (Derry ef a/ 2025). While we
have only modeled “sampling frequency”, provided that field-scale heterogeneity is captured (i.e.,
sub sample radius > wavelength of in-field heterogeneity), the required sampling frequency can
also be achieved by pooling sub-samples. In this context, a large body of literature exists on how
to accurately sample heterogenous media from the context of soil pollution remediation (i.e.,
incremental sampling methodologies; (Clausen et a/ 2013b, ITRC 2020, Clausen et al 2013c,
2013a, Hadley et al 2011, Hewitt et al 2007).

While our modeled results indicate that clear gains for MRV robustness may be achieved by
aggregating over relatively small numbers of fields (e.g., 10), in practice, generating an accurate
aggregate value for CDR presents several challenges. Given the unreliability of single-field
estimates, simple area-weighted multiplication of tj by application rate, field size, and assumed
carbon losses (incl. LCA emissions) can bias results toward the largest fields with the most applied
material. A more rigorous approach is to define subsets of fields with similar characteristics (e.g.,
size, application amount, feedstock, soil type, pH, base saturation, and any parameter used for



259
260
261
262
263
264
265
266
267
268
269

270

271
272
273
274
275
276

277
278
279
280
281
282
283
284

285
286
287
288
289
290
291
292
293
294
295
296

Suhrhoff et al. (2025) — Aggregated monitoring of EW on agricultural lands — V2 (October 11)

MRYV and its resolvability; Suhrhoff et al 2024) so that aggregating within these subsets yields
meaningful signals. Defining such subsets requires large datasets that enable clustering and
defensible grouping of comparable fields, rather than aggregating a random set of fields.
Moreover, true multi-field aggregation should combine multiple same-sized independent fields
rather than subdividing single fields into smaller sub-fields to benefit from the increase in sampling
numbers that true multi-field aggregation entails. Furthermore, EW projects typically include
control plots, introducing additional variability and requiring larger aggregation sets to maintain
robustness (Bradford et al 2023). In practice, unless extraordinary effort is devoted to scouting
fields of comparable starting conditions, the need for large sets of fields to define meaningful
aggregation subsets may naturally align more closely with frameworks suited to monitor the
impact of pay-for-practice policies than with today’s VCM protocols.

4.3 Accuracy, Cost, and Scale

Deploying EW as a climate solution requires optimizing accuracy, cost, and scale. Accuracy
ensures genuine climate impact, while cost reductions are essential to make projects affordable for
voluntary carbon market buyers and, ultimately, feasible as public investments. Current credit
prices from first-of-a-kind field trials remain high (~$300—400 t' CO2; CDR.fyi 2025), and MRV
is one of the largest cost drivers (Mercer et al 2024). Novel measurement approaches are therefore
needed to maintain acceptable accuracy at lower cost over time.

Watershed monitoring is one promising option, providing direct, lower-bound measurements of
removal rates over large areas and integrating across soil chemical processes that may otherwise
lead to unobserved carbon losses. Although individual gage stations can be expensive ($20—100k
plus recurring lab costs; Harmel et al 2023), each can represent vast agricultural areas, yielding
substantially lower per-area monitoring costs. Because station costs do not scale with catchment
size, larger watersheds achieve lower per-ton MRV costs and improved signal-to-noise ratios (see
Section 4.1). Moreover, gage stations serve multiple public functions—such as water-quality
monitoring—allowing costs to be shared among stakeholders.

In-field soil sampling and dissolution estimation via soil mass balance are already common in
commercial EW projects (Puro.Earth 2024, Sutherland et a/ 2024). Accuracy is a challenge for
this method, given the high spatial variability of soil composition. Building off a similar analysis
for soil organic carbon (Potash et al 2025, Bradford et al 2023), we demonstrate that averaging
over 10-100 fields significantly reduces estimation error. In the context of carbon markets, this
translates to reduced risk of over crediting, or generating carbon removal credits that do not reflect
a real change in atmospheric CO2 concentration. It is important to note that our results do not
support trading off in-field sampling with multi-field averaging. Low in-field sampling densities
(less than 2 samples/ha) consistently result in high error rates even when averaged over an
increasing number of fields (Figure 3a). Furthermore, suppliers would need to ensure that fields
are sufficiently similar to warrant grouping in aggregation sets and must not simply group any set
of given fields such that the required high total numbers may be prohibitive for VCM suppliers.
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An alternative scaling approach—intensive sampling on a small plot (e.g., 0.1 ha) and linear
extrapolation to larger areas—is unlikely to yield accurate results because soil composition,
hydrology, and management vary widely across fields, even within the same farm or watershed.
Such heterogeneity affects both weathering rates and detectability of products. Evidence from soil-
organic-carbon projects shows that extrapolation from one or two small plots per field produces
unreliable estimates (Heikkinen et a/ 2013, Maillard et al 2017, Poeplau and Don 2015). In EW,
this means that a few intensively monitored fields could overestimate removals if scaled to
thousands of hectares. Robust estimates therefore require methods that capture landscape
variability—either through direct aggregation of field measurements or integration with
downstream monitoring.

Aggregation of commercial deployment data also requires clear statistical protocols. Fields must
be assigned to aggregation sets prior to post-treatment data becoming available, and all plots must
be included in the final analysis for credit delivery. Because soil heterogeneity and measurement
error can yield apparent CDR even when true removal is zero, selectively excluding low or
negative values would bias results upward (Figure 6). Importantly, quantifying CDR for individual
fields rather than aggregation sets causes more frequent overestimation of CDR (Figure 3 and
Figure 5), i.e. landing on the right-hand side of the distribution in Figure 6a. In such occurrences
there will be no statistical indication that CDR is overestimated. However, while suppliers are not
required to deduct CDR emissions from fields with no or negative CDR signals from project
deliveries where signals are apparent, the ability to deliver on such individual field sites will
invariably inflate credit deliveries. Hence, EW crediting must move beyond individual fields and
assess sets of comparable deployments. Strict criteria should define when plots can be added or
excluded (e.g., land-management changes), as in existing land-use crediting systems that exclude
control plots from dynamic baselines (Shoch et al 2024). Such guidance will be essential as the
industry scales.

Lastly, we note that integration of modeling into monitoring frameworks can further optimize cost
efficiency, though at present models are not a substitute for empirical approaches, neither at
watershed nor field scale (Zhang et a/ 2025, Kanzaki et al 2025). Modeling, when paired with
distributed sensor networks and targeted sampling, can strengthen robustness without dominating
budgets. For example, the New York City watershed program invests ~$6.7 million annually in
monitoring, with 10—15 % allocated to modeling tools that enable real-time forecasting (NASEM
2020). Similarly, aggregated EW monitoring that combines field sampling, watershed
instrumentation, and calibrated models to constrain downstream losses could offer a credible,
lower-cost pathway for large-scale MRV across heterogeneous landscapes.

4.4 Policy implications

Government policy can support accurate estimation of CDR via EW at the scales discussed here—
catchments and hundreds of agricultural fields—and beyond, including eco-regions or
jurisdictions encompassing thousands of fields. In the U.S., this analysis builds directly on publicly
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funded, openly available data from the U.S. Geological Survey (USGS) stream-gage network,
which supports economic and environmental decision-making for governments, communities, and
commercial users. While the U.S. network is uniquely extensive, other countries maintain
comparable public water-monitoring programs (Barker et al 2022).

Expanding water-quality monitoring networks serves two critical purposes for EW. Before large-
scale deployment, they enable accurate assessment of background weathering rates, guiding
optimal site selection and watershed pairing for counterfactual comparisons. After deployment,
watershed-scale monitoring provides a direct measure of carbon removal and storage in the
aqueous bicarbonate pool, allowing estimation of CDR and offering a conservative check on soil-
based measurements.

When multiple projects introduce alkalinity into the same waterway, attribution cannot rely solely
on deployed rock amounts or treated area, as deployment strategies affect both storage efficiency
and potential outgassing. A more rigorous approach would standardize the use of publicly
available reactive-transport models—expanded and cross-calibrated from frameworks such as
SCEPTER (Kanzaki et al 2022, 2025, 2024), CrunchFlow (Steefel and Molins 2009), or
PFLOTRAN (Mills et al 2007, Hammond et al 2007) amongst others (Taylor et a/ 2017) —to
allocate watershed-scale CDR proportional to modeled realized fluxes. Where additional alkalinity
inputs occur (e.g., wastewater treatment or other engineered CDR methods), attribution
frameworks must adjust EW-derived fluxes accordingly to prevent overestimation. Watershed-
level EW monitoring may ultimately require new governance mechanisms beyond the current
VCM (Woollen and Planavsky 2024) .

Policy can likewise advance soil-based MRV by enabling extensive sampling and aggregation of
soil data. Large, publicly maintained datasets—such as national soil censuses—could establish
baselines for site selection and monitoring (Smith et a/ 2013, USGS 2024, 2023). Systematic
collection of soil pH and related parameters would substantially improve EW assessment accuracy.
We stress, however, that large datasets are not in themselves a panacea because robust and accurate
estimation at population scales requires representative sampling of individuals (Bradley et al
2021). Beyond public programs, substantial amounts of valuable soil data already exist within
commercial laboratories—Waypoint (US) and the Tentamus Group (global) each analyze >1.5
million soil samples annually. Policy could unlock these data through incentives for sharing,
following models from medicine, energy, and other public-private data partnerships (Susha et al
2023). In the U.S., agricultural extension officers could further support this effort by advising
farmers on sampling timing and locations, improving regional coverage while minimizing
redundancy. Together, such measures would enable robust, aggregated soil datasets, reduce
uncertainty in CDR estimates, and create shared public goods benefiting both carbon markets and
agricultural management.

Aggregated monitoring, in turn, enables policies that accelerate EW deployment across regions by
supporting lower-cost, large-scale assessment of removal fluxes. These fluxes could contribute to
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national greenhouse-gas inventories toward meeting Nationally Determined Contributions under
the Paris Agreement. A relevant precedent is the widespread use of subsidies for agricultural
liming (CRSI 2025). Similar mechanisms could extend to silicate or mixed-feedstock applications,
structured as pay-for-practice (area-based payments for spreading material, independent of MRV)
or pay-for-results (base payments plus performance incentives following verified removal via soil-
or water-phase MRV).

Policy effectiveness will vary regionally and may not align with existing monitoring infrastructure.
In the U.S., for instance, regions with the highest weathering potential (primarily the Southeast;
Moosdorf et al 2011, Kanzaki et al 2025) do not coincide with areas of dense USGS baseline data
(Figure 1a), indicating a need to expand the stream-gaging network. Moreover, use of alternative
policy mechanisms (beyond carbon crediting) would benefit from consistent IPCC guidance on
the accounting of EW practices in national inventories, a process that is currently underway (IPCC
2024).

In summary, there is a synergistic relationship between policies that support aggregated monitoring
(e.g., expanded water-quality networks, public-private data sharing) and those that promote EW
deployment. Optimizing across this opportunity space requires balancing CDR potential,
measurement accuracy, and cost.
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5 Conclusion

Enhanced weathering is a promising strategy for atmospheric CO: removal, but its scalability
remains constrained by the accuracy, cost, and robustness of MRV. Our analysis shows that
aggregated monitoring—via physical integration of weathering products in streams and rivers and
statistical aggregation of field-level measurements—offers a credible, lower-cost pathway to MRV
at scale. By leveraging existing infrastructure and established methods, aggregation helps
overcome central barriers to EW deployment while aligning with approaches already used in soil
carbon and forestry frameworks.

At the watershed level, we find no evidence that larger agricultural catchments have a lower utility
of detecting EW signals in stream waters based on equal rock application, dissolution, and
transport rates. In contrast, in some cases signal detection may be favorable in larger catchments
due to lower variability in stream chemistry and lower background weathering fluxes. Because
installation and operation costs are largely fixed, MRV costs per hectare and per ton decrease with
catchment size, making watershed monitoring an attractive option for large-scale or jurisdictional
deployment. Results from such monitoring can serve both as direct CDR measurements and as
“top-down” validation for field-based estimates. At the field scale, soil sampling and mass-balance
analysis remain standard MRV tools (Clarkson et a/ 2024) but are limited by spatial heterogeneity.
Aggregation across multiple fields markedly improves accuracy and robustness, lowering both
average error and the risk of over-crediting, particularly when paired with sufficient in-field
sampling density.

Together, these findings indicate that aggregation is not merely a technical workaround but a
foundational principle for robust EW monitoring. Whether through hydrological integration at the
catchment scale or statistical integration across fields, aggregation lowers variance, mitigates
systematic bias, and enables credible CDR estimates. Aggregation sets must be defined a priori,
with all predesignated plots—controls and treatments—included in final analyses. Selectively
excluding low or negative results risks inflating average removals and undermining integrity.
Importantly, aggregation also shifts MRV cost structures: rather than scaling linearly with the
number of participating fields, costs can be amortized across larger areas and multiple
stakeholders, making EW more feasible for inclusion in both VCMs and national greenhouse gas
inventories.

More work is needed to refine not only the economic and policy frameworks that could support
aggregated monitoring, but also the statistical foundations underlying it. This includes developing
guidance on how similar fields must be to form valid aggregation groups, defining sufficient field
sets as a function of within- and among-field variance, and establishing stratification approaches
that account for potential co-variance among parameters influencing field-level CDR. In parallel,
quantitative comparisons of soil- and water-based MRV costs can help identify optimal
deployment strategies across agronomic and hydrological contexts. Expanding public water and
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soil monitoring infrastructure—together with protocols mandating inclusion of all fields within
predefined aggregation sets and clear criteria for group formation—can enhance transparency and
crediting rigor while generating wider societal benefits. Integration with existing agricultural
support mechanisms, such as liming subsidies or soil census programs, offers a practical path for
embedding EW monitoring within established governance structures.

In sum, while uncertainties remain about absolute CDR rates, our results demonstrate that
aggregated monitoring provides a viable route to accurate, scalable, and cost-effective MRV for
EW. By coupling hydrological integration in watersheds with statistical integration across
landscapes, aggregation can anchor EW’s credibility as a climate solution that benefits farmers,
reduces costs, and facilitates policy adoption. As deployment scales up, aggregation may prove to
be the key enabling principle that bridges the gap between scientific rigor, economic feasibility,
and climate impact.
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471  Figure 1: Map of the selected USGS sites for the watershed analysis (a; some watersheds smaller than
472  marker size). Watersheds are color coded by the fraction of land that is classified as cultivated vegetation
473  (Tuanmu and Jetz 2014). Panel (b) shows soil samples used to model aggregated monitoring of soil-based
474  quantification approaches.

475  *(USGS 2016) *(Tuanmu and Jetz 2014) ¢ (Smith et a/ 2013) ¢ (Potapov et al 2022)
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478  Figure 2: Required agricultural area-normalized basalt dissolution and transport rates to cause a 26 increase
479  inriver alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state. A version of this Figure but
480  mnormalized to total catchment area can be found in the supplement (Figure S1)

481  *(USGS 2024)
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Figure 3: Panel a) shows the error on detected mass transfer coefficients t; one would get on average if one
applied a soil mass balance approach to quantify rock powder dissolution once for individual as well as sets
of fields. The frequency of overestimating t; by at least 20% as a function of sampling density and number
of aggregated fields is shown in panel b). The plots for the remaining combinations of application amounts
and dissolution fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired
sampling (see supplement S2.3 for paired sampling).
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Figure 4: The top row shows agricultural area normalized alkalinity fluxes (a), average annual alkalinity
concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have sufficient
alkalinity baseline data (n=89). These trends are generally similar for Ca and Mg (Figure S3). The bottom
row shows area normalized runoff (calculated from discharge and catchment area) (d), average distance to
the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for alkalinity, Ca,
or Mg as well as a non-zero proportion of agricultural land (n=56). A version of this figure based on total
catchment area, not catchment agricultural area, is included in the supplement (Figure S5).
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Figure 5: Average error on detected mass transfer coefficients (i.e., dissolution fractions; a and c) as well
as the frequency of overestimating mass transfer coefficients by more than 20% (b and d) for constant T;
but variable application amounts (a and b) as well as at constant application amount but carriable t; (c and
d). These simulations are based on un-paired sampling (see supplement S2.3 for paired sampling).
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Figure 6: Panel a) shows hypothetical EW deployments where no CDR has occurred. Fields of different
heterogeneities (or possibly temporal variability in case of water-based approaches) have varying spread
around the mean when samples are used to constrain CDR. If only positive realizations of these random
distributions are considered, CDR rates are generated from noise (b). This effect increases the more noise
is in the system. Collectively, this demonstrates the necessity to include all fields included in a set when
issuing credits as well as that field sets may not be defined based on apparent signal emergence (or exclusion
from lack thereof). This effect is not only relevant for no-CDR cases but as long as “negative CDR”, i.e.,
CO2 emissions, is within uncertainty of detected CDR rates.
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S1 Supplementary Figures
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Figure S1: Required total catchment area normalized basalt dissolution and transport rates to cause a 2¢
increase in river alkalinity (a), Ca (b) and Mg (c) concentrations assuming steady state.
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Figure S2: Equivalent to Figure 3 but for 7 = 0.25 and a = 50 t ha'. Panel a) shows the error on detected
mass transfer coefficients 1; one would get on average if one applied a soil mass balance approach to
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of
overestimating T1; by at least 20% as a function of sampling density and number of aggregated fields is
shown in panel b). The plots for the remaining combinations of application amounts and dissolution
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see
supplement S2.3 for paired sampling).
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a) Average error on T; b) Frequency of >20% T; overestimation
paired sampling, 7;=0.5, a=50 t ha™? paired sampling, 1,=0.5, a=50 t ha~!
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Figure S3: Equivalent to Figure 3 but for 7j = 0.5 and a = 50 t ha'. Panel a) shows the error on detected
mass transfer coefficients 1; one would get on average if one applied a soil mass balance approach to
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of
overestimating T; by at least 20% as a function of sampling density and number of aggregated fields is
shown in panel b). The plots for the remaining combinations of application amounts and dissolution
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see
supplement S2.3 for paired sampling).
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Figure S4: Equivalent to Figure 3 but for 7 = 0.25 and a = 50 t ha'. Panel a) shows the error on detected
mass transfer coefficients 1; one would get on average if one applied a soil mass balance approach to
quantify rock powder dissolution once for individual as well as sets of fields. The frequency of
overestimating T; by at least 20% as a function of sampling density and number of aggregated fields is
shown in panel b). The plots for the remaining combinations of application amounts and dissolution
fractions can be found in the supplement (Figures S3-7). All simulations assume unpaired sampling (see
supplement S2.3 for paired sampling).
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a) Ag-area normalized alkalinity fluxes

(n=50) b) Catchment discharge (n=56) c) Catchment erosion rate (n=56)
105k ® Slope=-0.11 Slopé®-0.00
Intercept=4.36 ° 4x1072 Intercept=-1.75
R2=0.07 5 x ° R2=0.00
, P=0063 10%F o% p = 0.905®
— s S T 3x10
g I 5 °
> > £ e © o
p E E .
8 4o = ‘@ 2x1072 °
3 8 102 B ° °
E £ g . O
x 5} = ) ) °
3 2 2 ° o god
- © s ° °® 2308 &
Slope=-0.30
Intercept=3.50 ° 102}
10"} R2=0.35 )
108 p <0.001
10! 10? 10° 10* 10° 10° 107 102 10° 10* 10° 10° 10! 10? 10° 10* 10° 108
total catchment area [km?] total catchment area [km?] total catchment area [km?]
d) Rel. standard deviation on baseline e) Average discharge weighted [alk]
[alk] (1SD/mean) (n=50) (n=50) f) Average distance to closest river (n=56)
10°
Slope=-0.10 6x10
Intercept=-0.42
. Re=026
_5 p <0.001 — 4x10° .
g 5
] 5 = °
s g € 3x100 .
ke ‘s o o o ® o o
8 S S W_,
< B 109} 8 LN H :
o s 3 2x100 .
2 2 °
5 S °
e Slope=0.08 Slope=-0.01
° ° aintercept=-3.05 Intercept=0.42
L
R?=0.07 R?=0.02
o p=0.060 , o © p=0.283
10! 102 10° 10* 10° 10° 107 10? 10° 10* 10° 10° 107 102 10° 10* 10° 108
total catchment area [km?] total catchment area [km?] total catchment area [km?]

Figure S5: The top row shows total catchment area normalized alkalinity fluxes (a), average annual
alkalinity concentration (b), and the variability of baseline alkalinity data (c) for the set of rivers that have
sufficient alkalinity baseline data (n=89). The bottom row shows area normalized runoff (d), average
distance to the closest river (e) and erosion rates (f) for all stations that have sufficient baseline data for
alkalinity, Ca, or Mg as well as a non-zero proportion of agricultural land (n=118). The equivalent
information of panels a, d, and e for Ca and Mg can be found in Figure S6.
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a) Ag-area normalized Ca fluxes
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Figure S6: The top row shows agricultural area normalized Ca fluxes (a), average annual Ca concentration
(b), and the variability of baseline Ca data (c). The bottom row shows the same type of data but for Mg (d-

f).
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Figure S7: Required basalt application rates to cause a 2¢ increase in river alkalinity (a), Ca (b) and Mg (c¢)

concentrations in catchments where more than 50% of the area is classified as crop or hay/pasture land.

(USGS, 2024)
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S2 Soil signal-to-noise Monte Carlo simulations
S2.1 Method details

To complement the simplified description of our soil analysis framework presented in the main text, we
provide here a more detailed account of the data sources, assumptions, and modeling steps underlying the
Monte Carlo simulations. This expanded description also outlines how baseline and post-weathering sample
compositions are generated, how heterogeneity is parameterized, and how error metrics are derived for both
single-field and aggregated-field applications.

The analysis uses multiple data sources to constrain the elemental composition of agricultural fields, rock
powder, and expected in-field heterogeneity. To ground this analysis in realistic data of soil composition,
we use US soil data classified as “Row Crops” and “Small Grains” (LandCover2) within the “Geochemical
and mineralogical data for soils of the conterminous United States” database (Smith et a/ 2013). These
samples are treated as the “true” baseline composition of fields, each datapoint in the database being used
as one representative field composition. The composition for rock powder is based on the average
composition of all samples contained in the GEOROC database that are classified as basalt and contained
within the conterminous US (Lehnert et a/ 2000). Because the framework only works for feedstock-soil
combinations whose composition is sufficiently different (Suhrhoff et al 2024), we only consider soil
compositions where both base cation (here Ca’" and Mg*") as well as immobile element (Ti) concentrations
are at least 4 times lower than for basalt (n=302; see Figure /b).

For each field, we calculate a “true” post-weathering soil-feedstock mix composition based on assumed
application amounts (a= 50 and 100 t ha™) and dissolution fractions (t; = 0.25 and 0.5) (Suhrhoff et al 2025).
Note that application amount corresponds to the total cumulative amount deployed. Many EW studies apply
40 t ha' yr' such that even the highest rate modeled here may be realistic after multiple years of
deployments (Beerling et al 2020, 2025). Furthermore, for each field a size between 10 and 100 ha is
randomly generated (uniform distributions), which is a compromise between skewed US farm size
distributions with most farm land being in farms larger than 2,000 ha but most farms being smaller than 72
ha (USDA 2022, 2024).

To constrain variance on field-level sample compositions resulting from spatial heterogeneity, we use a
new dataset based on high-density spatial sampling (Suhrhoff et al 2025; cf. S2.2 below). This dataset of
soil heterogeneity is based on new ICP-MS soil composition measurements (residual phase after
exchangeable cations were leached with 1M ammonium acetate) from 5 field sites in the US with spatial
sampling frequencies ranging from 0.6 — 19.8 samples ha™' (7.1 — 39.6 pooled sub samples ha™'). We fit log-
normal distributions to field data (using the Python scipy.stats module), and use fitted shape parameters
representing the standard deviations (o) of the underlying normal distribution to model in-field variance—
see section S2.2 for more detail on log-normal fits to field data. The shape parameters corresponding to
field data are shown in Figure S9 and Figure S10, and uniform distributions between the range of observed
shape parameters is used to generate synthetic o values for Monte Carlo simulations of baseline soils where
the resulting distributions are scaled such that the mean of the log normal distribution is equivalent to the
field mean (see supplement S2.2). For feedstocks, heterogeneity is introduced by generating shape
parameters of 5-10% (uniform distribution, i.e. ¢ values of 0.05 to 0.1 for generated log normal
distributions).
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877  Figure S8: Flow chart of the Monte Carlo simulation algorithm used for the main analysis. This approach
878  assumes non-paired sampling

879  We use these data to generate a simple statistical model based on nested Monte Carlo simulations (see
880  Figure S8) to assess expected errors on calculated dissolution fractions. The simulated in-field
881  heterogeneity is used to generate baseline and post-weathering soil sample compositions for a range of
882  sampling frequencies. To reflect increasing thoroughness of the sampling approach, as soil sampling
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frequency increases from 1 to 20 samples ha” we also increase the number of total samples that the
composition of the feedstock endmember is calculated from (from 1 to 20 samples). Next, the average
composition of the realized samples is used to calculate the corresponding dissolution fraction. This is
compared to the assumed, true value. This is done for each field 100 times, and we 1) calculate the average
error over all fields for each sampling frequency as a realistic error estimate given US soil composition and
realistic spatial heterogeneity, and 2) based on first averaging the calculated dissolution fraction based on
realized sample composition over multiple fields (10, 25, and 50, done 100 fields based on random pulls
from the 302 fields; 100 times) before computing the average error on the dissolution fraction (see Figure
S8 for details). These reflect the error that one would get if applying such soil-based mass balance
framework as the basis to quantifying CDR on average if applying it once either to an individual field or
an aggregated set of fields at the same time. We use these error rates to assess the frequency with which
rock powder dissolution is overestimated by 20% or more.

While the dissolution fraction is only a proxy for CDR, this approach can be translated to CDR as well
using generated field sizes, application amounts, dissolution fractions, and assumed loss fractions, but we
focus here on the dissolution fraction (or mass transfer coefficient) as it is the primary measured quantity.
Note that by independently generating baseline and post-weathering samples, we model a non-paired
sampling approach reflecting the worst case scenario where paired sampling is either not attempted or
prevented due to bad GPS accuracy (typical GPS accuracy of 5 m). We also include additional analysis of
paired sampling (cf. S2.3; Figure S11 and Figure S12).

S2.2 Implementation of soil heterogeneity in Monte Carlo simulations

We use soil composition data from five novel field sites sampled at high spatial densities to constrain in-
field heterogeneity for the Monte Carlo signal-to-noise analysis. The data are normalized by the field mean
concentration (Figure S9) before we fit log-normal distributions to make sure the population means are 1.
The use of log-normal (rather than normal) distributions is intentional because samples generated from log-
normal distributions always have positive values, preventing the occurrence of non-physical negative soil
concentrations in the signal-to-noise analysis without having to filter some data. For normal distributions,
this could be achieved by simply filtering out negative model occurrences, but this would change the mean
of generated sample distributions and cause a systematic error in calculated dissolution fractions. In
addition, using log-normal compared to normal fits also represents a conservative choice for the signal-to-
noise analysis due to the generally higher variance, as well has overall better fits compared to normal
distributions (R? better for 11 out of 20 elemental field distributions).
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915  Figure S9: Distributions of baseline data for the 5 field sites (see Table S1 and Suhrhoff et al (2025) for
916  more details) including log-normal fits to the data. The shape parameters, corresponding to the standard
917  deviation of the normal distribution of the logarithm of the data, are plotted in Figure S10.
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Table S1: Information on the field sites used to constrain spatial heterogeneity in the signal-to-noise
analysis. The number of pooled cores corresponds to the number of-sub sample cores that were combined
for each measured sample. Soil heterogeneity refers to the ¢ of log-normal fits to soil concentration
distributions normalized to the field mean such that the resulting distribution has a mean of 1 (Figure S9).
Site names are anonymized and location data are rounded to one decimal degree to protect farmer privacy.

soil heterogeneity (o; log-

normal)
Sit # # pooled 1
e Lat Lon size poole saml? ¢ core‘ Ca Mg Na Ti
name samples cores density density
1 1 [ha] [ha™] [ha™] I I I I
Site 1 :5' ;47 g 042 40 2 6.23 12.46 0.493 0278 0072  0.120
. 4. -
Site 2 3 136 508 41 2 8.07 16.14 0.395 0309 0250  0.288
3. -
Site 3 3 g 202 40 2 19.80 39.60 0.582 0218  0.630  0.264
. 35 - 42.4
Site 4 X 82 4 25 12 0.59 7.07 0.519 0523 0510 0.154
. 35 - 26.8
Site 5 X 82 s 38 12 1.42 16.98 0.355 0687 0391  0.177
Generally, a random variable is log-normally distributed if:
X ~LogNormal(u, o) 1
Which means that:
In(X) ~N(u,c?) 2

where 4 is the mean, o the standard deviation, and ¢” the variance of the respective distributions, with log-
normal distributions conventionally defined via the standard deviation of the underlaying normal

distribution. The expected value (mean) of a log-normal variable X can be calculated as:

Hence, when using the parameters of log-normal fits to populations with a given mean (Figure S9) to
generate synthetic data for the Monte Carlo simulations, if generating ¢ and ¢ independently, the mean of
the resulting populations will not be the same as of the initial distribution (i.e., 1). Or said differently, if we

want the mean of a synthetic distribution to be a specific value, 1 and ¢ are not independent—only one can
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be randomly generated. We implement this into the Monte Carlo simulation by randomly generating shape

parameters (oy,,) and then calculating g, such that E(X) = 1:

Now, taking the natural logarithm:

2

) :ln(l):ﬂsyn'l'@:():)ﬂs = -Zm 5
2 yn 2

2
osyn
Usyn+t
In e( 2

The empirically constrained simulated , and oy, describe log-normal distributions with a mean of 1 and
o (shape) parameters constrained from field data (with a mean of 1), and are used to randomly generate sets

of samples by multiplying these in-field variance factors with true “true” sample compositions.

Because the ¢ values from the fit to field data (Figure S9) are neither normally nor log-normally distributed
(negative R%; Figure S10), in the Monte Carlo simulations we generate synthetic oy, values by randomly
pulling from uniform distributions set out by the minimum and maximum observed ¢ values observed in
field data (for Ca, Mg, and Na the used values are 0.072402 and 0.687422, and for Ti 0.119775 and
0.288003).

a) all elements b) Ca, Mg, Na c)Ti
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Figure S10: Histograms as well as normal and log-normal fits to the shape parameters from log-normal fits
to soil data. The signal-to-noise analysis and related Monte Carlo simulations use uniform distribution set
out by the minimum and maximum Ca, Mg, and Na shape values (b) as well as Ti shape values (c) due to
low fit of both normal and log-normal distributions.
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S2.3 Implementation of paired sampling in Monte Carlo simulations

In addition to the Monte Carlo signal-to-noise analyses that assume un-paired sampling (i.e., independently
generate log-normal distributions for baseline and post—weathering soil compositions), we also simulate
expected errors of the soil MRV approach when using paired samples.

Here, the work flow is adjusted for the generation of post-weathering samples (Fig S10, flowchart). As
before, field data is used to generate synthetic log-normal distribution parameters for baseline samples (see
methods and S2). However, for paired sampling, for each individual synthetic baseline sample the “true”
post weathering composition based on the simulated feedstock application amount and dissolution fraction
is calculated first. Next, we generate variance around “true” post-weathering compositions of baseline
samples by generating a multiplier for each sample based on the generated log-normal shape parameter for
this simulation, scaled such that the mean of the generated factors is 1 (eq. S51 (update from above)).
Compared to the shape parameters used to simulate the baseline samples, the value of the shape parameter
is reduced by 50% reflecting the efficacy of a paired sampling approach to reduce sampling variance. While
arbitrary, this can be tested for any real deployment.

As expected, the paired sampling approach drastically reduces expected errors (Fig S11). While for
individual fields, paired sampling is necessary to yield adequate errors, for aggregated monitoring lower
errors are possible even when using a non-paired approach. Hence, the analysis suggests that paired
sampling may not be necessary when using an aggregated monitoring approach.
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986  Figure S11: Flow chart for the Monte Carlo type signal-to-noise analysis using a paired sampling approach
987  where post-weathering samples are taken at the same sites as baseline samples.
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Figure S12: Comparison of selected signal-to-noise simulations between simulated to paired sampling (top
row) and non-paired sampling (bottom row). Panels a and ¢ show average error on detected mass transfer
coefficients (i.e., dissolution fraction), b and d the frequency of overestimating mass transfer coefficients
by more than 20% for constant t; but variable application amounts (a and b) as well as at constant application

amount but carriable 7; (¢ and d).



