

1 High-resolution numerical assessment of large-scale riverine alkalinity modification scenarios along the
2 southern coast of the United States

3
4 Xing Zhou^{1,*}, Annalisa Bracco^{1,2}, Takamitsu Ito¹, Christopher T. Reinhard¹

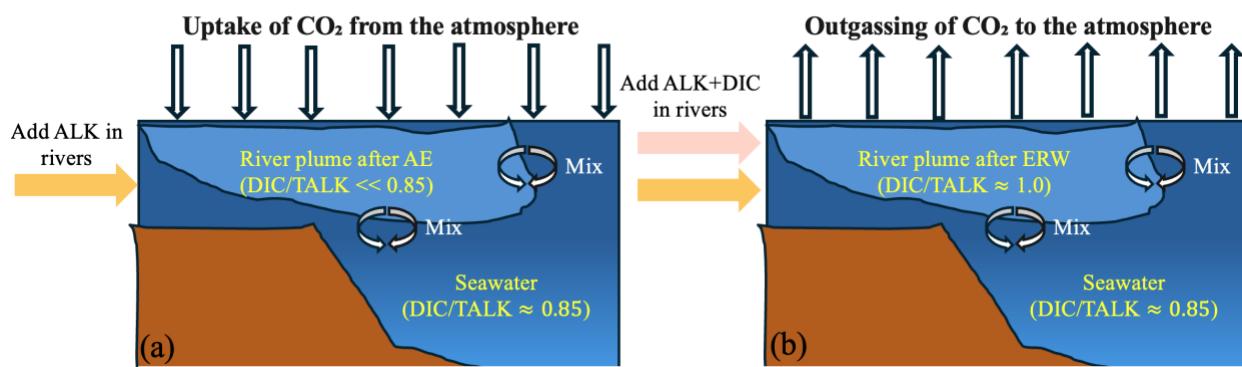
5 ¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, USA

6 ²CMCC Foundation, Euro-Mediterranean Center on Climate Change, Italy.

7
8 *Corresponding Author: xzhou473@gatech.edu

9
10 **Abstract:** River-based alkalinity modifications represent potentially effective approaches for removing
11 atmospheric CO₂ and mitigating anthropogenic climate change. Evaluating their effectiveness requires
12 consideration of downstream impacts on coastal ocean CO₂ air-sea exchange following intervention. In
13 this study, we applied a high-resolution (5 km) regional coupled physical and biogeochemical model
14 (CROCO-PISCES) to assess two carbon dioxide removal approaches, alkalinity enhancement (AE) and
15 enhanced weathering (EW), in the northern portion of the Gulf of Mexico. Alkalinity and dissolved
16 inorganic carbon inputs were added to riverine outflow from the Mississippi and Atchafalaya Rivers
17 according to eight hypothetical scenarios with variable magnitude and timing. In the AE scenarios,
18 simulations showed oceanic CO₂ uptake efficiencies ranging from 58% to 85%, with higher values under
19 modest perturbations and summer additions when shallow mixed layers promoted near-surface retention
20 of added alkalinity. In the EW scenarios, simulations indicated that 12–15% of land-based carbon
21 sequestration was re-emitted to the atmosphere from the ocean, with the amount remaining largely
22 consistent across scenarios, suggesting that the ocean-side leakage is relatively stable in the EW case and
23 represents a relatively small component of the overall EW life cycle. Collectively, these findings
24 demonstrate that the long-term carbon removal efficiency of river-based alkalinity modification will often
25 depend on the ratio between alkalinity and dissolved organic carbon introduced to the coastal ocean.

26
27 **Plain Language Summary:** Rivers carry large amounts of freshwater and dissolved materials to the
28 ocean, linking land-based carbon processes with the marine environment. These connections make river
29 systems important pathways for carbon dioxide removal strategies. Although these modifications may
30 begin on land or in rivers, their overall climate benefits depend on what happens once the modified water
31 reaches the ocean. In this study, we simulated how increasing alkalinity (representing alkalinity
32 enhancement, AE) or both alkalinity and dissolved inorganic carbon (representing enhanced weathering,
33 EW) in the Mississippi and Atchafalaya Rivers might affect ocean-atmosphere CO₂ exchange in the
34 northern Gulf of Mexico. The simulations investigated scenarios with different magnitudes and timing of
35 river modification. Our results show that AE can strengthen ocean CO₂ uptake, with an efficiency of 58–
36 85% depending on how much and when the alkalinity is added. EW simulations show that about 12–15%
37 of the carbon stored on land is later released back to the atmosphere from the ocean, regardless of the
38 simulated strategies, suggesting that the ocean-side carbon leakage remains relatively stable.

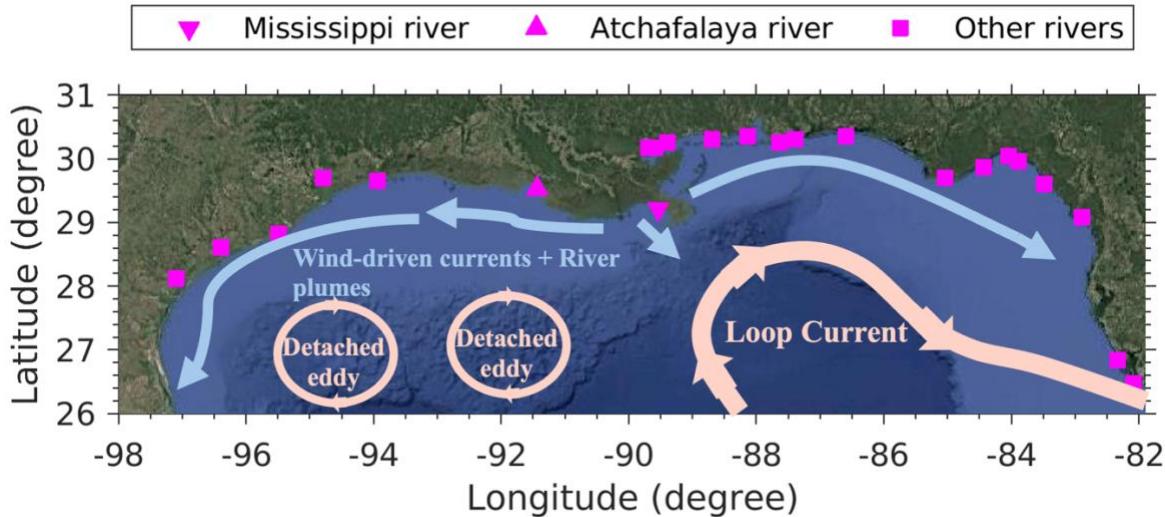

39
40 **1. Introduction**

41 To stabilize global warming below 2°C above the preindustrial mean temperature, the Intergovernmental
42 Panel on Climate Change (IPCC) has emphasized the necessity of deploying negative emissions
43 technologies alongside deep reductions in greenhouse gas emissions (UNFCCC, 2015; IPCC, 2022).
44 Estimates suggest that achieving this target will require removing approximately 5–10 Gt CO₂ per year

45 from the atmosphere (IPCC, 2022). These urgent requirements have motivated growing interest in large-
46 scale geoengineering strategies aimed at removing and securely storing atmospheric CO₂ (NASEM,
47 2019). Examples include ecological-based approaches such as reforestation (Griscom et al., 2017) and
48 blue carbon ecosystem restoration (Duarte et al., 2013; Song et al., 2023), as well as human interventions
49 including enhanced rock weathering (Beerling et al., 2020; Beerling et al., 2025a), ocean alkalinity
50 enhancement and fertilization (Renforth & Henderson, 2017; Babakhani et al., 2022; Zhou et al., 2025).

51
52 Oceans and rivers play an important role in the portfolio of carbon dioxide removal approaches. The
53 ocean is the largest long-term carbon reservoir in Earth's surface and the ultimate endpoint of the global
54 water cycle (Ward et al., 2017; Davila et al., 2022; Regnier et al., 2022), and rivers act as natural
55 conveyors linking land-based interventions to coastal seas. As a result, land- and river-based interventions
56 can generate downstream impacts on coastal and open-ocean CO₂ air-sea exchange, and neglecting these
57 effects may bias assessments of their effectiveness. Of particular relevance are approaches such as river-
58 based alkalinity enhancement and enhanced weathering, which alter river alkalinity or dissolved inorganic
59 carbon (DIC) and subsequently influence ocean biogeochemistry and air-sea CO₂ exchange once
60 freshwater plumes enter marine systems.

61
62 Alkalinity enhancement (AE) refers to approaches designed to increase the capacity of surface waters to
63 absorb atmospheric CO₂. Examples include reducing seawater acidity through electrochemical processes
64 or adding aqueous alkaline substances such as NaOH or Ca(OH)₂ directly to the ocean (Kheshgi 1995;
65 Renforth & Krüger, 2013; Renforth & Henderson 2017; National Academies of Sciences, Engineering,
66 and Medicine [NASEM], 2021; Eisaman et al., 2023; He & Tyka, 2023). A similar strategy can be applied
67 in rivers by elevating river alkalinity, so that when freshwater plumes enter the ocean, they generate
68 effects comparable to direct ocean additions (Fig. 1a). This river-based approach may be particularly
69 effective in river-dominated coastal regions such as the southern coast of the United States and the
70 northeastern coast of Brazil, where large rivers (e.g., the Mississippi and Amazon) create surface plumes
71 that extend thousands of kilometers offshore (Coles et al., 2013; Mu et al., 2023; Ou et al., 2025).
72 Moreover, river-based AE provides a practical pathway to integrate with wastewater alkalinity
73 enhancement (Li et al., 2025; Zheng et al., 2025), since wastewater treatment plants are built at fixed
74 locations and offer limited deployment flexibility.


75
76 **Fig. 1.** Conceptual diagram showing changes in the ocean carbonate system following river-based AE(a)
77 and EW (b).

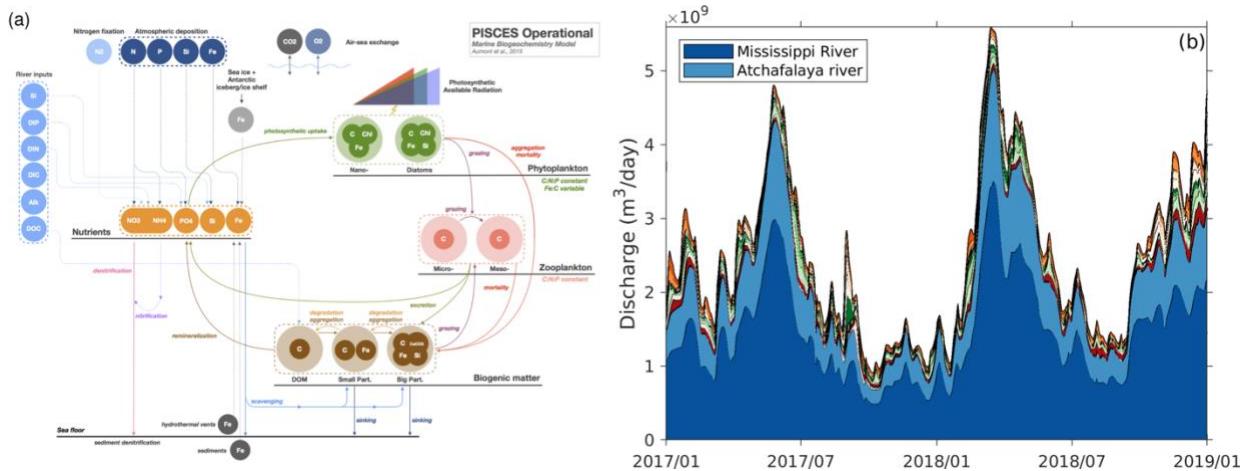
78

79 Considerations of AE applications primarily focus on the efficiency of oceanic CO₂ uptake, commonly
80 denoted as η , which is typically defined as the ratio of moles of CO₂ removed from the atmosphere per
81 mole of alkalinity added. This efficiency is influenced by seasonal and spatial variability in ocean
82 dynamics, as well as by the magnitude of the perturbation, since the adjustment timescale of oceanic
83 pCO₂ can range from weeks to years depending on the scale of alkalinity addition (Jones et al., 2014; He
84 & Tyka, 2023; Suseji et al., 2025). At the same time, ocean mixing and transport redistribute both the
85 added alkalinity and the newly formed DIC horizontally and vertically, further modifying efficiency
86 (Fennel et al., 2023; Liu et al., 2025). Together, these processes underscore the fact that designing a
87 feasible AE strategy requires careful consideration of both when it is applied and how it is implemented.
88 In addition, it cannot be assumed that a given amount of alkalinity added will fully equilibrate via
89 atmospheric CO₂ uptake (Zhou et al., 2025), with obvious implications for the monitoring, reporting, and
90 verification (MRV) protocols used to track the impacts of alkalinity modification on carbon markets.

91
92 In contrast to AE which is typically designed to directly increase the capacity of the surface ocean to
93 absorb CO₂, enhanced weathering (EW) initially increases the absorption of CO₂ on land (or in rivers),
94 which then causes runoff of added carbon and alkalinity. In this case, potential re-emission of CO₂ from
95 riverine and oceanic systems must be considered (Fig. 1b). EW typically involves pulverizing
96 weatherable rocks (e.g., basalt, olivine, or limestone) and applying them to soils or rivers, where they
97 dissolve and capture atmospheric CO₂ in the form of bicarbonate (Beerling et al., 2020; Kanzaki et al.,
98 2025; Raymond et al., 2025). This bicarbonate can then be transported by rivers and streams to the ocean,
99 where it may remain stored for timescales on the order of 10⁴ years (Broecker & Peng, 1987; Archer et
100 al., 1997; Goodwin & Ridgwell, 2010). However, part of the initially captured carbon can be released
101 back to the atmosphere as it interacts with riverine and marine carbonate systems during transit (Cao et
102 al., 2010; Harrington et al., 2023). Using a dynamic river network model, Zhang et al. (2025) estimated a
103 5–15% carbon loss during riverine transport depending on the location and stream/river transit path. On
104 the ocean side, both the fraction of carbon outgassing and the timescales of this process remain poorly
105 understood. Using an intermediate complexity Earth system model, Kanzaki et al. (2023) estimated a
106 global loss of ~10% for silicate feedstocks and ~20% for carbonate feedstocks when normalized to an
107 equivalent amount of direct air capture. However, no regional ocean modeling studies have yet assessed
108 this leakage or how it may vary under different EW strategies applied at different times and magnitudes.

109
110 In this study, we employed a coupled regional ocean and biogeochemistry model (CROCO-PISCES) at 5
111 km horizontal resolution to evaluate river-based alkalinity modification approaches (AE and EW) in the
112 northern portion of the Gulf of Mexico (hereafter the Northern Gulf). The Northern Gulf provides an ideal
113 testbed for assessing the potential impacts of large-scale, river-based alkalinity modifications, as it is the
114 endpoint of the United States' largest river system (the Mississippi–Atchafalaya River system) and is
115 strongly influenced by anthropogenic activities. In addition, the ocean currents in the Gulf help transport
116 river-derived materials, extending their influence over larger regions. Seasonally varying wind-driven
117 currents favor longshore transport, while the Loop Current - the most intense mesoscale current in the
118 Gulf flowing clockwise into the basin from the Caribbean through the Yucatán Channel, and out of it
119 through the Florida Straits - and its detached eddies facilitate offshore transport (Fig. 2).

121 **Fig. 2.** General circulation features in the Northern Gulf model domain with the river mouths included in
 122 the simulations indicated in magenta.


123
 124 We designed eight scenarios in total to represent idealized AE and EW approaches. These scenarios were
 125 structured around addition strategies that varied in the duration of additions (annual versus one month),
 126 the magnitude of concentration increases in rivers (10% versus 100%), and the timing of initiation (winter
 127 versus summer). For both approaches, we investigated the optimal strategy and the factors influencing it
 128 by analyzing simulated air-sea CO_2 exchange dynamics and ocean dynamics in redistributing added
 129 materials. This study aims to advance scientific understanding of the efficiency of ocean carbon storage
 130 through river-based alkalinity modifications and to inform the development of adaptive and feasible
 131 carbon dioxide removal strategies for the southern United States.

132 **2. Method**

133 **2.1 Model description**

134 In this study, we applied a regional coupled physical-biogeochemical modeling framework known as
 135 CROCO-PISCES. The Coastal and Regional Ocean Community model (CROCO v1.3) is a split-explicit,
 136 terrain-following ocean model built upon ROMS-AGRIF (Auclair et al., 2018). It is configured as a free-
 137 evolving system designed to study regional, coastal, and nearshore ocean dynamics. Previous studies have
 138 demonstrated the ability of CROCO to realistically capture mesoscale variability and circulation features
 139 in the Northern Gulf (Liu et al., 2021a; Liu et al., 2022; Sun et al., 2022). The realistic representation of
 140 physical transport has supported its application in studies of coral reef and fish larval connectivity (Zhou
 141 et al., 2024; Lopera et al., 2025), underscoring the model's utility for ecosystem-scale research.

142
 143 The biogeochemical module, PISCES, has been coupled to several ocean and Earth system modeling
 144 platforms (NEMO, CROCO, IPSL-CM, CNRM-CM, and EC-Earth). In its standard implementation it
 145 includes four nutrients (phosphorus, nitrogen, silica, and iron), two phytoplankton groups
 146 (nanophytoplankton and diatoms), two zooplankton groups (microzooplankton and mesozooplankton),
 147 and a detritus pool consisting of dissolved organic matter, small particles, and large particles (Fig. 3a).
 148 This structure enables PISCES to effectively describe the biogeochemical cycles of nutrients, carbon, and
 149 oxygen. A comprehensive description of the PISCES model can be found in Aumont et al. (2015).
 150

152
153 **Fig. 3.** (a) Schematic diagram of the standard “Operational” version of PISCES (adapted from
154 <https://www.pisces-community.org/index.php/model-description/>). (b) Daily freshwater discharge rates of
155 all rivers flowing into the Gulf during 2017 and 2018, highlighting the dominant contributions of the
156 Mississippi and Atchafalaya Rivers.

157

158 2.2 Model configuration

159 The CROCO-PISCES model applied in this study covers the upper portion of the Gulf to the north of
160 24°N, and extending from 98°W to 82°W (Fig. 2). The model resolution is 70 sigma layers in the vertical
161 and 5 km in the horizontal. Open boundaries were defined along the southern and eastern edges of the
162 domain. Physical variables (temperature, salinity, currents, and sea surface elevation) were nudged every
163 three hours using data from the HYCOM-NCODA analysis system (Cummings and Smedstad, 2013).
164 Fourteen biogeochemical variables, including nutrients (nitrate, ammonium, phosphate, silicate, and iron),
165 phytoplankton and zooplankton concentrations for different groups, dissolved organic and inorganic
166 carbon, alkalinity, and calcite concentration, were provided as monthly climatological by MOM6-
167 COBALT-NWA12, a 1/12 degree model for marine applications in the Northwest Atlantic (Ross et al.,
168 2023).

169

170 Atmospheric forcing was obtained from the Navy Global Environmental Model (NAVGEM), consistent
171 with the forcing used in the HYCOM NCODA analysis system. The background atmospheric $p\text{CO}_2$ was
172 prescribed at 402 ppm, assuming negligible influence from rising atmospheric CO_2 over the simulation
173 period. Dust and nutrient deposition were not considered, as atmospheric inputs are not major nutrient
174 sources in this region (Kim et al., 2020).

175

176 A total of 23 rivers in the Northern Gulf were included in the simulation (Fig. 2). Discharge data were
177 obtained from the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) at
178 three-hour intervals. All river discharges were imposed as southward volume fluxes from the northern
179 edge of grid cells near river mouths following the “active river” approach described by Sun et al. (2022).
180 Biogeochemical tracers in each river, including nitrate, ammonium, phosphate, silicate, dissolved organic
181 carbon, dissolved inorganic carbon, dissolved oxygen, and alkalinity, were primarily derived from the
182 RC4USCOAST dataset, using monthly climatological values averaged over the period from 1990 to 2020
183 (Gomez et al., 2023). For missing values in the dataset, literature sources and USGS station data were

184 used as supplemental inputs (Kaushal et al., 2013).

185
186 The initial physical fields were obtained from Sun et al. (2022), and the biogeochemical variables were
187 sourced from the MOM6-COBALT-NWA12 climatology. The model was spun up using repeated 2016
188 forcing until the biogeochemical fields reached a stationary state. The year 2016 was selected for spin-up
189 because its mesoscale dynamics and Loop Current behavior are close to the climatological patterns.

190 Following the spin-up, simulations were conducted for 2017 and 2018. Previous studies have validated
191 the physical performance of CROCO simulations in nearly identical configurations by comparing
192 modeled water temperature, salinity, and current features with observations (Liu et al., 2021; Lopera et
193 al., 2025). Further model calibration and validation specifically for the biogeochemical fields over all
194 three years can be found in Appendix A. In general, our model successfully captures the main horizontal
195 and vertical spatial patterns, as well as seasonal variability in chlorophyll concentrations, net primary
196 production, concentrations of alkalinity and DIC, and surface pCO₂ when compared with satellite, ship-
197 based, and in-situ measurements. Although some data-model misfits remain, such as relatively poor
198 performance in reproducing biogeochemical tracers along the coast of Florida, overall our results indicate
199 that the model performance should capture the main dynamics and primary differences between different
200 AE and EW scenarios.

201 202 **2.3 Alkalinity modification simulations**

203 We designed eight large scale river-based alkalinity modification scenarios (Table 1). All experiments
204 focus on the consequences of increasing total alkalinity concentrations and for some of them DIC
205 concentrations as well in the discharge from the Mississippi and Atchafalaya Rivers. These two rivers are
206 the largest in the region and contribute the majority of freshwater and nutrient inputs to the Northern Gulf
207 (Fig. 3b).

208 Four scenarios simulate AE, in which only concentrations of alkalinity (ALK) were increased in the river
209 discharge. The remaining four scenarios represent a simplified form of EW, in which both alkalinity and
210 an equivalent amount of DIC were added to river discharge at a 1:1 ratio (Kanzaki et al., 2023). For both
211 the AE and EW scenarios, we considered four modification strategies to evaluate how different input
212 magnitudes and timings influence the efficiency of these interventions. First, we applied a 10% increase
213 in riverine ALK (or ALK+DIC) concentrations sustained throughout the entire model year 2017
214 (hereafter, Year10%). Second, we introduced a one-month pulse that doubled the concentrations in
215 January 2017 (hereafter, Jan100%). Third, we applied a one-month pulse with a 10% increase in January
216 2017 (hereafter, Jan10%). Forth, we applied the same total amount of alkalinity and DIC as in the third
217 strategy but distributed it to river loadings beginning on May 12, 2017, at a time of high river discharge
218 (Fig. 3b) and shallow surface mixed layer in the Northern Gulf (hereafter, MayEqJan10%).

219
220 The interventions in the first and second strategies result in estimated total additions of 1.37×10^{11} mol
221 and 1.065×10^{11} mol of alkalinity and DIC, respectively. These amounts are consistent with those used in
222 other alkalinity enhancement studies, including the global estimates by Zhou et al. (2025), which applied
223 additions of 2×10^{11} mol and 6×10^{11} mol per ocean patch, Liu et al. (2025) with 1.34×10^{11} mol in the
224 North Sea, and Ou et al. (2025) with 1.03×10^{11} mol applied as in our case to the Northern Gulf. The third
225 and fourth strategies involve a smaller addition of 1.065×10^{10} mol, which may be more easily attainable

227 in regional deployments.

228

229 **Table 1.** Summary of alkalinity modification scenarios.

River modifications	AE	EW
Control run	-	-
10% increase in 2017 (Year10%)	1.37×10^{11} mol extra ALK added through 2017	1.37×10^{11} mol extra ALK + equivalent DIC through 2017
100% increase in Jan (Jan100%)	1.065×10^{11} mol extra ALK added through 2017 January	1.37×10^{11} mol extra ALK added through 2017 January
10% increase in Jan (Jan10%)	1.065×10^{10} mol extra ALK added through 2017 January	1.065×10^{10} mol extra ALK added through 2017 January
10% increase (of Jan) in mid- May (MayEqJan10%)	1.065×10^{10} mol extra ALK added through 2017 May	1.065×10^{10} mol extra ALK added through 2017 May

230

231 In addition to the alkalinity modification scenarios, we conducted a simulation that continuously released
232 passive tracers from the Mississippi and Atchafalaya Rivers during 2017–2018 to diagnose the spatial and
233 temporal variability associated with physical advection and mixing.

234

235 **2.4 Calculation of CO_2 uptake efficiency**

236 CO_2 uptake efficiency η is originally defined as a dimensionless number equal to the ratio of the DIC
237 inventory change to the cumulative added alkalinity (Eq. 1):

238

$$239 \eta = \frac{\Delta DIC(t)V}{\Delta ALK_{river}(t)} \quad (1)$$

240

241 where $\Delta DIC(t)$ is the difference in the spatially (volume-weighted) average of DIC concentration
242 between a scenario run and a control run over time, summed across the simulated domain ($mol C/m^3$), V
243 is the domain volume (m^3), and $\Delta ALK_{river}(t)$ is the cumulative riverine alkalinity addition ($mol eq$).

244

245 However, the definition in Equation 1 is not suitable for our study for two reasons. First, our model is a
246 regional model and the model domain has an open-boundary system, such that DIC exchange across the
247 open boundary complicates the attribution of cumulative DIC changes solely to atmospheric CO_2 uptake
248 (Fig. S1). Since the perturbation is applied to the Northern Gulf coast, and the simulation is only run for
249 <2 years, air-sea carbon exchange outside of the regional model domain is negligible on relatively short
250 timescales. Second, in EW scenarios, there is additional DIC introduced through river inputs, which
251 complicates the attribution of the simulated DIC change to air-sea CO_2 exchange. The uptake efficiency
252 can be measured focusing on the changes in air-sea carbon exchange rather than the DIC inventory
253 change. Therefore, we modified Equation 1 by replacing the volume-integrated DIC change with the
254 integrated air-sea CO_2 flux over time and surface area, allowing for a more direct quantification of DIC
255 changes from the drawdown of atmospheric CO_2 alone. This leads to Equation 2:

256

257
$$\eta = \frac{A \int_0^t \Delta F(t)}{\Delta ALK_{river}(t)} \quad (2)$$

258
 259 where $\Delta F(t)$ is the difference in the spatially (area-weighted) average of air-sea CO₂ flux between
 260 scenario runs and control run over time (mol C/m²/day), integrated over the simulation period and A is
 261 the surface area of the model domain (m²).

262
 263 In addition to integrating $\Delta F(t)$ over the simulation period to calculate η , we also defined a daily η (η_{day})
 264 contribution, expressed as the instantaneous ratio of oceanic CO₂ uptake, $A\Delta F(t)$, to the total alkalinity
 265 added to the river (Eq. 3). Summing the daily contributions recovers the overall η value given in Eq. 2.
 266 Therefore, η_{day} reflects the short-term (daily-scale) efficiency in driving air-sea CO₂ exchange in units of
 267 day⁻¹. To ensure comparability across different modification scenarios and to minimize noise from
 268 variability in continuous riverine inputs during the addition period, we use the total amount of alkalinity
 269 ($\Delta ALK_{river,total}$) added to the river rather than the time-dependent $\Delta ALK_{river}(t)$ in the denominator of
 270 Equation 3.

271
 272
$$\eta_{day} = \frac{A\Delta F(t)}{\Delta ALK_{river,total}} \quad (3)$$

273
 274 **2.5 Process attribution of air-sea CO₂ exchange**

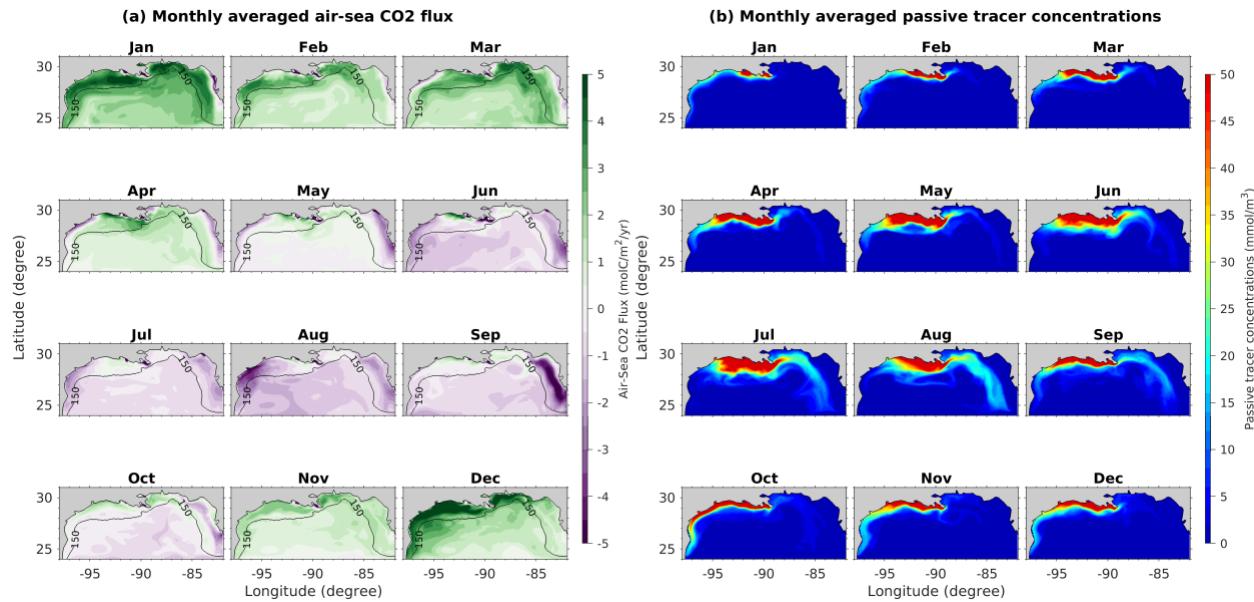
275 Ito and Reinhard (2025, hereafter IR25) proposed a new framework for attributing air-sea carbon fluxes
 276 to specific physical and biogeochemical processes. Briefly, this approach combines carbonate chemistry,
 277 surface carbon budget and gas exchange parameterization to express the evolution of air-sea CO₂
 278 exchange as a first-order ordinary differential equation.

279
$$\frac{dF}{dt} = -\lambda F + \sum_n f_n \quad (4)$$

280 where λ is the inverse of the air-sea CO₂ exchange timescale, and f_n are the forcing from physical and
 281 biogeochemical processes contributing to air-sea CO₂ exchange (e.g., advection, mixing, biological
 282 uptake, changes in temperature, salinity, alkalinity, atmospheric CO₂, and gas exchange). Mathematical
 283 derivation and formulation of Eq (4) can be found in IR25. This approach has proven effective in both an
 284 idealized two-box nutrient–carbon cycle model and a three-dimensional simulation of an iron and
 285 alkalinity release in the Southern Ocean. Here, we applied the same framework to our study. The key
 286 concept of this framework is that air-sea CO₂ flux integrates the effect of individual forcings over the
 287 CO₂ exchange timescale as expressed as the negative feedback term (Eq. 4). The timescale is set by G ,
 288 the air-sea gas exchange coefficient (m/day), expressed as a function of wind speed and the Schmidt
 289 number for CO₂ (Wanninkhof, 2014), α_c , a dimensionless carbonate chemistry coefficient that reflects the
 290 sensitivity of surface pCO₂ to perturbations in DIC, and h , the surface mixed layer depth (m).

291
$$\lambda = \frac{G\alpha_c}{h} \quad (5)$$

292 where λ has unit of day⁻¹ and represents the strength of the negative feedback by which air-sea CO₂ flux
 293 drives the surface ocean back toward equilibrium after a disturbance induced by an external forcing. In
 294 other words, the larger the value of λ , the faster the surface ocean returns to equilibrium following a
 295 perturbation. G and h can vary due to atmospheric wind and ocean mixed layer variability, and their


296 climatological mean values are used for the calculation of the representative λ value. We applied this
 297 framework to the Northern Gulf by integrating over the full simulation period and focusing on the upper
 298 10 meters of the water column, representing the annually averaged mixed layer depth estimated through a
 299 regression-based diagnostic approach using model outputted sea surface temperature time series.
 300 Advection and mixing terms were obtained directly from the model's DIC diagnostic equation.
 301 Temperature, salinity, and alkalinity were extracted from the standard model output. Values for the
 302 biological carbon sink, atmospheric CO₂, and gas transfer coefficient were obtained by modifying the
 303 model code to output these non-standard output variables. Eq. (4) is numerically integrated using Euler
 304 forward time-stepping scheme, and sensitivity tests with the fourth-order Runge–Kutta method confirmed
 305 the robustness of the numerical calculation.
 306

307 **3. Results**

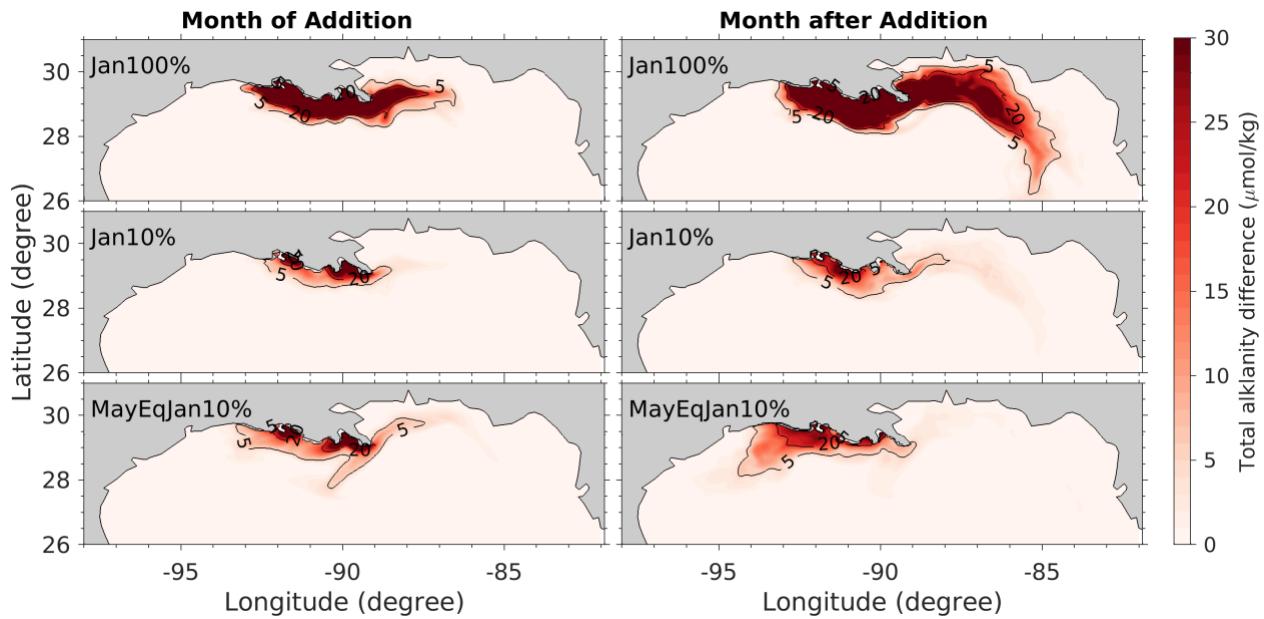
308 **3.1 Natural seasonal and spatial variability**

309 To provide context on the Gulf's baseline conditions prior to any alkalinity modification, we present the
 310 two-year monthly averaged spatial distributions of air–sea CO₂ flux and passive tracer concentrations
 311 from the control run (Fig. 4). The air–sea CO₂ flux highlights the natural variability in CO₂ exchange
 312 across the region, and the passive tracers reveal the transport pathways that added alkalinity or DIC from
 313 riverine sources will be subject to.
 314

315

316
 317 **Fig. 4** Two-year monthly averaged spatial distributions of air–sea CO₂ flux (a) and passive tracer
 318 concentrations (b) from the control run. Positive values denote CO₂ fluxes from the atmosphere into the
 319 surface ocean.
 320

321 Figure 4a shows that the Northern Gulf acts as an ingassing system during winter and spring, absorbing
 322 CO₂ from the atmosphere, and transitions to outgassing in summer and fall when surface waters are
 323 warmer. These seasonal changes are stronger in nearshore regions, following the spatial pattern of high
 324 chlorophyll concentrations where the biological pump consumes DIC (Fig. A3). Most of the CO₂ uptake

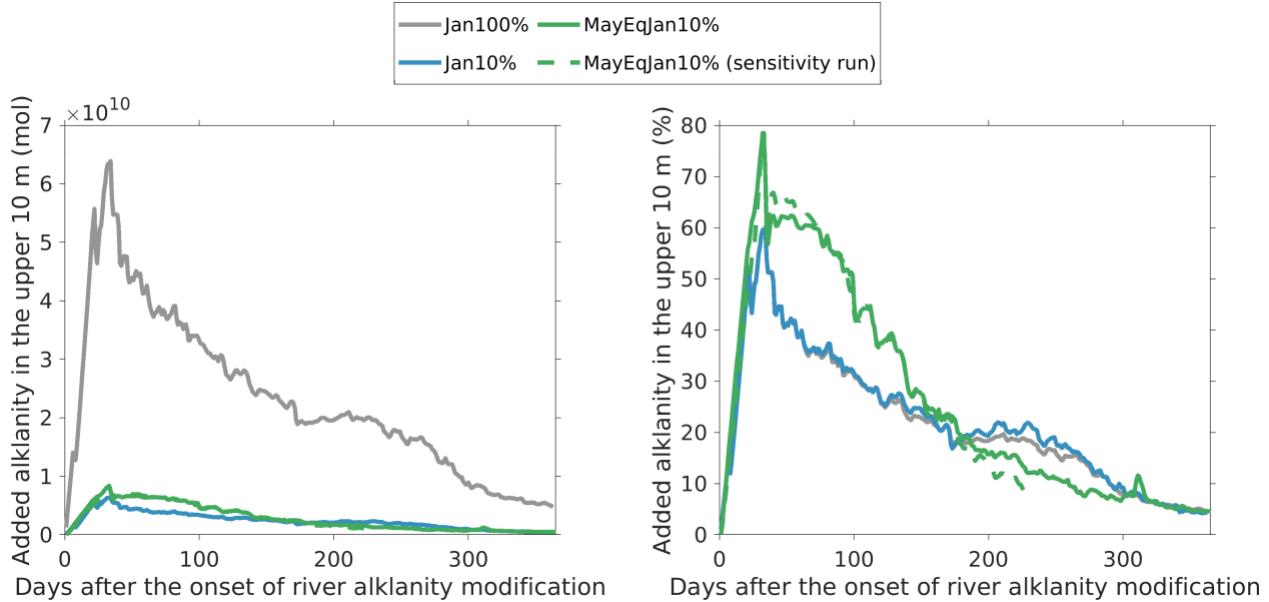

325 occurs along the Northern Gulf coastline in winter, whereas peak outgassing is simulated along the
326 Florida coast in summer. However, this pronounced summer outgassing along the Florida coast may
327 reflect in part a numerical artifact, as satellite observations do not indicate high chlorophyll
328 concentrations during that season (Fig. A3).

329
330 Figure 4b shows that passive tracers released from the Mississippi and Atchafalaya Rivers are generally
331 carried westward along the shoreline by surface currents driven by predominantly east-to-west winds.
332 During summer (June–September), part of the plume is transported east of the Mississippi Delta as
333 currents reverse under weakened winds, eventually interacting with the Loop Current system and
334 spreading offshore into the open Gulf. This result suggests that under the proposed alkalinity modification
335 scenarios additional air–sea CO₂ exchange is most likely to occur along the Texas–Louisiana coastline,
336 with the strongest signals near the Mississippi Delta, rather than in the eastern Gulf.

337
338 **3.2 Distribution of added alkalinity**

339 The temporal and spatial distribution of added alkalinity and DIC in the surface ocean is critical for
340 determining when and where CO₂ uptake occurs and how efficient it is, since only surface-retained
341 additions contribute to air–sea exchange. We present the surface footprint of added alkalinity for the three
342 one-month AE pulse scenarios in Figure 5. Alkalinity is emphasized here because surface DIC is
343 influenced by both river inputs and air–sea CO₂ exchange, whereas alkalinity is not affected by the air-sea
344 CO₂ exchange and primarily governed by hydrodynamics.

345
346 The Jan100% scenario forms the largest surface alkalinity plume due to the greater riverine input. During
347 the month of addition, most alkalinity remains near the Mississippi Delta, with stronger accumulation
348 west of the delta rather than to the east. By the following month, it is advected eastward by wind-driven
349 currents and entrained into the Loop Current, propagating southeastward into the open Gulf. The Jan10%
350 scenario produces a similar spatial pattern, as alkalinity is also added in January. In comparison, the
351 MayEqJan10% scenario spreads alkalinity over a broader region and retains it closer to the surface due to
352 higher river discharge and shallower mixed layer. By the following month, most additions are transported
353 west of the Delta, consistent with the passive tracer result.

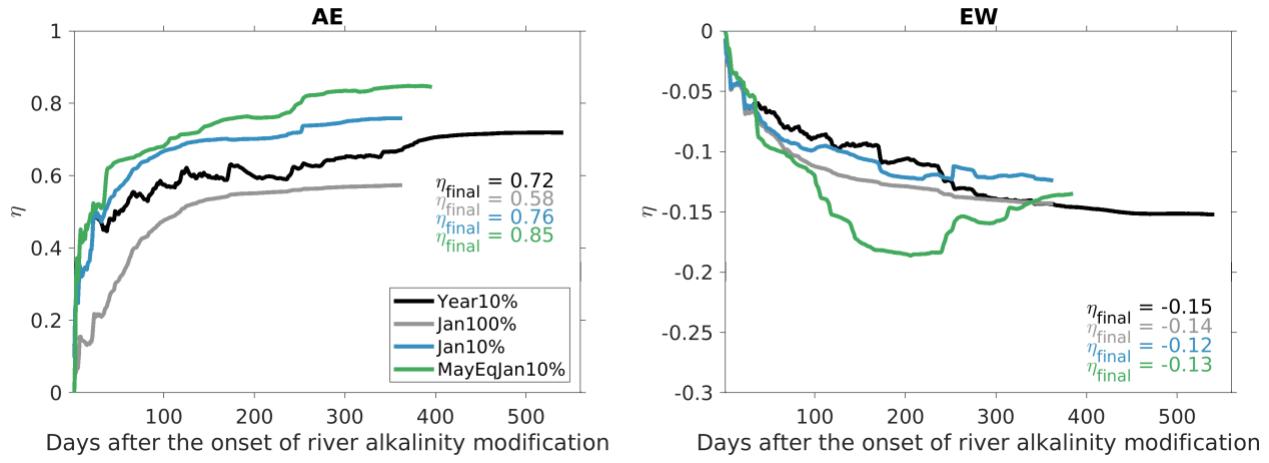


356 **Fig. 5** Surface footprint of added alkalinity for the one-month AE pulse scenarios, represented as
 357 differences in average alkalinity concentrations in the upper 10 m between each scenario and the control
 358 run. Results are shown as monthly averages for the month of addition (left) and the subsequent month
 359 after the addition stopped (right). The EW scenarios (not shown) exhibit surface similar footprints.

361 Figure 6 shows the amount of added alkalinity retained in the upper 10 m, which directly contributes to
 362 air-sea CO_2 exchange, expressed as both total inventory and percentage of riverine addition. The
 363 Jan100% scenario shows the highest retention inventory, peaking at about 7×10^{10} mol by the end of the
 364 one-month addition before declining as alkalinity is redistributed to deeper layers. The two 10% one-
 365 month pulse scenarios follow a similar temporal pattern, with peak retention inventories about one
 366 seventh of the 100% scenario.

368 The percentage results provide a different perspective. Among the one-month pulse scenarios, the
 369 MayEqJan10% scenario shows much higher retention than the two January additions, particularly
 370 between days 50 and 100. The two January scenarios yield nearly identical retention, as they are subject
 371 to the same winter–spring conditions.

373 The added alkalinity in the MayEqJan10% scenario shows high retention, benefiting from both elevated
 374 river discharge and a shallow mixed layer. To disentangle these two effects, we conducted a sensitivity
 375 experiment in which the river discharge from January 2017 was shifted to begin in May 2017, and the
 376 10% one-month addition was repeated based on this modified run. The results show only minor
 377 differences between the control and sensitivity runs (green solid versus green dashed lines), indicating
 378 that changes in mixed layer depth are the primary factor determining the higher retention of the
 379 MayEqJan10% scenario.



380
 381 **Fig. 6.** Added alkalinity summed across the entire model domain and within the upper 10 m, shown as
 382 total inventory (left panel) and as the percentage of riverine additions (right panel).
 383

384 3.3 CO₂ uptake efficiency

385 Figure 7 presents the temporal evolution of CO₂ uptake efficiency across all alkalinity modification
 386 scenarios. In AE scenarios, η increased rapidly during the first 7–8 months before stabilizing with only
 387 minor changes, reflecting the timescale for the air-sea CO₂ transfer to fully respond to the added
 388 alkalinity. Final η values varied, with the Jan100% scenario yielding the lowest value (0.58). Reducing
 389 the addition to 10% in the same month increased η to 0.76, and similarly the Year10% scenario produced
 390 an efficiency of 0.72. These results suggest that smaller modifications in river alkalinity concentrations
 391 lead to higher η . This does not include the potential inorganic precipitation of calcium carbonate particles
 392 in the case of strong alkalinity increase (Jan100%), thus the efficiency of 0.58 should be considered as an
 393 upper bound (Fig. S2). The timing of addition also matters. The summer alkalinity release scenario
 394 (MayEqJan10%) reached an η of 0.85, considerably higher than the equivalent winter case (Jan10%). The
 395 higher summer efficiency coincided with both a shallower mixed-layer and with the transition towards
 396 seasonal outgassing.
 397

398 All EW scenarios produced small but negative η values, indicating that introducing both ALK and DIC in
 399 a 1:1 ratio result in CO₂ release to the atmosphere, through an ocean-side “carbon leakage” (e.g., Kanzaki
 400 et al., 2023). In the EW cases, η did not converge to a steady state but fluctuated within a relatively small
 401 absolute range. Final values differed only slightly, ranging between -0.12 and -0.15 (Fig. 7). A slight
 402 “leakage overshoot” was observed in the summer release scenario at the end of 2017, which was
 403 subsequently mitigated in early 2018 due to the influence of strong winter mixing due to high winds.
 404 These dynamics reflect the fact that for a given perturbation to marine ALK concentrations the EW case
 405 introduces DIC at a relative excess to background dissolved $p\text{CO}_2$, but at a smaller deviation overall from
 406 the background ALK/DIC field (see Section 4.1). In addition, this implies that for a given alkalinity
 407 introduction the ultimate quantity of carbon storage will be larger for the EW case than for the AE case
 408 (Fig. 7).

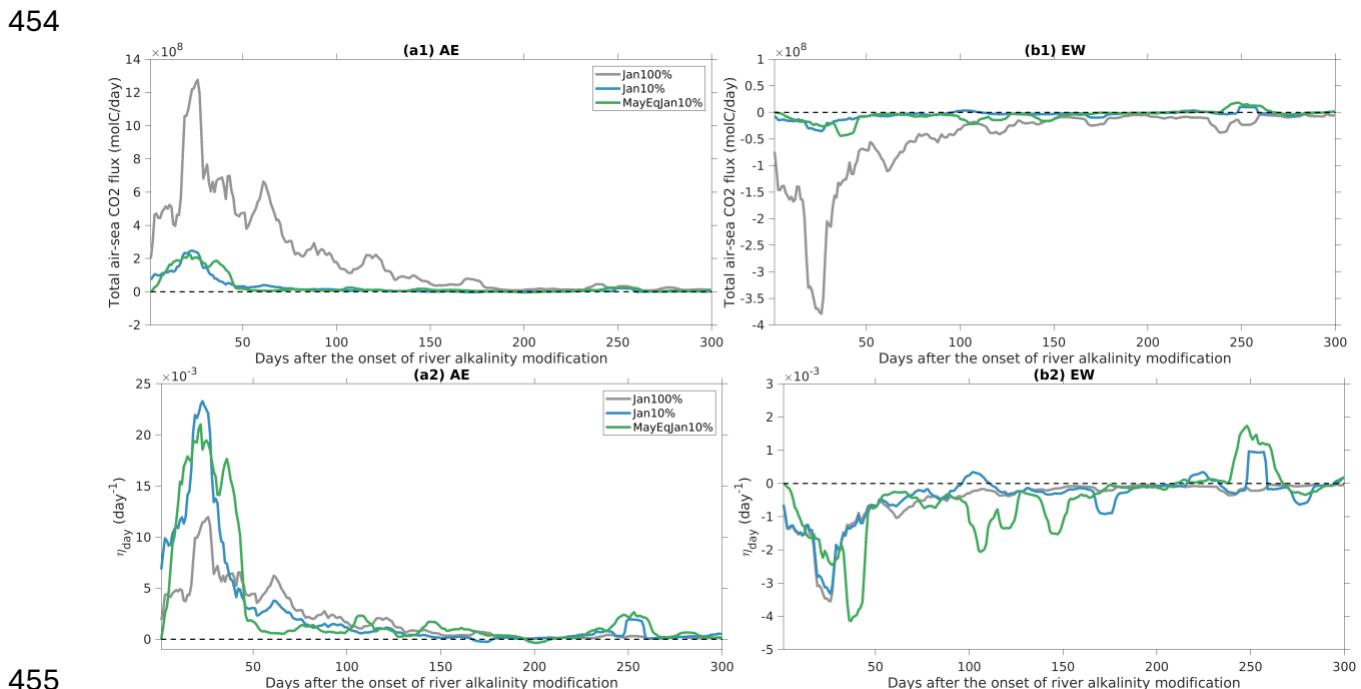
411
412 **Fig. 7.** The CO_2 uptake efficiency (η) for different AE (left) and EW (right) scenarios. The accumulated
413 CO₂ uptake used to calculate η is the sum over the entire model domain. η_{final} indicates the η values for
414 the different scenarios at the end of the simulations. The three one-month addition cases are simulated for
415 about one year, as η changes only minimally after that period. The Year10% case runs for more than 500
416 days because alkalinity is continuously added throughout an entire year, followed by an extended
417 simulation to capture η changes beyond that period.

418

419 3.4 Air–Sea CO_2 flux

420 Besides surface retention of added alkalinity or DIC, temporal variations in the rate of air–sea CO_2 gas
421 exchange influence uptake efficiency. A higher exchange rate reduces the chance that the alkalinity or
422 DIC retained near the surface is advected to the deep ocean. Figure 8 shows Northern Gulf-integrated
423 differences in air–sea CO_2 flux between modification scenarios and the control run, along with
424 corresponding η_{day} contributions. The flux represents the total amount of CO_2 absorbed in the Northern
425 Gulf, and η_{day} reflects changes in the efficiency of absorption.

426

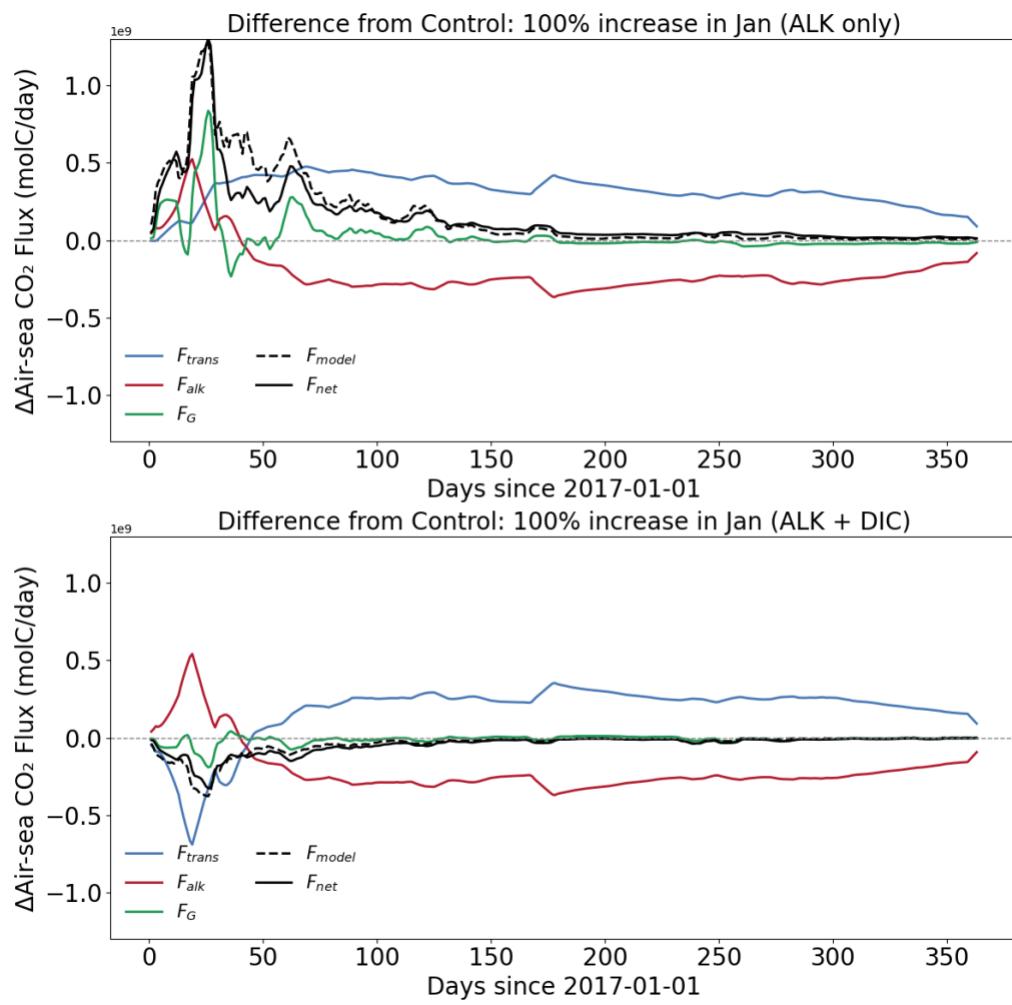

427 In the AE scenarios, one-month pulses follow similar temporal patterns, with flux peaking near the end of
428 the modification period and gradually declining toward equilibrium afterward. Later, when vertical
429 mixing in the ocean was enhanced by occasional hurricanes or by seasonally intensified winter mixing in
430 the following year, the river-derived alkalinity that had been transported to subsurface layers was brought
431 back to the surface, leading to several minor episodes of CO_2 uptake (e.g., day 250). The Jan100%
432 scenario produces the largest flux and the longest recovery time, reflecting the stronger chemical
433 disequilibrium it induces. The Jan10% and MayEqJan10% scenarios show comparable but smaller fluxes,
434 with the January scenario recovering more slowly. η_{day} contributions, however, diverge from the flux
435 patterns. The Jan100% scenario, despite yielding the highest flux, produces the lowest η_{day} during and
436 after modification, consistent with its prolonged recovery time. The Jan10% and MayEqJan10% scenarios
437 achieve similar peak efficiencies, but the May addition sustains a broader window of high efficiency
438 during the first 50 days.

439

440 The difference between the Jan100% and Jan10% scenarios can be attributed to the α_C term in Eq. 5. A
441 larger river alkalinity input pushes the system farther from equilibrium, which reduces the sensitivity of

442 CO₂ uptake per unit alkalinity added. The slight increase from Jan10% to MayEqJan10% is because of the
 443 shallower mixed layer in summer compared with winter.

444
 445 The EW scenarios reproduce the AE pattern of air–sea CO₂ flux but with negative values (outgassing) and
 446 much smaller magnitudes. For example, in the Jan100% case, the peak flux is $\sim 3.8 \times 10^8$ mol C/day,
 447 about one third of the corresponding AE value (1.2×10^9 mol C/day). Moreover, similar subsequent minor
 448 episodes of air–sea CO₂ exchange occurred in the EW cases as well, appearing as either uptake or
 449 outgassing depending on the ratio of river-derived DIC and ALK that were mixed back into the surface
 450 layer. Daily contributions to the efficiency are nearly identical in the Jan100% and Jan10% cases, while
 451 the MayEqJan10% simulation is characterized by a lagged peak and stronger fluctuations. However, these
 452 variations in η_{day} are small (on the order of 10^{-3}), and overall differences among the efficiencies in the EW
 453 scenarios negligible.



456 **Fig. 8.** Upper panels: daily domain-summed air–sea CO₂ flux differences between the control run and the
 457 AE (a1) and EW (b1) scenarios. Lower panels: η_{day} contributions from the corresponding AE (a2) and EW
 458 (b2) scenarios. The black dashed line represents the zero baseline.

459
 460 **3.5 Attribution of air–sea CO₂ flux changes**
 461 The mechanisms driving the air-sea carbon fluxes in both AE and EW scenarios are highlighted in Figure
 462 9. We selected the Jan100% case, because it induces the largest disequilibrium and produces the clearest
 463 anomaly signals above background variability. Dynamic patterns of air–sea CO₂ exchange, however, are
 464 consistent across AE and EW scenarios, with a representative exchange timescale (λ^{-1}) of approximately
 465 58 days. Full air-sea equilibration takes 2-3 times this e-folding timescale, consistent with the evolution of
 466 air-sea CO₂ flux in Fig. 8.

467
 468 In the AE simulations, adding alkalinity promotes atmospheric CO₂ uptake at the surface, enhanced by
 469 wind-driven exchange. Physical transport and mixing simultaneously dilute newly formed DIC,

470 sustaining active uptake. Once the addition is stopped, dilution of surface alkalinity creates localized
 471 reductions that can trigger sea-to-air outgassing. This process, however, is largely offset by the
 472 redistribution of absorbed DIC, allowing fluxes to return toward equilibrium.
 473
 474 In the EW case, the dynamics differ because rivers also supply additional DIC, which appears in the
 475 transport term. The imbalance between the added DIC and ALK leads to net outgassing in the first month,
 476 further amplified by wind. Once additions cease, transport and mixing dilute both DIC and ALK,
 477 returning air-sea fluxes toward equilibrium, as in the AE case.
 478

479
 480 **Fig. 9.** Attribution of air-sea CO₂ flux anomalies for the 2017-Jan100% scenario in AE and EW.
 481 Anomalies are integrated over the entire model domain, with positive values indicating fluxes into the
 482 ocean. Only the dominant drivers identified by the attribution framework, accounting for 99% of the
 483 fluxes, are shown.
 484

485 **4. Discussion**

486 **4.1 A framework for explaining efficiency changes across modification scenarios**

487 A simple framework in DIC/ALK space can help explain how η varies under different modification
 488 pathways. In Figure 10, we show equilibrium CO_{2(aq)} contours calculated with CO2SYS at T = 25 °C and

489 $S = 35.5$ psu using a range of DIC and alkalinity combinations. The black dot marks the background
490 ocean state, and the dotted line shows the background DIC/ALK ratio (0.87), which is closely aligned
491 with the equilibrium $\text{CO}_{2(\text{aq})}$ contours. Although this ratio varies seasonally and regionally in the Northern
492 Gulf (0.85–0.90), a single reference is used for clarity. The yellow and pink lines represent the AE and
493 EW pathways, respectively.

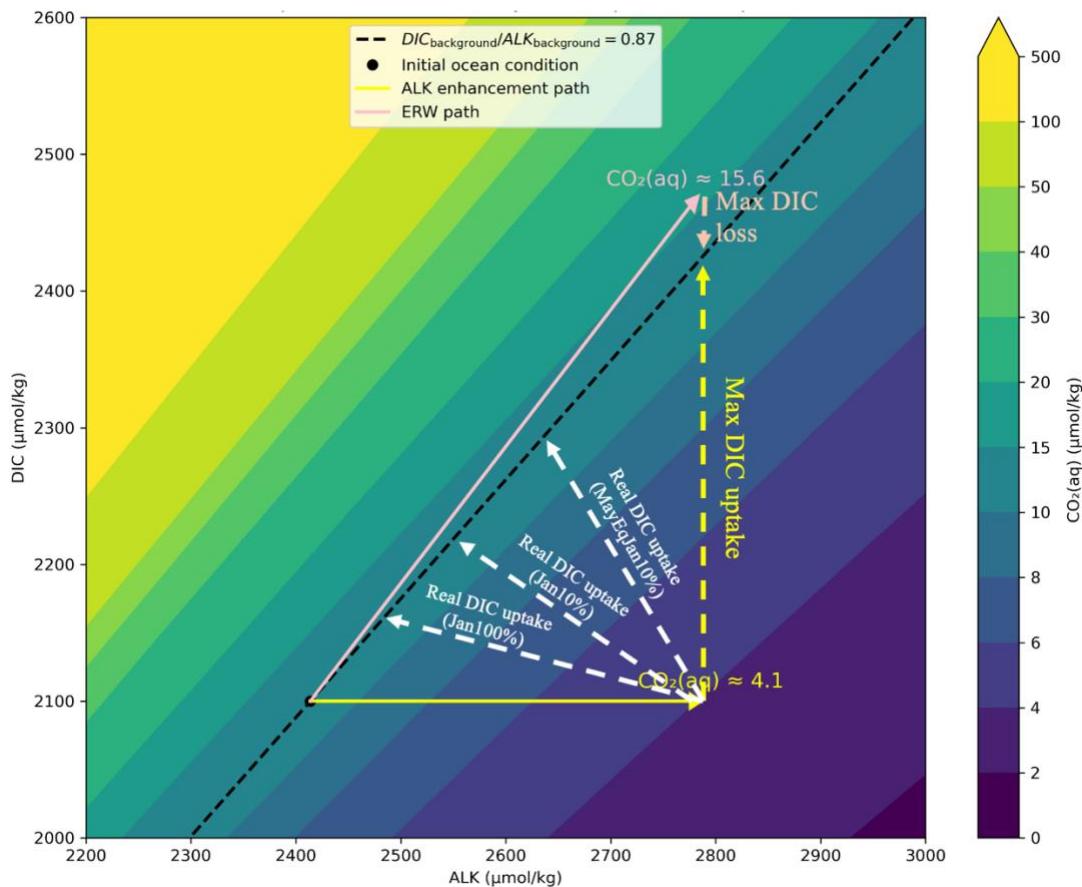
494

495 Post-perturbation, DIC/ALK values asymptotically approach the background ratio via a non-linear
496 trajectory. If the air–sea CO_2 exchange was the only process at play (e.g., neglecting ocean dynamics), the
497 trajectories would follow the vertical pink and yellow arrows in Fig. 10 until they intersect the
498 background line. These intersections mark the maximum potential CO_2 uptake for AE and the maximum
499 potential CO_2 loss for EW, respectively. The corresponding efficiency is given by

500

$$501 \eta_{\max} = -\frac{\text{DIC}_{\text{modification}}}{\text{ALK}_{\text{modification}}} + \frac{\text{DIC}_{\text{background}}}{\text{ALK}_{\text{background}}} \quad (6)$$

502


503 Where the η_{\max} represents the difference between the DIC/ALK ratio ($\frac{\text{DIC}_{\text{modification}}}{\text{ALK}_{\text{modification}}}$) imposed by the
504 alkalinity modification and the background ocean DIC/ALK ratio ($\frac{\text{DIC}_{\text{background}}}{\text{ALK}_{\text{background}}}$). In the AE scenario the
505 modification ratio equals 0, so η_{\max} is determined by the background ratio (0.87). In the EW scenario, the
506 modification ratio equals one, which gives $\eta_{\max} = -0.13$. All simulated η values in Section 3.3 for AE
507 scenarios are smaller than this theoretical maximum, and the values from EW scenarios are around the
508 theoretical maximum.

509

510 In reality, ocean dynamics impact efficiency. For AE, transport and mixing redistribute added alkalinity
511 from the surface to depth, and this contribution is represented as a retreat along the yellow trajectory, with
512 the vertical offset from the background line representing the realized CO_2 uptake. This retreat lowers
513 realized η relative to η_{\max} , as shown by the white arrow. Stronger winter mixing compared to summer
514 mixing enhances alkalinity loss (a greater retreat), causing η from the Jan10% scenario to be smaller than
515 the MayEqJan10% scenario. In addition, in the Jan100% scenario a slow air–sea exchange prolongs
516 equilibration, allowing more time for ocean advection to redistribute alkalinity to depth, further reducing
517 η .

518

519 In the EW scenarios, physical transport and mixing contribute to the removal of both DIC and ALK from
520 the mixed layer. This is represented as a retreat along the pink trajectory, with the vertical offset from the
521 background line indicating the total amount of CO_2 loss. However, this contribution is difficult to quantify
522 in the simulated η values because the EW perturbations are small relative to the background ALK/DIC
523 field and equilibrate rapidly in the shallow coastal regions where outgassing occurs. As a result, most
524 simulated values remain close to the theoretical maximum. This is a key contrast between AE and EW —
525 stronger physical transport and mixing reduce the effectiveness of AE, but increase the relative
526 effectiveness of EW, with respect to ocean carbon storage.

529 **Fig. 10.** Conceptual diagram showing how η varies across different alkalinity modification scenarios in
 530 the DIC/alkalinity space. Arrows represent conceptual directions, and do not reflect the actual results of
 531 the simulations.

533 4.2 η in the Northern Gulf across the literature

534 The simulated η values for the AE scenarios in this work range from 0.58 to 0.85. This range encloses the
 535 Gulf-wide efficiency of 0.6–0.7 reported by an independent study using one-month alkalinity pulses
 536 across globally distributed ocean patches (Zhou et al., 2025). Ou et al. (2025) simulated river-sourced
 537 alkalinity enhancement scenarios in the Gulf by increasing river alkalinity by 10% during 2021–2022,
 538 with a total addition of 1.03×10^{11} mol, comparable to our Year10% scenario (1.065×10^{11} mol). Despite
 539 similar amounts added, their simulated a CO_2 uptake ($\sim 4.09 \times 10^{10}$ mol, $\eta = 0.4$) is substantially lower
 540 than ours ($\sim 9.9 \times 10^{10}$ mol, $\eta = 0.72$). This difference may be attributed in part to model resolution. Their
 541 1 km model permits submesoscale dynamics, which enhance vertical transport, reducing the retention of
 542 added alkalinity in surface waters and lowering η . Their framework also showed strong CO_2 outgassing in
 543 the open Gulf, which was not captured in our simulation. This discrepancy may also stem from structural
 544 differences between their biogeochemical module and parameterization choices, as well as sensitivity to
 545 hydrodynamic variability at fine scales.

547 Comparisons with OAE experiments in other parts of the word indicate that, with an appropriately
 548 designed strategy, η can exceed 0.70, as found for the North Sea and northern Brazil ($\eta > 0.7$; He and

549 Tyka, 2023; Liu et al., 2025). These regions share an upper ocean stratification that favors alkalinity
550 retention in the mixed layer for long enough to sustain air–sea CO₂ exchange. Some open-ocean regions
551 report even higher efficiencies, reaching 0.96 in the Bering Sea (Wang et al., 2023) and above 0.8 in the
552 Southern Ocean (Burt et al., 2021). However, coastal or river-based enhancement strategies retain
553 significant cost and operational advantages against dispersing large quantities of alkaline material
554 offshore. AE when performed at river mouths has an added benefit of the discharge naturally spreading
555 alkalinity, expanding the area available for CO₂ uptake.

556
557 For the EW case, our simulations suggest that approximately 12–15% of the CO₂ drawdown through
558 land-based strategies is subsequently released back to the atmosphere from the ocean, independently of
559 the details of the discharge. Although there are fewer existing estimates of ocean-side CO₂ leakage
560 (Kanzaki et al., 2023; Beerling et al., 2025a), our results are generally consistent with existing work
561 indicating that ocean CO₂ leakage is a relatively small component of the overall EW life cycle (e.g., at or
562 below ~10-15% for silicate feedstocks and ~20-30% for carbonate feedstocks). However, it will be
563 important to further refine these estimates at additional locations and with higher resolution ocean models
564 that include a fully comprehensive ocean-sediment carbonate system.

565
566 **4.3 Planning perspective**
567 Our simulations show that small additions of alkalinity to riverine discharge yield higher CO₂ uptake
568 efficiency than large perturbations. Strategies that sustain modest increases in alkalinity over longer
569 periods are therefore likely to be more efficient than short, concentrated pulses (e.g., Year10% vs.
570 Jan100%). In the Northern Gulf, alkalinity enhancement is also more effective in summer than in winter
571 because a stronger stratification and shallower mixed layer promote a longer surface retention of the
572 added alkalinity (e.g., MayEqJan10% vs. Jan10%).

573
574 While smaller perturbations maximize efficiency, they may not achieve the total CO₂ uptake needed for
575 large-scale mitigation. In our simulations, one-month 10% additions produced about $8-9 \times 10^9$ mol of
576 uptake, about an order of magnitude less than the more expensive Jan100% scenario or Year10%
577 scenarios, highlighting a trade-off between efficiency, total carbon removal, and implementation costs.
578 Cost-effective strategies would favor smaller additions, whereas maximizing sequestration would require
579 accepting lower efficiency.

580
581 For EW cases, our simulations reveal only minor differences in the amount of ocean-side leakage, making
582 it a less pressing concern for strategy design. Instead, effective approaches should focus on land-based
583 factors such as mineral feedstock, weathering kinetics, cost, and signal resolvability (Paulo et al., 2021;
584 Deng et al., 2023; Li et al., 2024; Suhrhoff et al., 2024; Beerling et al., 2025a, b, Kanzaki et al., 2025). In
585 addition, our results imply that in general for a given amount of ALK modification, EW approaches will
586 tend to result in more effective ocean carbon storage because they will tend to deviate less strongly from
587 the background ALK/DIC field during transient ALK modification.

588
589 **4.4 Limitations and future work**
590 Limitations of this study are in the regional ocean model framework, the resolution of the ocean model,
591 and the uncertainties related to the representation of the biogeochemical processes. The regional
592 framework prevents tracers exiting the Northern Gulf from being tracked. This may cause an

593 underestimation of both amount and efficiency of CO₂ uptake in alkalinity enhancement scenarios, since
594 alkalinity transported beyond the boundary is no longer represented, and could resurface elsewhere.
595 However, most CO₂ uptake occurs within the first 100 to 150 days after addition (Fig. 6, Fig. S2). By the
596 time the added alkalinity exits the Northern Gulf, the majority (about 80%) has already entered the
597 subsurface layer. Consequently, any subsequent alkalinity mixing back to the surface, whether within the
598 Northern Gulf or elsewhere, would contribute little compared with the uptake that occurs during the initial
599 4-5 months. Addressing this remaining uncertainty would require nesting the regional configuration
600 within a global model to track the fate and potential resurfacing of exited alkalinity. In addition, we used a
601 prescribed background atmospheric pCO₂ in this study, which we consider reasonable given the regional
602 perturbations and the short, two-year simulation period. However, a fully coupled ocean–atmosphere
603 system with a freely evolving pCO₂ field is required to accurately capture air–sea CO₂ exchange under
604 larger and longer-term perturbations (Kanzaki et al., 2023; Tyka et al., 2025).

605
606 The horizontal resolution of our simulations (5 km) is insufficient to resolve submesoscale processes,
607 which generally require grid spacing finer than 2 km. Submesoscale circulations alter biogeochemical
608 tracer transport, especially in the vertical, (Liu et al., 2022), affecting air–sea CO₂ exchange. In the
609 Northern Gulf, these processes modify freshwater plume spreading, deepen the mixed layer, and enhance
610 vertical transport especially around mesoscale eddies (Luo et al., 2016; Liu et al., 2021, 2022). Higher-
611 resolution simulations are needed to better constrain efficiency, but their computational costs, especially
612 when coupled with a biogeochemical model, remain too high to allow the kind of scenario exploration
613 performed in this work. In this regard, it is worth noting that while AE and EW are negative-emission
614 approaches aimed at mitigating climate change, evaluating their feasibility through numerical simulations
615 produces a substantial carbon footprint. Each of our one-year scenarios required ~30,720 CPU hours,
616 equivalent to ~125.75 kg CO₂ emissions (Lannelongue et al., 2021; <https://calculator.green-algorithms.org/>). Finer resolution or a global investigation could increase this cost by an order of
617 magnitude. A path forward may be represented by the development and adoption of AI-based emulators,
618 which would enable a broad exploration of potential strategies at a lower carbon cost.
619

620
621 Lastly, in the PISCES framework, calcite precipitation is represented only through biologically mediated
622 contributions to the biological pump. Specifically, calcite formation is driven through a specified ratio
623 between particulate organic carbon (POC) and inorganic carbon (PIC) export and is then scaled to export
624 production. However, abiotic calcite precipitation may occur if the saturation state (Ω) of calcite or
625 aragonite is transiently driven to elevated values. In some cases, this may result in rapid, non-linear
626 carbonate formation and in extreme cases could lead to net alkalinity export from the mixed layer
627 (Hartmann et al., 2022; Moras et al., 2023). In our simulations, only a small area within the Mississippi
628 Delta reached $\Omega_{calcite} > 7$, (Fig. S2), which indicates limited potential for abiotic calcite precipitation in
629 our simulated perturbations. Abiotic precipitation will remove more alkalinity under a stronger pulse due
630 to a greater increase in local alkalinity. Without the abiotic precipitation parameterization, a stronger pulse
631 (Jan100%; $\eta=0.58$) is less efficient than a weaker one (Jan10%; $\eta=0.76$). While we suggest that modeling
632 estimates of the effectiveness of ocean carbon storage through alkalinity modification should be
633 standardized to include saturation-state dependent carbonate formation, we would not expect this to alter
634 the primary results of this study, in particular that weaker pulses exhibit higher CO₂ uptake efficiency.
635

636 **5. Conclusion**

637 In this study, we applied a high-resolution regional ocean–biogeochemistry model to evaluate the
638 effectiveness of two river-based alkalinity modification approaches (AE and EW) in the Northern Gulf of
639 Mexico. We conducted eight hypothetical scenarios that varied the timing, magnitude, and duration of
640 alkalinity and DIC additions in the Mississippi and Atchafalaya Rivers. Our analysis focused on the
641 simulated amount and efficiency of CO₂ uptake or leakage for each strategy adopted, and the roles of
642 ocean dynamics and air–sea fluxes in shaping the outcomes were examined. These results provide
643 valuable guidance for designing carbon dioxide removal plans in the southern United States.

644

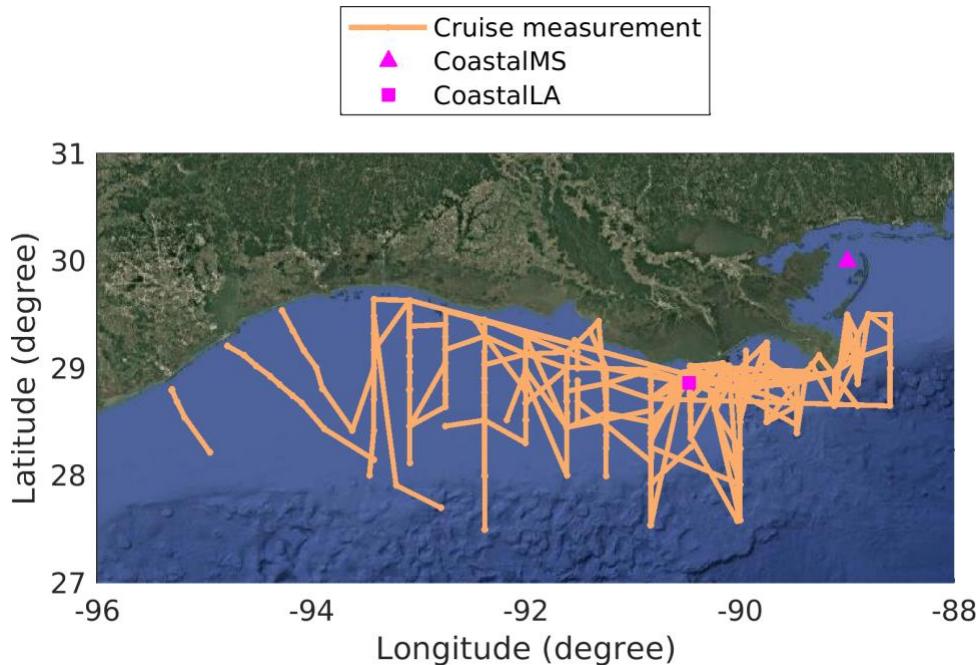
645 For the AE experiments, simulated CO₂ uptake efficiencies ranged from 0.58 to 0.85. Efficiency was
646 higher for modest perturbations and for summer-time deployment. Smaller additions kept the system
647 closer to the background equilibrium state, resulting in higher carbon uptake per alkalinity addition and
648 greater integrated CO₂ uptake. In summer, warmer surface waters produced a shallower mixed layer,
649 allowing more of the added alkalinity to remain near the surface and sustaining a broader window of high
650 uptake efficiency.

651

652 For the EW experiments, the model results indicated that 12–15% of the carbon sequestered on land was
653 re-emitted to the atmosphere from the ocean, largely independent of the timing or magnitude of the
654 additions. This stable leakage from the ocean side can be explained by the relatively small perturbations
655 of EW compared to AE. The EW simulations showed anomalies in air–sea CO₂ flux and η_{day} values that
656 were an order of magnitude smaller than those in AE. As such, although the choice of strategy may still
657 influence the percentage of leakage, the perturbation magnitude is so small that these differences are
658 difficult to detect.

659

660 Lastly, we presented a simple framework in DIC–alkalinity space to explain efficiency differences across
661 AE and EW scenarios. Theoretical efficiencies or leakages are determined by the initial DIC/alkalinity
662 ratios in river inputs relative to the background ocean ratio, which in turn reflects the equilibrium
663 carbonate chemistry. Ocean dynamics, through the vertical mixing of alkalinity, lower these theoretical
664 values by redistributing added materials vertically, with part of the additions lost to the subsurface ocean
665 before absorbing CO₂ from the atmosphere. Our results indicate that ocean dynamics exert a stronger
666 influence on AE because of the larger perturbations in DIC–alkalinity space, necessitating explicit
667 consideration of alkalinity loss to the ocean interior when developing AE strategies. In contrast, EW is
668 less sensitive to ocean dynamics, and its effectiveness, life cycle assessment and sustainability potential
669 should be assessed primarily in terms of land-based factors such as mineral feedstock and weathering
670 processes.

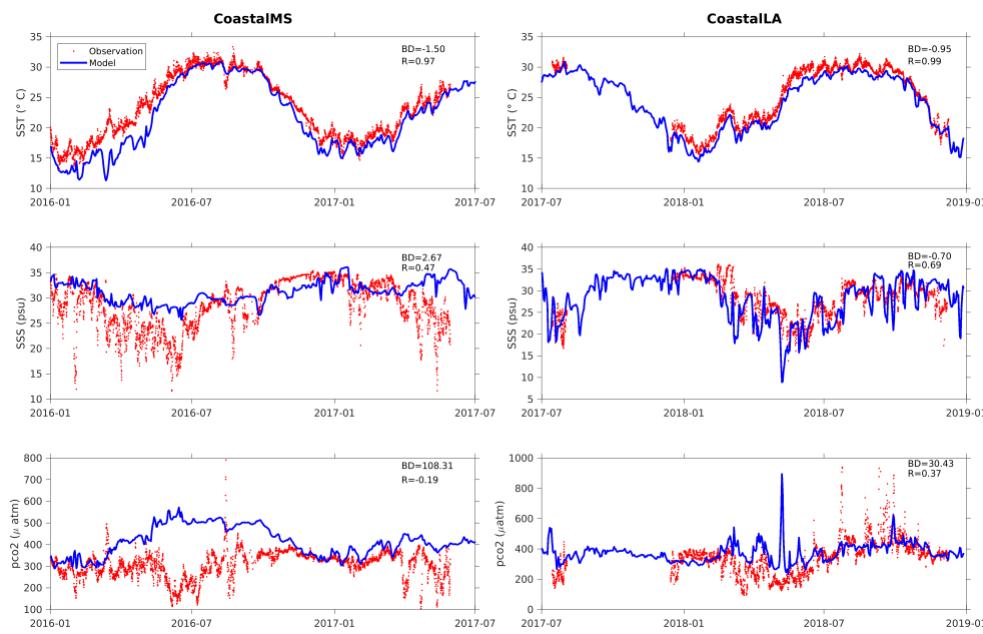

671

672 **Appendix A: Model validation and calibration**

673 *Observational data*

674 Observational data from multiple sources were used to validate and calibrate the model. In situ
675 measurements were obtained from two buoy stations located along the coastlines of Mississippi and
676 Louisiana (Coastal MS and Coastal LA, Fig. A1), operated by the Pacific Marine Environmental
677 Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA). These stations
678 provided continuous observations of sea surface temperature, salinity, and pCO₂ for model comparison
679 (<https://www.pmel.noaa.gov/co2/story/Coastal+MS> and

680 <https://www.pmel.noaa.gov/co2/story/Coastal%20LA>, accessed August 2025).
681
682 In addition to in situ observations, satellite-derived datasets were used to evaluate model-simulated
683 chlorophyll concentration and net primary production (NPP). MODIS-AQUA provides 7-day mean
684 chlorophyll data for the southeastern United States
685 (<https://erddap.marine.usf.edu/erddap/griddap/index.html?page=1&itemsPerPage=1000>, accessed August
686 2025). The Oregon State University Ocean Productivity Lab provides global NPP estimates from multiple
687 algorithms (MODIS-CBPM, MODIS-standard VGPM, VIIRS-CBPM, and VIIRS-standard VGPM)
688 (https://orca.science.oregonstate.edu/npp_products.php, accessed August 2025).
689
690 Moreover, the *project: Collaborative Research: pH Dynamics and Interactive Effects of Multiple
691 Processes in a River-Dominated Eutrophic Coastal Ocean* conducted multiple cruise-based measurements
692 of dissolved inorganic carbon (DIC), total alkalinity (TA), pH, dissolved oxygen, and pCO₂ in the
693 Northern Gulf from 2017 to 2019, with cruise trajectories shown in Fig. A1. The TA and DIC data from
694 these cruises were used to validate model simulations. All observations were obtained from the Biological
695 and Chemical Oceanography Data Management Office (BCO-DMO) portal ([https://www.bco-
696 dmo.org/project/751332](https://www.bco-dmo.org/project/751332), accessed August 2025).
697
698 Finally, the SeaFlux product, a global 1° × 1° gridded dataset of pCO₂ constructed using an ensemble
699 approach that integrates six observation-based mapping products, was used to evaluate the model
700 performance in simulating spatial patterns of pCO₂ (Fay et al., 2021).
701

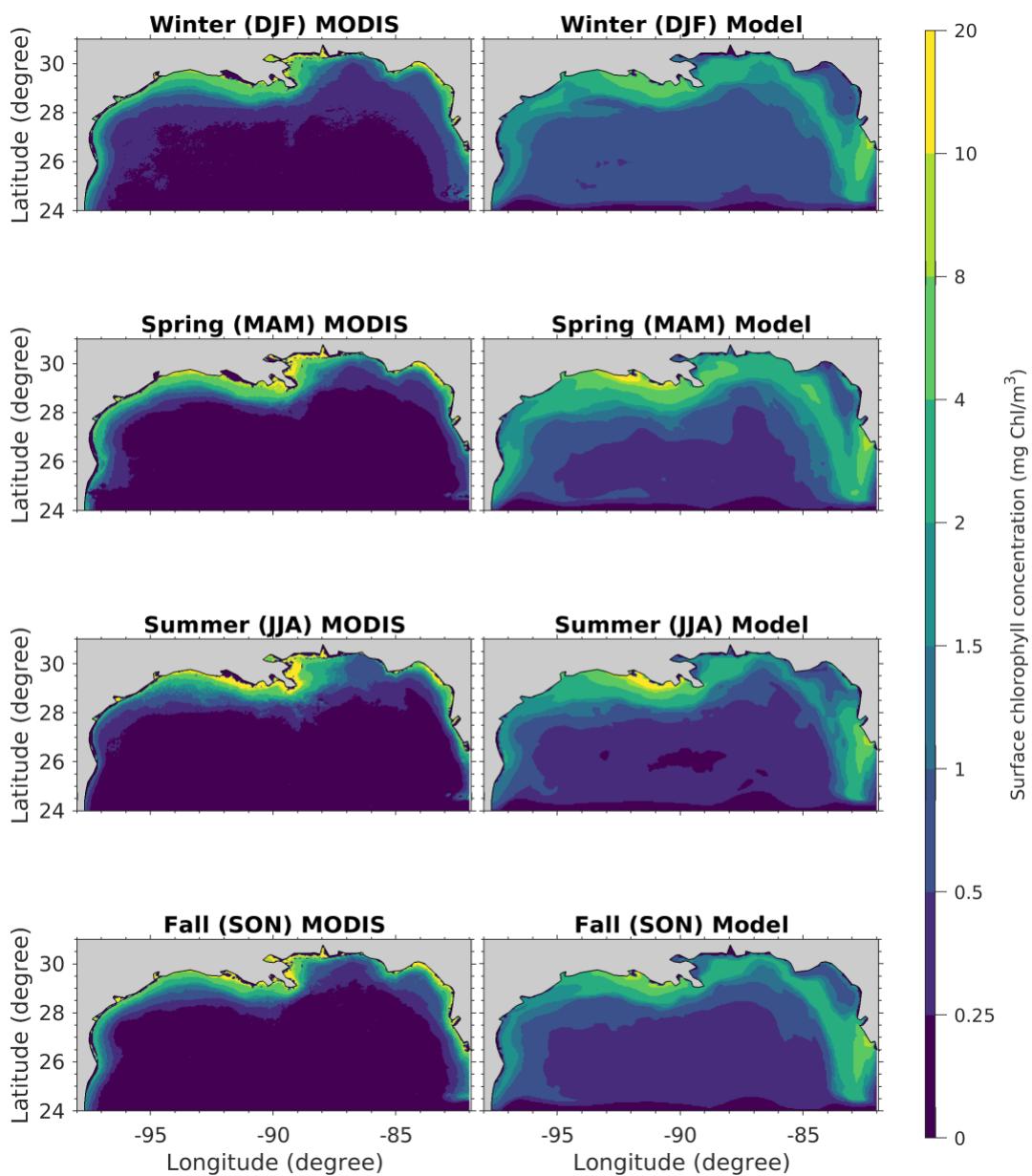


702
703 **Fig. A1.** Map showing the locations of in situ observations and the trajectories of cruise measurements.
704
705 *Buoy-Based Observational Comparisons*
706 Figure A2 compares sea surface temperature (SST), sea surface salinity (SSS), and pCO₂ between high-
707 frequency buoy measurements and model outputs at two stations near the Mississippi Delta, both strongly

708 influenced by river discharge from Mississippi and Atchafalaya rivers. For SST, the model and
 709 observations show strong agreement for SST results at both stations ($R>0.95$), though the model
 710 underestimates values by $\sim 1\text{--}1.5$ °C, especially in spring when temperatures rise rapidly. Nonetheless,
 711 this level of agreement is encouraging, considering that the simulation is free-evolving, and the coarse-
 712 resolution model cannot capture complex submesoscale coastal processes.
 713

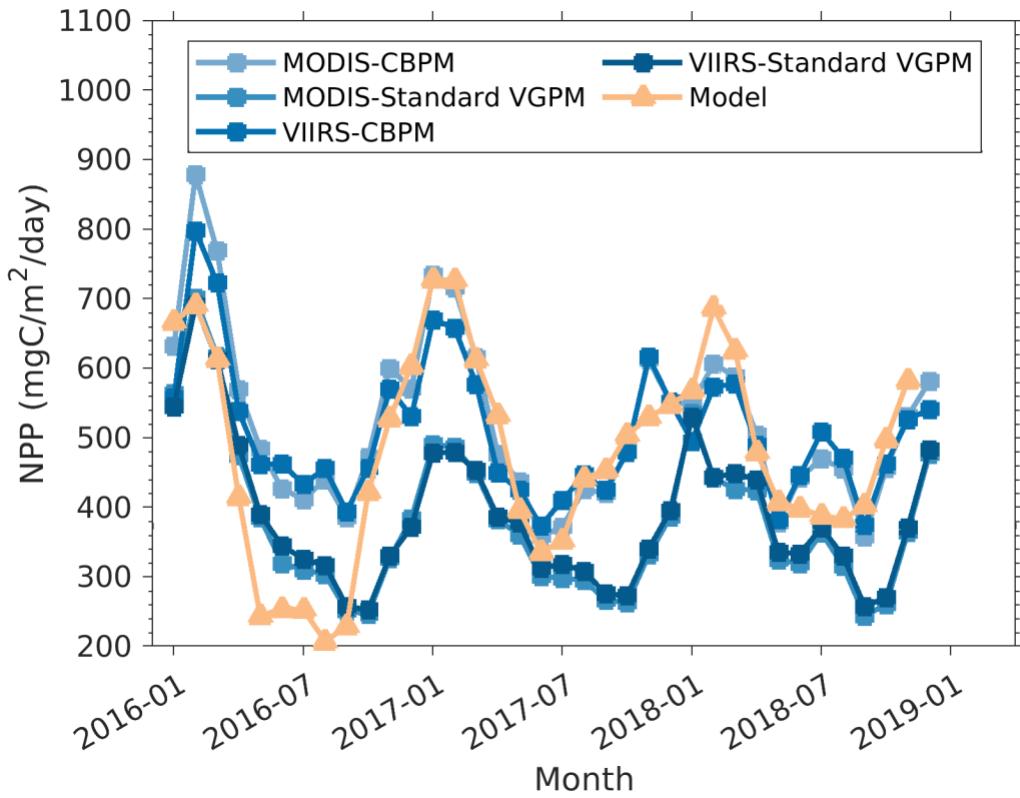
714 For SSS, the comparison between the model and observations shows generally good agreement, with
 715 better consistency at Coastal LA than at Coastal MS. At Coastal MS, the model misses salinity decreases
 716 in May–June 2016 and 2017 because river salinity was prescribed as a fixed 4 PSU (Sun et al., 2022) to
 717 avoid numerical instability, preventing representation of temporal variability.
 718

719 For pCO_2 , the model captures the overall magnitude at both stations, again with better agreement at
 720 Coastal LA. At Coastal MS, it fails to reproduce the low values observed during summer.
 721 This bias likely arises from the use of monthly climatological riverine biogeochemical inputs, which
 722 cannot resolve sub-monthly variability. Incorporating higher-frequency biogeochemical riverine inputs
 723 would likely improve model performance.
 724



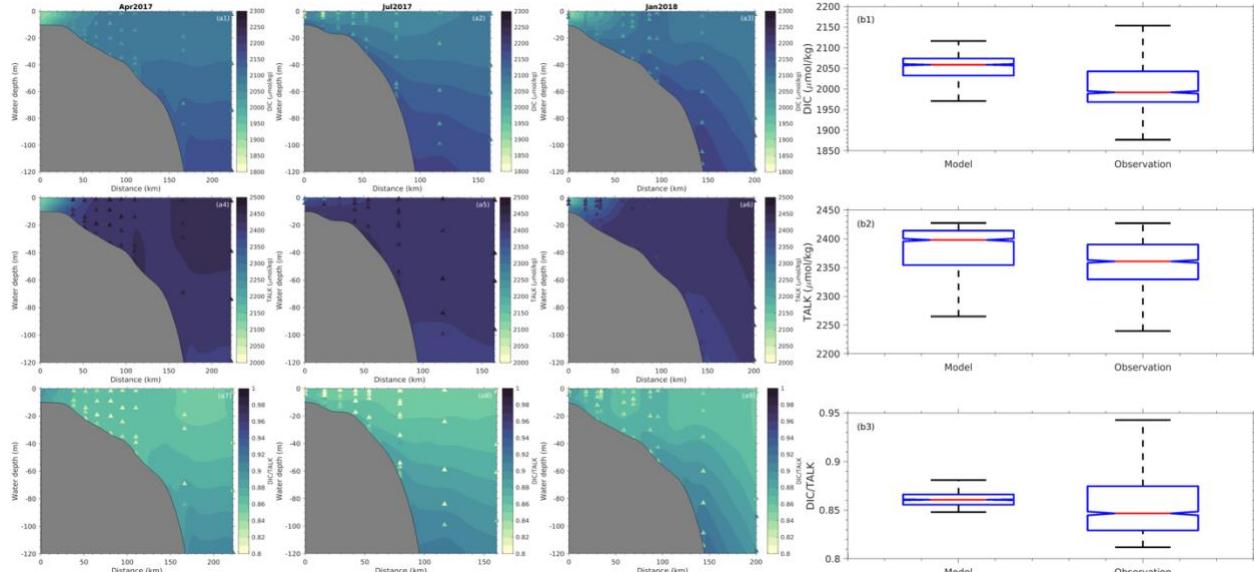
725
 726 **Fig. A2.** Time series comparing SST, SSS, and seawater pCO_2 between observations at the Coastal LA
 727 and Coastal MS sites and corresponding model outputs.
 728

729 *Satellite-Derived Product Comparisons*


730 Compared with satellite observations, the model reproduces the main spatial and seasonal patterns of
 731 chlorophyll in the Northern Gulf (Fig. A3). Observations show high concentrations (>2 mg/m³) in coastal
 732 waters, peaking near the Mississippi Delta (>10 mg/m³), and decreasing offshore with depth. The model
 733 captures this coastal-to-offshore gradient but produces a broader band of high chlorophyll that extends
 734 farther offshore than observed. Model performance in the Florida region is less consistent. Chlorophyll is
 735 underestimated along the northern Florida coast and overestimated along the southern Florida coast.
 736 Because chlorophyll patterns in this region are strongly influenced by local river inputs, the model biases

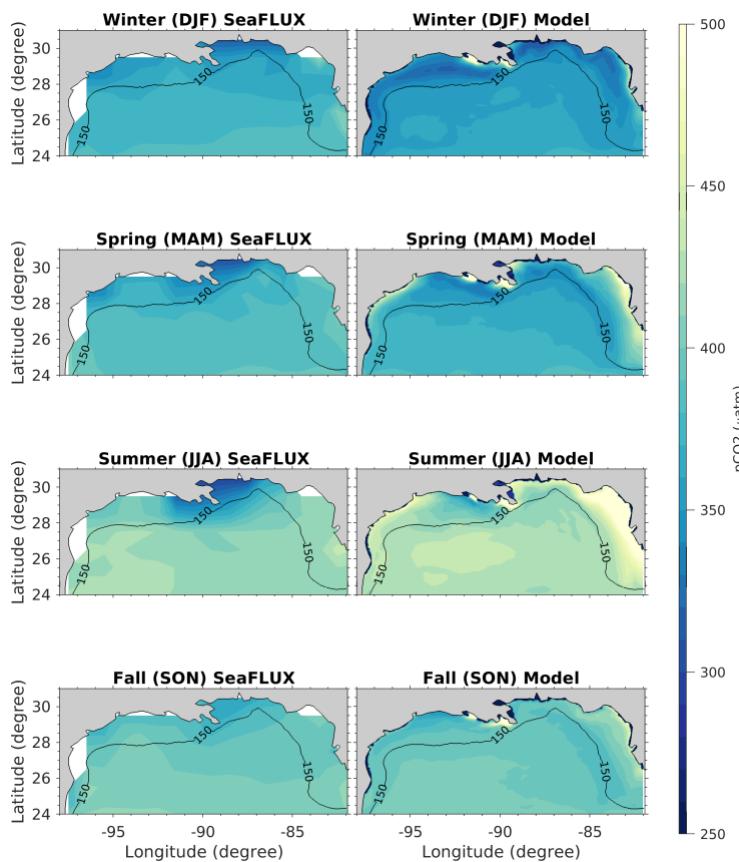
737 are likely attributable to the limited availability and quality of river discharge and riverine biogeochemical
738 tracer data used to represent this region. For the seasonal differences, both observations and the model
739 show high open-sea chlorophyll in winter, though the model tends to overestimate its magnitude.
740

741
742 **Fig. A3.** Modeled surface chlorophyll concentration compared with satellite-derived data, shown as the
743 2016–2018 seasonal mean average.
744


745 Figure A4 compares model-simulated domain-averaged NPP in the open sea ($h > 150$ m) with satellite-
746 derived estimates from various products. Estimates were limited to the open sea because satellite
747 algorithms perform reliably in clear waters but poorly in turbid coastal regions (Gómez-Letona et al.,
748 2017; Xu et al., 2022). Observed NPP ranges from ~ 200 to 900 $\text{mg C m}^{-2} \text{ day}^{-1}$, with higher values in
749 winter and lower in summer. The model reproduces both the magnitude and seasonal cycle, though
750 simulated variability is slightly larger, especially in summer 2016 and winter 2018.

751
 752 **Fig. A4.** Comparison between modeled NPP and satellite-derived NPP for the open-sea domain (h > 150
 753 m) of the Northern Gulf.

754
 755 *Cruise-Based Observational Comparisons*
 756 Cruise-based observational comparisons to the model were conducted in two ways. First, several cruise
 757 trajectories followed roughly linear tracks from the coastal region to the open sea, with multiple
 758 measurements taken along each track. These discrete measurements along a single linear trajectory were
 759 used to validate model-simulated transects. Because the measurements along a given trajectory were
 760 collected over several days, we used the monthly average of the corresponding model output for
 761 comparison. Overall, DIC, TA, and their ratio show good agreement (Fig. A5). The model captures the
 762 offshore increase of DIC (e.g., Fig. A5a2) as well as the increase of DIC with depth, although it tends to
 763 simulate slightly lower DIC values relative to the observations. TA exhibits weaker vertical gradients, and
 764 while the model reproduces the magnitude reasonably well, it produces extreme low values in some
 765 shallow coastal regions (e.g., Fig. A5a6). For the DIC/TA ratio, observed values are slightly lower than
 766 the model, a discrepancy attributable to the model's overestimation of DIC.


767
 768 Second, all TA and DIC cruise measurements (2,827 data points) were paired with model output at the
 769 same locations, depths, and times. These paired datasets were then compared using a whisker plot (Fig.
 770 A5b). Result shows that model exhibits a systematic positive bias, with the model overestimating DIC by
 771 ~40 $\mu\text{mol/kg}$, and TA by ~20 $\mu\text{mol/kg}$ relative to the median values (red line in Fig. A5b). The DIC/TA
 772 ratio is also slightly overestimated, although model values remain within the wide observational range.

773
774 **Fig. A5.** (a) Example comparison of DIC, TA, and the DIC/TA ratio from cruise measurements (scattered
775 dots) with corresponding model outputs along the cruise transect. (b) Whisker plots comparing all cruise
776 measurements with corresponded model outputs.
777

778 *SeaFlux Product Evaluation (month ave or value)*

779 Figure A6 shows the three-year averaged spatial distribution of pCO₂ from the SeaFlux product (ensemble
780 mean of six products) and the model output. Both show the same seasonal cycle, with lowest values in
781 winter when the Northern Gulf absorbs atmospheric CO₂ and highest in summer when it outgasses.
782 Compared to SeaFlux, the model simulates slightly lower winter pCO₂ and higher summer values.
783 Spatially, SeaFlux shows lower pCO₂ in coastal regions and higher values offshore, with the lowest near
784 the Mississippi Delta under strong freshwater influence. The model reproduces this gradient but also
785 simulates high pCO₂ near the estuary, a discrepancy expected given the 1° × 1° resolution cannot resolve
786 fine-scale outgassing where river water with high DIC/TA ratios (~1) mixes with ocean water of lower
787 ratios (~0.8). The model also overestimates pCO₂ along the Florida coast, likely due to its poor
788 representation of chlorophyll in that region.

791 **Fig. A6.** Comparison of the three-year (2016–2018) seasonal averages of pCO₂ between the SeaFLUX
 792 ensemble mean and the model output.

794 Acknowledgment

795 This work was supported by the United States Department of Energy (DOE) Energy EarthShot Program.
 796 AB was partially supported by the European Union's Horizon Europe research and innovation program
 797 under grant agreements no. 101056939 (RESCUE). We thank Laure Resplandy and Mathieu Poupon of
 798 Princeton University for providing the biogeochemical open boundary conditions and initial fields from
 799 the MOM6-COBALT-NWA12 v1.0 simulations, and Andrew Ross of NOAA GFDL for conducting the
 800 MOM6-COBALT-NWA12 v1.0 simulations.

802 Contributions

803 X.Z., A.B., T.I., C.T.R., conceived the study. X.Z. conducted all model simulations and performed the
 804 analyses. X.Z., A.B., T.I., C.T.R. contributed to writing, reviewing, and interpreting the manuscript. All
 805 authors have read and approved the final manuscript for submission.

807 Competing interests

808 C.T.R. was a co-founder of Lithos Carbon but has no financial ties to the company, and is currently a
 809 scientific advisor to CREW Carbon. The authors declare no additional competing interests.

811 Code and data availability

812 The CROCO-PISCES model is available at <https://www.croco-ocean.org/>. River forcing data can be
813 obtained from https://geo.gcoos.org/river_discharge/ and <https://catalog.data.gov/dataset/rc4uscoast-a->
814 river-chemistry-dataset-for-regional-ocean-model-application-in-the-u-s-east-gulf-1. Atmospheric forcing
815 and physical open boundary conditions are available from <https://www.hycom.org/dataserver/navgem> and
816 <https://www.hycom.org/data/gom10pt04>. The biogeochemical initial fields and open boundary conditions
817 were extracted from the MOM6-COBALT-NWA12 simulation and can be obtained by contacting the
818 Geophysical Fluid Dynamics Laboratory (GFDL). The model outputs generated specifically for this study
819 are available upon request.

820

821 Reference

822 Archer, D., Kheshgi, H., & Maier-Reimer, E. (1997). Multiple timescales for neutralization of fossil fuel
823 CO₂. *Geophysical Research Letters*, 24(4), 405-408.

824 Auclair, F., Benshila, R., Debreu, L., Ducouso, N., Dumas, F., Marchesiello, P., Lemarié, F. Some recent
825 developments around the CROCO initiative for complex regional to coastal modeling. In Comod 2018-
826 workshop on coastal ocean modelling (pp. 1-47) (2018, February).

827 Aumont, O., Éthé, C., Tagliabue, A., Bopp, L., & Gehlen, M. (2015). PISCES-v2: an ocean
828 biogeochemical model for carbon and ecosystem studies. *Geoscientific Model Development
Discussions*, 8(2), 1375-1509.

829 Babakhani, P., Phenrat, T., Baalousha, M., Soratana, K., Peacock, C. L., Twining, B. S., & Hochella Jr, M.
830 F. (2022). Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric
831 carbon dioxide removal. *Nature Nanotechnology*, 17(12), 1342-1351.

832 Beerling, D. J., et al. (2020). "Potential for large-scale CO₂ removal via enhanced rock weathering on
833 croplands." *Nature*, 583, 242–248.

834 Beerling, D. J., Kantzias, E. P., Lomas, M. R., Taylor, L. L., Zhang, S., Kanzaki, Y., ... & Val Martin, M.
835 (2025a). Transforming US agriculture for carbon removal with enhanced weathering. *Nature*, 1-10.

836 Beerling, D. J., Reinhard, C. T., James, R. H., Khan, A., Pidgeon, N., & Planavsky, N. J. (2025b).
837 Challenges and opportunities in scaling enhanced weathering for carbon dioxide removal. *Nature
Reviews Earth & Environment*, 1-15.

838 Broecker, W. S., & Peng, T. H. (1987). The role of CaCO₃ compensation in the glacial to interglacial
839 atmospheric CO₂ change. *Global Biogeochemical Cycles*, 1(1), 15-29.

840 Burt, D. J., Fröb, F., & Ilyina, T. (2021). The sensitivity of the marine carbonate system to regional ocean
841 alkalinity enhancement. *Frontiers in Climate*, 3, 624075.

842 Cao, L., & Caldeira, K. (2010). Atmospheric carbon dioxide removal: long-term consequences and
843 commitment. *Environmental Research Letters*, 5(2), 024011.

844 Cummings, J. A., Smedstad, O. M. Variational data assimilation for the global ocean. In Data
845 assimilation for atmospheric oceanic, and hydrologic applications (Vol. II) (pp. 303-343). Berlin,
846 Heidelberg: Springer Berlin Heidelberg (2013).

847 Coles, V. J., Brooks, M. T., Hopkins, J., Stukel, M. R., Yager, P. L., & Hood, R. R. (2013). The pathways
848 and properties of the Amazon River Plume in the tropical North Atlantic Ocean. *Journal of Geophysical
Research: Oceans*, 118(12), 6894-6913.

849 Davila, X., Gebbie, G., Brakstad, A., Lauvset, S. K., McDonagh, E. L., Schwinger, J., & Olsen, A. (2022).
850 How is the ocean anthropogenic carbon reservoir filled?. *Global Biogeochemical Cycles*, 36(5),
851 e2021GB007055.

852 Deng, H., Sonnenthal, E., Arora, B., Breunig, H., Brodie, E., Kleber, M., ... & Nico, P. (2023). The

856 environmental controls on efficiency of enhanced rock weathering in soils. *Scientific Reports*, 13(1),
857 9765.

858 Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant
859 communities for climate change mitigation and adaptation. *Nature climate change*, 3(11), 961-968.

860 Eisaman, M., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A., ... & Rønning, J. (2023).
861 Assessing technical aspects of ocean alkalinity enhancement approaches. *State of the Planet
862 Discussions*, 2023, 1-52.

863 Fennel, K., Long, M. C., Algar, C., Carter, B., Keller, D., Laurent, A., ... & Whitt, D. B. (2023). Modeling
864 considerations for research on Ocean Alkalinity Enhancement (OAE). *State of the Planet
865 Discussions*, 2023, 1-47.

866 Gómez-Letona, M., Ramos, A. G., Coca, J., & Arístegui, J. (2017). Trends in primary production in the
867 canary current upwelling system—A regional perspective comparing remote sensing models. *Frontiers in
868 Marine Science*, 4, 370.

869 Gomez, F. A., Lee, S. K., Stock, C. A., Ross, A. C., Resplandy, L., Siedlecki, S. A., ... & Salisbury, J. E.
870 (2022). RC4USCoast: A river chemistry dataset for regional ocean model applications in the US East,
871 Gulf of Mexico, and West Coasts. *Earth System Science Data Discussions*, 2022, 1-19.

872 Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., ... & Fargione, J.
873 (2017). Natural climate solutions. *Proceedings of the National Academy of Sciences*, 114(44), 11645-
874 11650.

875 Goodwin, P., & Ridgwell, A. (2010). Ocean-atmosphere partitioning of anthropogenic carbon dioxide on
876 multimillennial timescales. *Global Biogeochemical Cycles*, 24(2).

877 Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., ... & Riebesell, U.
878 (2022). Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches—consequences for
879 durability of CO₂ storage. *Biogeosciences Discussions*, 2022, 1-29.

880 Harrington, K. J., Hilton, R. G., & Henderson, G. M. (2023). Implications of the riverine response to
881 enhanced weathering for CO₂ removal in the UK. *Applied Geochemistry*, 152, 105643.

882 He, J., & Tyka, M. D. (2023). Limits and CO₂ equilibration of near-coast alkalinity
883 enhancement. *Biogeosciences*, 20(1), 27-43.

884 House, K. Z., House, C. H., Schrag, D. P., & Aziz, M. J. (2007). Electrochemical acceleration of chemical
885 weathering as an energetically feasible approach to mitigating anthropogenic climate
886 change. *Environmental Science & Technology*, 41(24), 8464-8470.

887 Intergovernmental Panel on Climate Change (IPCC). (2022). *Global Warming of 1.5°C: IPCC Special
888 Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening
889 Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty*. Cambridge:
890 Cambridge University Press.

891 Ito, T., & Reinhard, C. T. (2025). A new framework for the attribution of air-sea CO₂ exchange. *Global
892 Biogeochemical Cycles*, 39(2), e2024GB008346.

893 Jones, D. C., Ito, T., Takano, Y., & Hsu, W. C. (2014). Spatial and seasonal variability of the air-sea
894 equilibration timescale of carbon dioxide. *Global Biogeochemical Cycles*, 28(11), 1163-1178.

895 Kaushal, S. S., Likens, G. E., Utz, R. M., Pace, M. L., Grese, M., & Yepsen, M. (2013). Increased river
896 alkalinization in the Eastern US. *Environmental science & technology*, 47(18), 10302-10311.

897 Kanzaki, Y., Planavsky, N. J., & Reinhard, C. T. (2023). New estimates of the storage permanence and
898 ocean co-benefits of enhanced rock weathering. *PNAS nexus*, 2(4), pgad059.

899 Kanzaki, Y., Planavsky, N. J., Zhang, S., Jordan, J., Suhrhoff, T. J., & Reinhard, C. T. (2025). Soil cation

900 storage is a key control on the carbon removal dynamics of enhanced weathering. *Environmental*
901 *Research Letters*, 20(7), 074055.

902 Kheshgi, H. S. (1995). Sequestering atmospheric carbon dioxide by increasing ocean
903 alkalinity. *Energy*, 20(9), 915-922.

904 Kim, J., Chapman, P., Rowe, G., DiMarco, S. F., & Thornton, D. C. (2020). Implications of different
905 nitrogen input sources for potential production and carbon flux estimates in the coastal Gulf of Mexico
906 (GOM) and Korean Peninsula coastal waters. *Ocean Science*, 16(1), 45-63.

907 Lannelongue, L., Grealey, J., & Inouye, M. (2021). Green algorithms: quantifying the carbon footprint of
908 computation. *Advanced science*, 8(12), 2100707.

909 Li, Z., Planavsky, N. J., & Reinhard, C. T. (2024). Geospatial assessment of the cost and energy demand
910 of feedstock grinding for enhanced rock weathering in the coterminous United States. *Frontiers in*
911 *Climate*, 6, 1380651.

912 Li, M., Chen, Y., Doyle, R., Testa, J. M., Gagnon, A., Bott, C., & Cai, W. J. (2025). Wastewater alkalinity
913 enhancement for carbon emission reduction and marine CO₂ removal. *Environmental Research*
914 *Letters*, 20(4), 044041.

915 Liu, G., Bracco, A., Sitar, A. Submesoscale mixing across the mixed layer in the Gulf of Mexico.
916 *Frontiers in Marine Science* 8, 615066 (2021).

917 Liu, G., Bracco, A., Sun, D. Offshore freshwater pathways in the northern Gulf of Mexico: Impacts of
918 modeling choices. *Frontiers in Marine Science* 9, 841900 (2022).

919 Liu, F., Daewel, U., Kossack, J., Demir, K. T., Thomas, H., & Schrum, C. (2025). Evaluating ocean
920 alkalinity enhancement as a carbon dioxide removal strategy in the North Sea. *EGUsphere*, 2025, 1-34.

921 Lopera, L., Bracco, A., & Herrera, S. (2025). Physical connectivity between mesophotic areas in the
922 northern Gulf of Mexico. *Journal of Geophysical Research: Oceans*, 130(2), e2024JC021753.

923 Luo, H., Bracco, A., Cardona, Y., & McWilliams, J. C. (2016). Submesoscale circulation in the northern
924 Gulf of Mexico: Surface processes and the impact of the freshwater river input. *Ocean Modelling*, 101,
925 68-82.

926 Mu, L., Palter, J. B., & Wang, H. (2023). Considerations for hypothetical carbon dioxide removal via
927 alkalinity addition in the Amazon River watershed. *Biogeosciences*, 20(10), 1963-1977.

928 National Academies of Sciences, Medicine, Division on Earth, Ocean Studies Board, Board on Chemical
929 Sciences, Board on Earth Sciences, ... & Reliable Sequestration. (2019). Negative emissions technologies
930 and reliable sequestration: A research agenda.

931 National Academies of Sciences, Engineering, and Medicine. *A research strategy for ocean-based carbon*
932 *dioxide removal and sequestration*. 2021.

933 Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R., & Schulz, K. G. (2022). Ocean alkalinity
934 enhancement—avoiding runaway CaCO₃ precipitation during quick and hydrated lime dissolution.
935 *Biogeosciences*, 19(15), 3537-3557.

936 Ou, Y., Xue, Z. G., & Hu, X. (2025). A numerical assessment of ocean alkalinity enhancement efficiency
937 on a river-dominated continental shelf—a case study in the northern Gulf of Mexico. *Environmental*
938 *Research Letters*, 20(2), 024031.

939 Paulo, C., Power, I. M., Stubbs, A. R., Wang, B., Zeyen, N., & Wilson, S. (2021). Evaluating feedstocks
940 for carbon dioxide removal by enhanced rock weathering and CO₂ mineralization. *Applied*
941 *Geochemistry*, 129, 104955.

942 Raymond, P., Planavsky, N., & Reinhard, C. T. (2025). Using carbonates for carbon removal. *Nature*
943 *Water*, 1-4.

944 Regnier, P., Resplandy, L., Najjar, R. G., & Caias, P. (2022). The land-to-ocean loops of the global carbon
945 cycle. *Nature*, 603(7901), 401-410.

946 Renforth, P., & Kruger, T. (2013). Coupling mineral carbonation and ocean liming. *Energy & fuels*, 27(8),
947 4199-4207.

948 Renforth, P., & Henderson, G. (2017). Assessing ocean alkalinity for carbon sequestration. *Reviews of
949 Geophysics*, 55(3), 636-674.

950 Ross, A. C., Stock, C. A., Adcroft, A., Curchitser, E., Hallberg, R., Harrison, M. J., ... & Simkins, J.
951 (2023). A high-resolution physical-biogeochemical model for marine resource applications in the
952 northwest Atlantic (MOM6-COBALT-NWA12 v1. 0). *Geoscientific Model Development
953 Discussions*, 2023, 1-65.

954 Song, S., Ding, Y., Li, W., Meng, Y., Zhou, J., Gou, R., ... & Lin, G. (2023). Mangrove reforestation
955 provides greater blue carbon benefit than afforestation for mitigating global climate change. *Nature
956 Communications*, 14(1), 756.

957 Sun, D., Bracco, A., Liu, G. The role of freshwater forcing on surface predictability in the Gulf of
958 Mexico. *Journal of Geophysical Research: Oceans* 127(5), e2021JC018098 (2022).

959 Suhrhoff, T. J., Reershemius, T., Wang, J., Jordan, J. S., Reinhard, C. T., & Planavsky, N. J. (2024). A tool
960 for assessing the sensitivity of soil-based approaches for quantifying enhanced weathering: a US case
961 study. *Frontiers in Climate*, 6, 1346117.

962 Suselj, K., Carroll, D., Whitt, D., Samuels, B., Menemenlis, D., Zhang, H., ... & Savage, A. (2025).
963 Quantifying marine carbon dioxide removal via alkalinity enhancement across circulation regimes using
964 ECCO-Darwin and 1D models. *Journal of Advances in Modeling Earth Systems*, 17(7), e2024MS004847.
965 UNFCCC. (2015). The Paris Agreement (FCCC/CP/2015/L.9/Rev.1).

966 Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean
967 revisited. *Limnology and Oceanography: Methods*, 12(6), 351-362.

968 Wang, H., Pilcher, D. J., Kearney, K. A., Cross, J. N., Shugart, O. M., Eisaman, M. D., & Carter, B. R.
969 (2023). Simulated impact of ocean alkalinity enhancement on atmospheric CO₂ removal in the Bering
970 Sea. *Earth's Future*, 11(1), e2022EF002816.

971 Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E., Keil, R. G., & Sawakuchi, H. O.
972 (2017). Where carbon goes when water flows: carbon cycling across the aquatic continuum. *Frontiers in
973 Marine Science*, 4, 7.

974 Xu, M., Hu, C., Najjar, R. G., Herrmann, M., Briceno, H., Barnes, B. B., ... & English, D. (2022).
975 Estimating estuarine primary production using satellite data and machine learning. *International Journal
976 of Applied Earth Observation and Geoinformation*, 110, 102821.

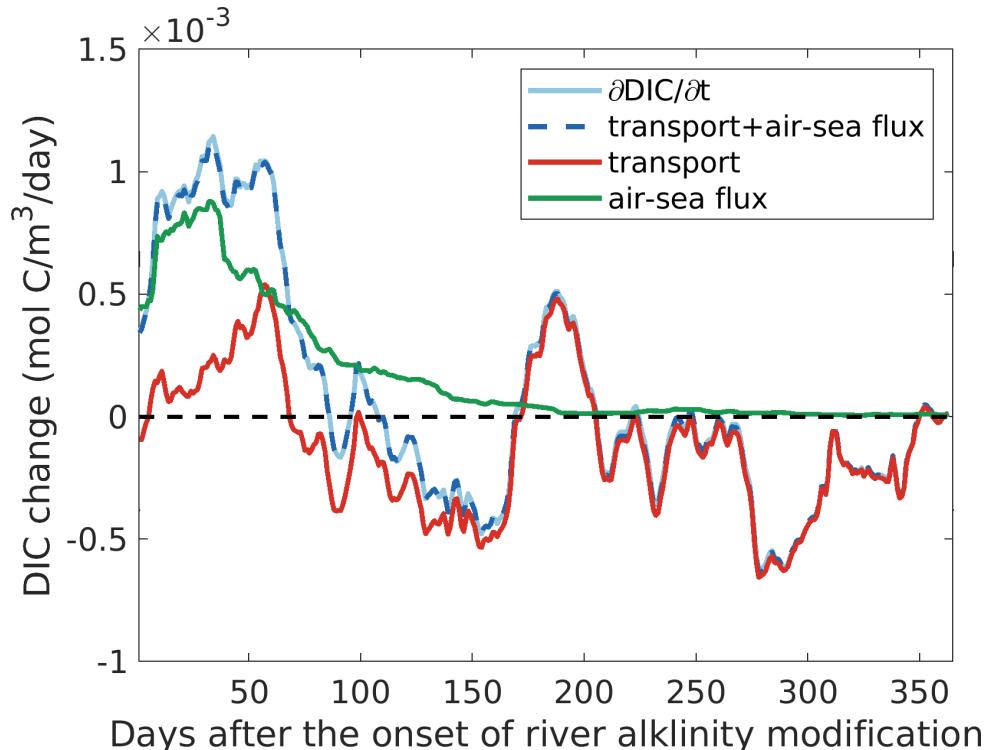
977 Zhang, S., Reinhard, C. T., Liu, S., Kanzaki, Y., & Planavsky, N. J. (2025). A framework for modeling
978 carbon loss from rivers following terrestrial enhanced weathering. *Environmental Research Letters*, 20(2),
979 024014.

980 Zheng, L. W., Hu, Y., Su, B., Chen, Q. Y., & Liu, J. (2025). The potential of wastewater treatment on
981 carbon storage through ocean alkalinity enhancement. *Science Advances*, 11(18), eads0313.

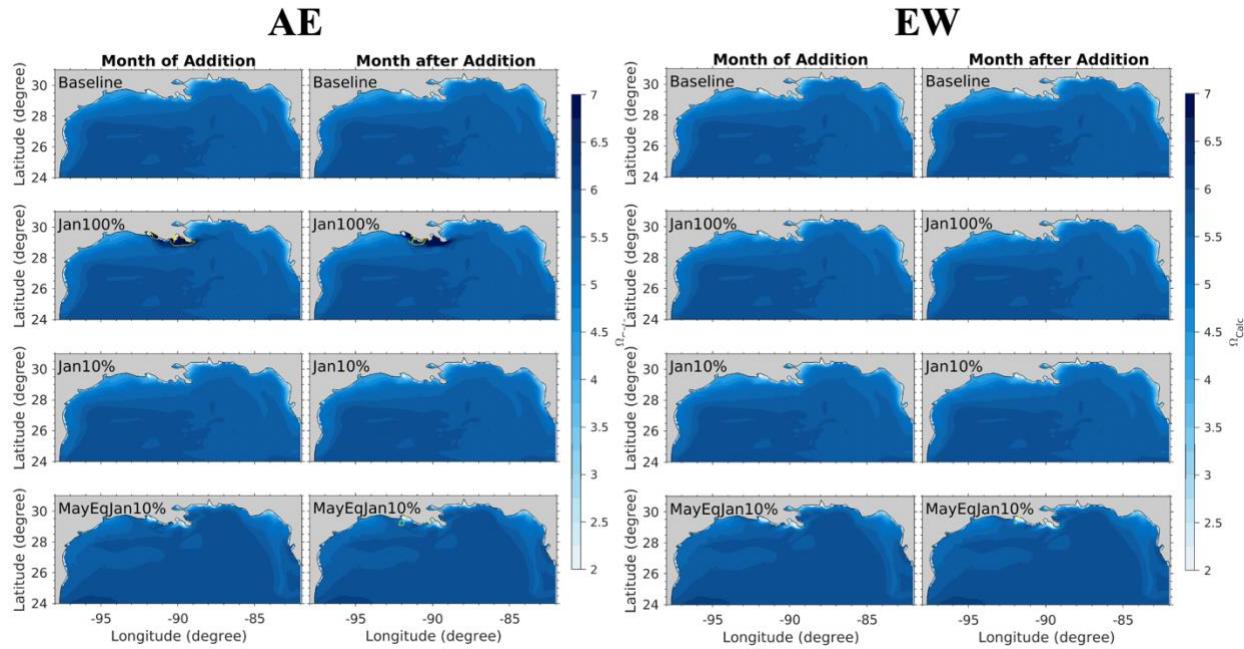
982 Zhou, X., Lopera, L., Roa-Varón, A., Bracco, A. Modeling the larval dispersal and connectivity of Red
983 Snapper (*Lutjanus campechanus*) in the Northern Gulf of Mexico. *Progress in Oceanography* 224, 103265
984 (2024).

985 Zhou, M., Tyka, M. D., Ho, D. T., Yankovsky, E., Bachman, S., Nicholas, T., ... & Long, M. C. (2025).
986 Mapping the global variation in the efficiency of ocean alkalinity enhancement for carbon dioxide
987 removal. *Nature Climate Change*, 15(1), 59-65.

Supplemental Information


High-resolution numerical assessment of large-scale riverine alkalinity modification scenarios along the southern coast of the United States

Xing Zhou^{1,*}, Annalisa Bracco^{1,2}, Takamitsu Ito¹, Christopher T. Reinhard¹


¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, USA

²CMCC Foundation, Euro-Mediterranean Center on Climate Change, Italy.

*Corresponding Author: xzhou473@gatech.edu

Fig. S1. Diagnostic DIC budget difference (integrated over the entire Gulf) between the Jan100% alkalinity enhancement scenario and the control run. The combined effects of transport (advection and mixing) and air-sea flux differences account for nearly all DIC changes that occurred in 2017. The air-sea flux term shows a clear signal of CO₂ uptake, whereas the transport term primarily reflects noise originating from the open boundary.

Fig. S2. Spatial distribution of Ω_{Cal} values for the one-month AE and EW pulse scenarios. Results are shown as monthly averages for the month of addition (left panel) and for the following month after the addition ceased (right panel). The yellow line represents the isoline where $\Omega_{Cal} > 7$.