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Abstract: River-based alkalinity modifications represent potentially effective approaches for removing
atmospheric CO: and mitigating anthropogenic climate change. Evaluating their effectiveness requires
consideration of downstream impacts on coastal ocean CO- air—sea exchange following intervention. In
this study, we applied a high-resolution (5 km) regional coupled physical and biogeochemical model
(CROCO-PISCES) to assess two carbon dioxide removal approaches, alkalinity enhancement (AE) and
enhanced weathering (EW), in the northern portion of the Gulf of Mexico. Alkalinity and dissolved
inorganic carbon inputs were added to riverine outflow from the Mississippi and Atchafalaya Rivers
according to eight hypothetical scenarios with variable magnitude and timing. In the AE scenarios,
simulations showed oceanic CO2 uptake efficiencies ranging from 58% to 85%, with higher values under
modest perturbations and summer additions when shallow mixed layers promoted near-surface retention
of added alkalinity. In the EW scenarios, simulations indicated that 12—15% of land-based carbon
sequestration was re-emitted to the atmosphere from the ocean, with the amount remaining largely
consistent across scenarios, suggesting that the ocean-side leakage is relatively stable in the EW case and
represents a relatively small component of the overall EW life cycle. Collectively, these findings
demonstrate that the long-term carbon removal efficiency of river-based alkalinity modification will often
depend on the ratio between alkalinity and dissolved organic carbon introduced to the coastal ocean.

Plain Language Summary: Rivers carry large amounts of freshwater and dissolved materials to the
ocean, linking land-based carbon processes with the marine environment. These connections make river
systems important pathways for carbon dioxide removal strategies. Although these modifications may
begin on land or in rivers, their overall climate benefits depend on what happens once the modified water
reaches the ocean. In this study, we simulated how increasing alkalinity (representing alkalinity
enhancement, AE) or both alkalinity and dissolved inorganic carbon (representing enhanced weathering,
EW) in the Mississippi and Atchafalaya Rivers might affect ocean—atmosphere CO: exchange in the
northern Gulf of Mexico. The simulations investigated scenarios with different magnitudes and timing of
river modification. Our results show that AE can strengthen ocean CO: uptake, with an efficiency of 58—
85% depending on how much and when the alkalinity is added. EW simulations show that about 12—15%
of the carbon stored on land is later released back to the atmosphere from the ocean, regardless of the
simulated strategies, suggesting that the ocean-side carbon leakage remains relatively stable.

1.Introduction

To stabilize global warming below 2°C above the preindustrial mean temperature, the Intergovernmental
Panel on Climate Change (IPCC) has emphasized the necessity of deploying negative emissions
technologies alongside deep reductions in greenhouse gas emissions (UNFCCC, 2015; IPCC, 2022).
Estimates suggest that achieving this target will require removing approximately 5—10 Gt CO: per year
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from the atmosphere (IPCC, 2022). These urgent requirements have motivated growing interest in large-
scale geoengineering strategies aimed at removing and securely storing atmospheric CO2 (NASEM,
2019). Examples include ecological-based approaches such as reforestation (Griscom et al., 2017) and
blue carbon ecosystem restoration (Duarte et al., 2013; Song et al., 2023), as well as human interventions
including enhanced rock weathering (Beerling et al., 2020; Beerling et al., 2025a), ocean alkalinity
enhancement and fertilization (Renforth & Henderson, 2017; Babakhani et al., 2022; Zhou et al., 2025).

Oceans and rivers play an important role in the portfolio of carbon dioxide removal approaches. The
ocean is the largest long-term carbon reservoir in Earth’s surface and the ultimate endpoint of the global
water cycle (Ward et al., 2017; Davila et al., 2022; Regnier et al., 2022), and rivers act as natural
conveyors linking land-based interventions to coastal seas. As a result, land- and river-based interventions
can generate downstream impacts on coastal and open-ocean CO: air—sea exchange, and neglecting these
effects may bias assessments of their effectiveness. Of particular relevance are approaches such as river-
based alkalinity enhancement and enhanced weathering, which alter river alkalinity or dissolved inorganic
carbon (DIC) and subsequently influence ocean biogeochemistry and air—sea CO: exchange once
freshwater plumes enter marine systems.

Alkalinity enhancement (AE) refers to approaches designed to increase the capacity of surface waters to
absorb atmospheric CO.. Examples include reducing seawater acidity through electrochemical processes
or adding aqueous alkaline substances such as NaOH or Ca(OH): directly to the ocean (Kheshgi 1995;
Renforth & Kriiger, 2013; Renforth $ Henderson 2017; National Academies of Sciences, Engineering,
and Medicine [NASEM], 2021; Eisaman et al., 2023; He & Tyka, 2023). A similar strategy can be applied
in rivers by elevating river alkalinity, so that when freshwater plumes enter the ocean, they generate
effects comparable to direct ocean additions (Fig. 1a). This river-based approach may be particularly
effective in river-dominated coastal regions such as the southern coast of the United States and the
northeastern coast of Brazil, where large rivers (e.g., the Mississippi and Amazon) create surface plumes
that extend thousands of kilometers offshore (Coles et al., 2013; Mu et al., 2023; Ou et al., 2025).
Moreover, river-based AE provides a practical pathway to integrate with wastewater alkalinity
enhancement (Li et al., 2025; Zheng et al., 2025), since wastewater treatment plants are built at fixed
locations and offer limited deployment flexibility.

Uptake of CO: from the atmosphere Outgassing of CO: to the atmosphere
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Fig. 1. Conceptual diagram showing changes in the ocean carbonate system following river-based AE(a)
and EW (b).
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Considerations of AE applications primarily focus on the efficiency of oceanic CO: uptake, commonly
denoted as 1, which is typically defined as the ratio of moles of CO2 removed from the atmosphere per
mole of alkalinity added. This efficiency is influenced by seasonal and spatial variability in ocean
dynamics, as well as by the magnitude of the perturbation, since the adjustment timescale of oceanic
pCO:2 can range from weeks to years depending on the scale of alkalinity addition (Jones et al., 2014; He
& Tyka, 2023; Suseji et al., 2025). At the same time, ocean mixing and transport redistribute both the
added alkalinity and the newly formed DIC horizontally and vertically, further modifying efficiency
(Fennel et al., 2023; Liu et al., 2025). Together, these processes underscore the fact that designing a
feasible AE strategy requires careful consideration of both when it is applied and how it is implemented.
In addition, it cannot be assumed that a given amount of alkalinity added will fully equilibrate via
atmospheric CO uptake (Zhou et al., 2025), with obvious implications for the monitoring, reporting, and
verification (MRV) protocols used to track the impacts of alkalinity modification on carbon markets.

In contrast to AE which is typically designed to directly increase the capacity of the surface ocean to
absorb COz, enhanced weathering (EW) initially increases the absorption of CO, on land (or in rivers),
which then causes runoff of added carbon and alkalinity. In this case, potential re-emission of CO: from
riverine and oceanic systems must be considered (Fig. 1b). EW typically involves pulverizing
weatherable rocks (e.g., basalt, olivine, or limestone) and applying them to soils or rivers, where they
dissolve and capture atmospheric CO: in the form of bicarbonate (Beerling et al., 2020; Kanzaki et al.,
2025; Raymond et al., 2025). This bicarbonate can then be transported by rivers and streams to the ocean,
where it may remain stored for timescales on the order of 10* years (Broecker & Peng, 1987; Archer et
al., 1997; Goodwin & Ridgwell, 2010). However, part of the initially captured carbon can be released
back to the atmosphere as it interacts with riverine and marine carbonate systems during transit (Cao et
al., 2010; Harrington et al., 2023). Using a dynamic river network model, Zhang et al. (2025) estimated a
5-15% carbon loss during riverine transport depending on the location and stream/river transit path. On
the ocean side, both the fraction of carbon outgassing and the timescales of this process remain poorly
understood. Using an intermediate complexity Earth system model, Kanzaki et al. (2023) estimated a
global loss of ~10% for silicate feedstocks and ~20% for carbonate feedstocks when normalized to an
equivalent amount of direct air capture. However, no regional ocean modeling studies have yet assessed
this leakage or how it may vary under different EW strategies applied at different times and magnitudes.

In this study, we employed a coupled regional ocean and biogeochemistry model (CROCO-PISCES) at 5
km horizontal resolution to evaluate river-based alkalinity modification approaches (AE and EW) in the
northern portion of the Gulf of Mexico (hereafter the Northern Gulf). The Northern Gulf provides an ideal
testbed for assessing the potential impacts of large-scale, river-based alkalinity modifications, as it is the
endpoint of the United States’ largest river system (the Mississippi—Atchafalaya River system) and is
strongly influenced by anthropogenic activities. In addition, the ocean currents in the Gulf help transport
river-derived materials, extending their influence over larger regions. Seasonally varying wind-driven
currents favor longshore transport, while the Loop Current - the most intense mesoscale current in the
Gulf flowing clockwise into the basin from the Caribbean through the Yucatan Channel, and out of it
through the Florida Straits - and its detached eddies facilitate offshore transport (Fig. 2).
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Fig. 2. General circulation features in the Northern Gulf model domain with the river mouths included in
the simulations indicated in magenta.

We designed eight scenarios in total to represent idealized AE and EW approaches. These scenarios were
structured around addition strategies that varied in the duration of additions (annual versus one month),
the magnitude of concentration increases in rivers (10% versus 100%), and the timing of initiation (winter
versus summer). For both approaches, we investigated the optimal strategy and the factors influencing it
by analyzing simulated air—sea CO: exchange dynamics and ocean dynamics in redistributing added
materials. This study aims to advance scientific understanding of the efficiency of ocean carbon storage
through river-based alkalinity modifications and to inform the development of adaptive and feasible
carbon dioxide removal strategies for the southern United States.

2.Method

2.1 Model description

In this study, we applied a regional coupled physical-biogeochemical modeling framework known as
CROCO-PISCES. The Coastal and Regional Ocean Community model (CROCO v1.3) is a split-explicit,
terrain-following ocean model built upon ROMS-AGRIF (Auclair et al., 2018). It is configured as a free-
evolving system designed to study regional, coastal, and nearshore ocean dynamics. Previous studies have
demonstrated the ability of CROCO to realistically capture mesoscale variability and circulation features
in the Northern Gulf (Liu et al., 2021a; Liu et al., 2022; Sun et al., 2022). The realistic representation of
physical transport has supported its application in studies of coral reef and fish larval connectivity (Zhou
et al., 2024; Lopera et al., 2025), underscoring the model’s utility for ecosystem-scale research.

The biogeochemical module, PISCES, has been coupled to several ocean and Earth system modeling
platforms (NEMO, CROCO, IPSL-CM, CNRM-CM, and EC-Earth). In its standard implementation it
includes four nutrients (phosphorus, nitrogen, silica, and iron), two phytoplankton groups
(nanophytoplankton and diatoms), two zooplankton groups (microzooplankton and mesozooplankton),
and a detritus pool consisting of dissolved organic matter, small particles, and large particles (Fig. 3a).
This structure enables PISCES to effectively describe the biogeochemical cycles of nutrients, carbon, and
oxygen. A comprehensive description of the PISCES model can be found in Aumont et al. (2015).
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Fig. 3. (a) Schematic diagram of the standard “Operational” version of PISCES (adapted from
https://www.pisces-community.org/index.php/model-description/). (b) Daily freshwater discharge rates of
all rivers flowing into the Gulf during 2017 and 2018, highlighting the dominant contributions of the
Mississippi and Atchafalaya Rivers.

2.2 Model configuration

The CROCO-PISCES model applied in this study covers the upper portion of the Gulf to the north of
24°N, and extending from 98°W to 82°W (Fig. 2). The model resolution is 70 sigma layers in the vertical
and 5 km in the horizontal. Open boundaries were defined along the southern and eastern edges of the
domain. Physical variables (temperature, salinity, currents, and sea surface elevation) were nudged every
three hours using data from the HY COM-NCODA analysis system (Cummings and Smedstad, 2013).
Fourteen biogeochemical variables, including nutrients (nitrate, ammonium, phosphate, silicate, and iron),
phytoplankton and zooplankton concentrations for different groups, dissolved organic and inorganic
carbon, alkalinity, and calcite concentration, were provided as monthly climatological by MOM6-
COBALT-NWA12, a 1/12 degree model for marine applications in the Northwest Atlantic (Ross et al.,
2023).

Atmospheric forcing was obtained from the Navy Global Environmental Model (NAVGEM), consistent
with the forcing used in the HY COM NCODA analysis system. The background atmospheric pCO: was
prescribed at 402 ppm, assuming negligible influence from rising atmospheric CO: over the simulation
period. Dust and nutrient deposition were not considered, as atmospheric inputs are not major nutrient
sources in this region (Kim et al., 2020).

A total of 23 rivers in the Northern Gulf were included in the simulation (Fig. 2). Discharge data were
obtained from the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) at
three-hour intervals. All river discharges were imposed as southward volume fluxes from the northern
edge of grid cells near river mouths following the "active river" approach described by Sun et al. (2022).
Biogeochemical tracers in each river, including nitrate, ammonium, phosphate, silicate, dissolved organic
carbon, dissolved inorganic carbon, dissolved oxygen, and alkalinity, were primarily derived from the
RC4USCOAST dataset, using monthly climatological values averaged over the period from 1990 to 2020
(Gomez et al., 2023). For missing values in the dataset, literature sources and USGS station data were
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used as supplemental inputs (Kaushal et al., 2013).

The initial physical fields were obtained from Sun et al. (2022), and the biogeochemical variables were
sourced from the MOM6-COBALT-NWA 12 climatology. The model was spun up using repeated 2016
forcing until the biogeochemical fields reached a stationary state. The year 2016 was selected for spin-up
because its mesoscale dynamics and Loop Current behavior are close to the climatological patterns.
Following the spin-up, simulations were conducted for 2017 and 2018. Previous studies have validated
the physical performance of CROCO simulations in nearly identical configurations by comparing
modeled water temperature, salinity, and current features with observations (Liu et al., 2021; Lopera et
al., 2025). Further model calibration and validation specifically for the biogeochemical fields over all
three years can be found in Appendix A. In general, our model successfully captures the main horizontal
and vertical spatial patterns, as well as seasonal variability in chlorophyll concentrations, net primary
production, concentrations of alkalinity and DIC, and surface pCO-. when compared with satellite, ship-
based, and in-situ measurements. Although some data-model misfits remain, such as relatively poor
performance in reproducing biogeochemical tracers along the coast of Florida, overall our results indicate
that the model performance should capture the main dynamics and primary differences between different
AE and EW scenarios.

2.3 Alkalinity modification simulations

We designed eight large scale river-based alkalinity modification scenarios (Table 1). All experiments
focus on the consequences of increasing total alkalinity concentrations and for some of them DIC
concentrations as well in the discharge from the Mississippi and Atchafalaya Rivers. These two rivers are
the largest in the region and contribute the majority of freshwater and nutrient inputs to the Northern Gulf
(Fig. 3b).

Four scenarios simulate AE, in which only concentrations of alkalinity (ALK) were increased in the river
discharge. The remaining four scenarios represent a simplified form of EW, in which both alkalinity and
an equivalent amount of DIC were added to river discharge at a 1:1 ratio (Kanzaki et al., 2023). For both
the AE and EW scenarios, we considered four modification strategies to evaluate how different input
magnitudes and timings influence the efficiency of these interventions. First, we applied a 10% increase
in riverine ALK (or ALK+DIC) concentrations sustained throughout the entire model year 2017
(hereafter, Year10%). Second, we introduced a one-month pulse that doubled the concentrations in
January 2017 (hereafter, Jan100%). Third, we applied a one-month pulse with a 10% increase in January
2017 (hereafter, Jan10%). Forth, we applied the same total amount of alkalinity and DIC as in the third
strategy but distributed it to river loadings beginning on May 12, 2017, at a time of high river discharge
(Fig. 3b) and shallow surface mixed layer in the Northern Gulf (hereafter, MayEqJan10%).

The interventions in the first and second strategies result in estimated total additions of 1.37 x 10 mol
and 1.065 x 10" mol of alkalinity and DIC, respectively. These amounts are consistent with those used in
other alkalinity enhancement studies, including the global estimates by Zhou et al. (2025), which applied
additions of 2 x 10" mol and 6 x 10'! mol per ocean patch, Liu et al. (2025) with 1.34 % 10" mol in the
North Sea, and Ou et al. (2025) with 1.03 x 10'* mol applied as in our case to the Northern Gulf. The third
and fourth strategies involve a smaller addition of 1.065 % 10'° mol, which may be more easily attainable



227
228
229

230
231
232
233
234
235
236
237
238

239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

in regional deployments.

Table 1. Summary of alkalinity modification scenarios.

River modifications AE EW

Control run - -

10% increase in 2017 1.37 x 10" mol extra ALK 1.37 x 10" mol extra ALK +
(Year10%) added through 2017 equivalent DIC through 2017
100% increase in Jan 1.065 x 10" mol extra ALK 1.37 x 10" mol extra ALK
(Jan100%) added through 2017 January added through 2017 January
10% increase in Jan 1.065 x 10"mol extra ALK 1.065 x 10'° mol extra ALK
(Jan10%) added through 2017 January added through 2017 January
10% increase (of Jan) in mid- 1.065 x 10'° mol extra ALK 1.065 x 10'° mol extra ALK
May added through 2017 May added through 2017 May
(MayEqJan10%)

In addition to the alkalinity modification scenarios, we conducted a simulation that continuously released
passive tracers from the Mississippi and Atchafalaya Rivers during 2017-2018 to diagnose the spatial and
temporal variability associated with physical advection and mixing.

2.4 Calculation of CO, uptake efficiency
CO: uptake efficiency 7 is originally defined as a dimensionless number equal to the ratio of the DIC
inventory change to the cumulative added alkalinity (Eq. 1):

_ ADIC(t)V
- AALKriver(t) (1)

where ADIC (t) is the difference in the spatially (volume-weighted) average of DIC concentration
between a scenario run and a control run over time, summed across the simulated domain (mol C/m3), V
is the domain volume (m3), and AALK, ¢, (t) is the cumulative riverine alkalinity addition (mol eq).

However, the definition in Equation 1 is not suitable for our study for two reasons. First, our model is a
regional model and the model domain has an open-boundary system, such that DIC exchange across the
open boundary complicates the attribution of cumulative DIC changes solely to atmospheric CO: uptake
(Fig. S1). Since the perturbation is applied to the Northern Gulf coast, and the simulation is only run for
<2 years, air-sea carbon exchange outside of the regional model domain is negligible on relatively short
timescales. Second, in EW scenarios, there is additional DIC introduced through river inputs, which
complicates the attribution of the simulated DIC change to air-sea CO, exchange. The uptake efficiency
can be measured focusing on the changes in air-sea carbon exchange rather than the DIC inventory
change. Therefore, we modified Equation 1 by replacing the volume-integrated DIC change with the
integrated air—sea CO: flux over time and surface area, allowing for a more direct quantification of DIC
changes from the drawdown of atmospheric CO: alone. This leads to Equation 2:
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where AF (t) is the difference in the spatially (area-weighted) average of air—sea CO: flux between
scenario runs and control run over time (mol C/m? /day), integrated over the simulation period and 4 is
the surface area of the model domain (m?).

In addition to integrating AF (t) over the simulation period to calculate 77, we also defined a daily 1 (1day)
contribution, expressed as the instantaneous ratio of oceanic CO; uptake, AAF (t), to the total alkalinity
added to the river (Eq. 3). Summing the daily contributions recovers the overall 7 value given in Eq. 2.
Therefore, nday reflects the short-term (daily-scale) efficiency in driving air—sea CO: exchange in units of
day!. To ensure comparability across different modification scenarios and to minimize noise from
variability in continuous riverine inputs during the addition period, we use the total amount of alkalinity
(AALK,iver totqr) added to the river rather than the time-dependent AALK, e, (t) in the denominator of
Equation 3.

AAF (t)

=270 3)

nday AALKriver,total

2.5 Process attribution of air-sea CO2 exchange

Ito and Reinhard (2025, hereafter IR25) proposed a new framework for attributing air—sea carbon fluxes
to specific physical and biogeochemical processes. Briefly, this approach combines carbonate chemistry,
surface carbon budget and gas exchange parameterization to express the evolution of air-sea CO;
exchange as a first-order ordinary differential equation.

daF

= —AF + T fi “)

where A is the inverse of the air-sea CO; exchange timescale, and f, are the forcing from physical and
biogeochemical processes contributing to air—sea CO, exchange (e.g., advection, mixing, biological
uptake, changes in temperature, salinity, alkalinity, atmospheric CO-, and gas exchange). Mathematical
derivation and formulation of Eq (4) can be found in IR25. This approach has proven effective in both an
idealized two-box nutrient—carbon cycle model and a three-dimensional simulation of an iron and
alkalinity release in the Southern Ocean. Here, we applied the same framework to our study. The key
concept of this framework is that air—sea CO; flux integrates the effect of individual forcings over the
CO; exchange timescale as expressed as the negative feedback term (Eq. 4). The timescale is set by G,
the air-sea gas exchange coefticient (m/day), expressed as a function of wind speed and the Schmidt
number for CO, (Wanninkhof, 2014), ., a dimensionless carbonate chemistry coefficient that reflects the
sensitivity of surface pCO to perturbations in DIC, and 4, the surface mixed layer depth (m).

A= ()

where A has unit of day™' and represents the strength of the negative feedback by which air—sea CO: flux
drives the surface ocean back toward equilibrium after a disturbance induced by an external forcing. In
other words, the larger the value of A, the faster the surface ocean returns to equilibrium following a
perturbation. G and /4 can vary due to atmospheric wind and ocean mixed layer variability, and their
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climatological mean values are used for the calculation of the representative A value. We applied this
framework to the Northern Gulf by integrating over the full simulation period and focusing on the upper
10 meters of the water column, representing the annually averaged mixed layer depth estimated through a
regression-based diagnostic approach using model outputted sea surface temperature time series.
Advection and mixing terms were obtained directly from the model’s DIC diagnostic equation.
Temperature, salinity, and alkalinity were extracted from the standard model output. Values for the
biological carbon sink, atmospheric CO-, and gas transfer coefficient were obtained by modifying the
model code to output these non-standard output variables. Eq. (4) is numerically integrated using Euler
forward time-stepping scheme, and sensitivity tests with the fourth-order Runge—Kutta method confirmed
the robustness of the numerical calculation.

3.Results

3.1 Natural seasonal and spatial variability

To provide context on the Gulf's baseline conditions prior to any alkalinity modification, we present the
two-year monthly averaged spatial distributions of air—sea CO- flux and passive tracer concentrations
from the control run (Fig. 4). The air—sea CO: flux highlights the natural variability in CO: exchange
across the region, and the passive tracers reveal the transport pathways that added alkalinity or DIC from
riverine sources will be subject to.
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Fig. 4 Two-year monthly averaged spatial distributions of air—sea CO: flux (a) and passive tracer
concentrations (b) from the control run. Positive values denote CO> fluxes from the atmosphere into the
surface ocean.

Figure 4a shows that the Northern Gulf acts as an ingassing system during winter and spring, absorbing
CO: from the atmosphere, and transitions to outgassing in summer and fall when surface waters are
warmer. These seasonal changes are stronger in nearshore regions, following the spatial pattern of high
chlorophyll concentrations where the biological pump consumes DIC (Fig. A3). Most of the CO: uptake
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occurs along the Northern Gulf coastline in winter, whereas peak outgassing is simulated along the
Florida coast in summer. However, this pronounced summer outgassing along the Florida coast may
reflect in part a numerical artifact, as satellite observations do not indicate high chlorophyll
concentrations during that season (Fig. A3).

Figure 4b shows that passive tracers released from the Mississippi and Atchafalaya Rivers are generally
carried westward along the shoreline by surface currents driven by predominantly east-to-west winds.
During summer (June—September), part of the plume is transported east of the Mississippi Delta as
currents reverse under weakened winds, eventually interacting with the Loop Current system and
spreading offshore into the open Gulf. This result suggests that under the proposed alkalinity modification
scenarios additional air—sea CO: exchange is most likely to occur along the Texas—Louisiana coastline,
with the strongest signals near the Mississippi Delta, rather than in the eastern Gulf.

3.2 Distribution of added alkalinity

The temporal and spatial distribution of added alkalinity and DIC in the surface ocean is critical for
determining when and where CO: uptake occurs and how efficient it is, since only surface-retained
additions contribute to air—sea exchange. We present the surface footprint of added alkalinity for the three
one-month AE pulse scenarios in Figure 5. Alkalinity is emphasized here because surface DIC is
influenced by both river inputs and air—sea CO» exchange, whereas alkalinity is not affected by the air-sea
CO; exchange and primarily governed by hydrodynamics.

The Jan100% scenario forms the largest surface alkalinity plume due to the greater riverine input. During
the month of addition, most alkalinity remains near the Mississippi Delta, with stronger accumulation
west of the delta rather than to the east. By the following month, it is advected eastward by wind-driven
currents and entrained into the Loop Current, propagating southeastward into the open Gulf. The Jan10%
scenario produces a similar spatial pattern, as alkalinity is also added in January. In comparison, the
MayEqJan10% scenario spreads alkalinity over a broader region and retains it closer to the surface due to
higher river discharge and shallower mixed layer. By the following month, most additions are transported
west of the Delta, consistent with the passive tracer result.
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Fig. 5 Surface footprint of added alkalinity for the one-month AE pulse scenarios, represented as
differences in average alkalinity concentrations in the upper 10 m between each scenario and the control
run. Results are shown as monthly averages for the month of addition (left) and the subsequent month
after the addition stopped (right). The EW scenarios (not shown) exhibit surface similar footprints.

Figure 6 shows the amount of added alkalinity retained in the upper 10 m, which directly contributes to
air—sea CO:2 exchange, expressed as both total inventory and percentage of riverine addition. The
Jan100% scenario shows the highest retention inventory, peaking at about 7 x 10'° mol by the end of the
one-month addition before declining as alkalinity is redistributed to deeper layers. The two 10% one-
month pulse scenarios follow a similar temporal pattern, with peak retention inventories about one
seventh of the 100% scenario.

The percentage results provide a different perspective. Among the one-month pulse scenarios, the
MayEqJan10% scenario shows much higher retention than the two January additions, particularly
between days 50 and 100. The two January scenarios yield nearly identical retention, as they are subject
to the same winter—spring conditions.

The added alkalinity in the MayEqJan10% scenario shows high retention, benefiting from both elevated
river discharge and a shallow mixed layer. To disentangle these two effects, we conducted a sensitivity
experiment in which the river discharge from January 2017 was shifted to begin in May 2017, and the
10% one-month addition was repeated based on this modified run. The results show only minor
differences between the control and sensitivity runs (green solid versus green dashed lines), indicating
that changes in mixed layer depth are the primary factor determining the higher retention of the
MayEqJan10% scenario.

Total alklanity difference (umol/kg)
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3.3 CO: uptake efficiency

Figure 7 presents the temporal evolution of CO: uptake efficiency across all alkalinity modification
scenarios. In AE scenarios, 1| increased rapidly during the first 7-8 months before stabilizing with only
minor changes, reflecting the timescale for the air-sea CO» transfer to fully respond to the added
alkalinity. Final n| values varied, with the Jan100% scenario yielding the lowest value (0.58). Reducing
the addition to 10% in the same month increased 1 to 0.76, and similarly the Year10% scenario produced
an efficiency of 0.72. These results suggest that smaller modifications in river alkalinity concentrations
lead to higher n. This does not include the potential inorganic precipitation of calcium carbonate particles
in the case of strong alkalinity increase (Jan100%), thus the efficiency of 0.58 should be considered as an
upper bound (Fig. S2). The timing of addition also matters. The summer alkalinity release scenario
(MayEqJan10%) reached an 1 of 0.85, considerably higher than the equivalent winter case (Jan10%). The
higher summer efficiency coincided with both a shallower mixed-layer and with the transition towards
seasonal outgassing.

All EW scenarios produced small but negative 1 values, indicating that introducing both ALK and DIC in
a 1:1 ratio result in CO: release to the atmosphere, through an ocean-side “carbon leakage” (e.g., Kanzaki
et al., 2023). In the EW cases, 1 did not converge to a steady state but fluctuated within a relatively small
absolute range. Final values differed only slightly, ranging between —0.12 and —0.15 (Fig. 7). A slight
“leakage overshoot” was observed in the summer release scenario at the end of 2017, which was
subsequently mitigated in early 2018 due to the influence of strong winter mixing due to high winds.
These dynamics reflect the fact that for a given perturbation to marine ALK concentrations the EW case
introduces DIC at a relative excess to background dissolved pCO,, but at a smaller deviation overall from
the background ALK/DIC field (see Section 4.1). In addition, this implies that for a given alkalinity
introduction the ultimate quantity of carbon storage will be larger for the EW case than for the AE case

(Fig. 7).
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Fig. 7. The CO:- uptake efficiency (1) for different AE (left) and EW (right) scenarios. The accumulated
CO: uptake used to calculate 1 is the sum over the entire model domain. 7¢;,4; indicates the n values for
the different scenarios at the end of the simulations. The three one-month addition cases are simulated for
about one year, as 1 changes only minimally after that period. The Year10% case runs for more than 500
days because alkalinity is continuously added throughout an entire year, followed by an extended
simulation to capture 1 changes beyond that period.

3.4 Air-Sea CO: flux

Besides surface retention of added alkalinity or DIC, temporal variations in the rate of air—sea CO- gas
exchange influence uptake efficiency. A higher exchange rate reduces the chance that the alkalinity or
DIC retained near the surface is advected to the deep ocean. Figure 8§ shows Northern Gulf-integrated
differences in air—sea CO- flux between modification scenarios and the control run, along with
corresponding nday contributions. The flux represents the total amount of CO- absorbed in the Northern
Gulf, and naay reflects changes in the efficiency of absorption.

In the AE scenarios, one-month pulses follow similar temporal patterns, with flux peaking near the end of
the modification period and gradually declining toward equilibrium afterward. Later, when vertical
mixing in the ocean was enhanced by occasional hurricanes or by seasonally intensified winter mixing in
the following year, the river-derived alkalinity that had been transported to subsurface layers was brought
back to the surface, leading to several minor episodes of CO: uptake (e.g., day 250). The Jan100%
scenario produces the largest flux and the longest recovery time, reflecting the stronger chemical
disequilibrium it induces. The Jan10% and MayEqJan10% scenarios show comparable but smaller fluxes,
with the January scenario recovering more slowly. N4ay contributions, however, diverge from the flux
patterns. The Jan100% scenario, despite yielding the highest flux, produces the lowest ngay during and
after modification, consistent with its prolonged recovery time. The Jan10% and MayEqJan10% scenarios
achieve similar peak efficiencies, but the May addition sustains a broader window of high efficiency
during the first 50 days.

The difference between the Jan100% and Jan10% scenarios can be attributed to the a, term in Eq. 5. A
larger river alkalinity input pushes the system farther from equilibrium, which reduces the sensitivity of
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CO- uptake per unit alkalinity added. The slight increase from Jan10% to MayEqJan10% is because of the
shallower mixed layer in summer compared with winter.

The EW scenarios reproduce the AE pattern of air—sea CO:2 flux but with negative values (outgassing) and
much smaller magnitudes. For example, in the Jan100% case, the peak flux is ~3.8 x 10® mol C/day,
about one third of the corresponding AE value (1.2 x 10° mol C/day). Moreover, similar subsequent minor
episodes of air—sea CO: exchange occurred in the EW cases as well, appearing as either uptake or
outgassing depending on the ratio of river-derived DIC and ALK that were mixed back into the surface
layer. Daily contributions to the efficiency are nearly identical in the Jan100% and Jan10% cases, while
the MayEqJan10% simulation is characterized by a lagged peak and stronger fluctuations. However, these
variations in Nday are small (on the order of 107%), and overall differences among the efficiencies in the EW
scenarios negligible.
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Fig. 8. Upper panels: daily domain-summed air—sea CO: flux differences between the control run and the
AE (al) and EW (bl) scenarios. Lower panels: nday contributions from the corresponding AE (a2) and EW
(b2) scenarios. The black dashed line represents the zero baseline.

3.5 Attribution of air—sea CO: flux changes

The mechanisms driving the air-sea carbon fluxes in both AE and EW scenarios are highlighted in Figure
9. We selected the Jan100% case, because it induces the largest disequilibrium and produces the clearest
anomaly signals above background variability. Dynamic patterns of air—sea CO. exchange, however, are
consistent across AE and EW scenarios, with a representative exchange timescale (A™1) of approximately
58 days. Full air-sea equilibration takes 2-3 times this e-folding timescale, consistent with the evolution of
air-sea CO; flux in Fig. 8.

In the AE simulations, adding alkalinity promotes atmospheric CO: uptake at the surface, enhanced by
wind-driven exchange. Physical transport and mixing simultaneously dilute newly formed DIC,
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sustaining active uptake. Once the addition is stopped, dilution of surface alkalinity creates localized
reductions that can trigger sea-to-air outgassing. This process, however, is largely offset by the
redistribution of absorbed DIC, allowing fluxes to return toward equilibrium.

In the EW case, the dynamics differ because rivers also supply additional DIC, which appears in the
transport term. The imbalance between the added DIC and ALK leads to net outgassing in the first month,
further amplified by wind. Once additions cease, transport and mixing dilute both DIC and ALK,
returning air—sea fluxes toward equilibrium, as in the AE case.
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Fig. 9. Attribution of air-sea CO; flux anomalies for the 2017-Jan100% scenario in AE and EW.
Anomalies are integrated over the entire model domain, with positive values indicating fluxes into the
ocean. Only the dominant drivers identified by the attribution framework, accounting for 99% of the
fluxes, are shown.

4.Discussion

4.1 A framework for explaining efficiency changes across modification scenarios

A simple framework in DIC/ALK space can help explain how n varies under different modification
pathways. In Figure 10, we show equilibrium COxq) contours calculated with CO2SYS at T =25 °C and
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S =35.5 psu using a range of DIC and alkalinity combinations. The black dot marks the background
ocean state, and the dotted line shows the background DIC/ALK ratio (0.87), which is closely aligned
with the equilibrium COx@q) contours. Although this ratio varies seasonally and regionally in the Northern
Gulf (0.85-0.90), a single reference is used for clarity. The yellow and pink lines represent the AE and
EW pathways, respectively.

Post-perturbation, DIC/ALK values asymptotically approach the background ratio via a non-linear
trajectory. If the air—sea CO: exchange was the only process at play (e.g., neglecting ocean dynamics), the
trajectories would follow the vertical pink and yellow arrows in Fig. 10 until they intersect the
background line. These intersections mark the maximum potential CO- uptake for AE and the maximum
potential CO: loss for EW, respectively. The corresponding efficiency is given by

DICmodification DICbackground
nmax - (6)

ALKmodification ALKbackground

modification

Where the 1,,,, represents the difference between the DIC/ALK ratio (ZC ) imposed by the

modification

). In the AE scenario the

background

alkalinity modification and the background ocean DIC/ALK ratio (ZC

background
modification ratio equals 0, S0 7,4 1S determined by the background ratio (0.87). In the EW scenario, the
modification ratio equals one, which gives 17,4, = - 0.13. All simulated # values in Section 3.3 for AE
scenarios are smaller than this theoretical maximum, and the values from EW scenarios are around the
theoretical maximum.

In reality, ocean dynamics impact efficiency. For AE, transport and mixing redistribute added alkalinity
from the surface to depth, and this contribution is represented as a retreat along the yellow trajectory, with
the vertical offset from the background line representing the realized CO: uptake. This retreat lowers
realized n) relative to Nmax, as shown by the white arrow. Stronger winter mixing compared to summer
mixing enhances alkalinity loss (a greater retreat), causing n from the Jan10% scenario to be smaller than
the MayEqJan10% scenario. In addition, in the Jan100% scenario a slow air—sea exchange prolongs
equilibration, allowing more time for ocean advection to redistribute alkalinity to depth, further reducing

n.

In the EW scenarios, physical transport and mixing contribute to the removal of both DIC and ALK from
the mixed layer. This is represented as a retreat along the pink trajectory, with the vertical offset from the
background line indicating the total amount of CO: loss. However, this contribution is difficult to quantify
in the simulated # values because the EW perturbations are small relative to the background ALK/DIC
field and equilibrate rapidly in the shallow coastal regions where outgassing occurs. As a result, most
simulated values remain close to the theoretical maximum. This is a key contrast between AE and EW —
stronger physical transport and mixing reduce the effectiveness of AE, but increase the relative
effectiveness of EW, with respect to ocean carbon storage.
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Fig. 10. Conceptual diagram showing how 1 varies across different alkalinity modification scenarios in
the DIC/alkalinity space. Arrows represent conceptual directions, and do not reflect the actual results of
the simulations.

4.2 n in the Northern Gulf across the literature

The simulated 1 values for the AE scenarios in this work range from 0.58 to 0.85. This range encloses the
Gulf-wide efficiency of 0.6—0.7 reported by an independent study using one-month alkalinity pulses
across globally distributed ocean patches (Zhou et al., 2025). Ou et al. (2025) simulated river-sourced
alkalinity enhancement scenarios in the Gulf by increasing river alkalinity by 10% during 2021-2022,
with a total addition of 1.03 x 10 mol, comparable to our Year10% scenario (1.065 x 10'' mol). Despite
similar amounts added, their simulated a CO- uptake (~4.09 x 10'° mol, n = 0.4) is substantially lower
than ours (~9.9 x 10 mol, n = 0.72). This difference may be attributed in part to model resolution. Their
1 km model permits submesoscale dynamics, which enhance vertical transport, reducing the retention of
added alkalinity in surface waters and lowering 1. Their framework also showed strong CO: outgassing in
the open Gulf, which was not captured in our simulation. This discrepancy may also stem from structural
differences between their biogeochemical module and parameterization choices, as well as sensitivity to
hydrodynamic variability at fine scales.

Comparisons with OAE experiments in other parts of the word indicate that, with an appropriately
designed strategy, n can exceed 0.70, as found for the North Sea and northern Brazil (n > 0.7; He and
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Tyka, 2023; Liu et al., 2025). These regions share an upper ocean stratification that favors alkalinity
retention in the mixed layer for long enough to sustain air—sea CO2 exchange. Some open-ocean regions
report even higher efficiencies, reaching 0.96 in the Bering Sea (Wang et al., 2023) and above 0.8 in the
Southern Ocean (Burt et al., 2021). However, coastal or river-based enhancement strategies retain
significant cost and operational advantages against dispersing large quantities of alkaline material
offshore. AE when performed at river mouths has an added benefit of the discharge naturally spreading
alkalinity, expanding the area available for CO- uptake.

For the EW case, our simulations suggest that approximately 12—15% of the CO2 drawdown through
land-based strategies is subsequently released back to the atmosphere from the ocean, independently of
the details of the discharge. Although there are fewer existing estimates of ocean-side CO; leakage
(Kanzaki et al., 2023; Beerling et al., 2025a), our results are generally consistent with existing work
indicating that ocean CO, leakage is a relatively small component of the overall EW life cycle (e.g., at or
below ~10-15% for silicate feedstocks and ~20-30% for carbonate feedstocks). However, it will be
important to further refine these estimates at additional locations and with higher resolution ocean models
that include a fully comprehensive ocean-sediment carbonate system.

4.3 Planning perspective

Our simulations show that small additions of alkalinity to riverine discharge yield higher CO- uptake
efficiency than large perturbations. Strategies that sustain modest increases in alkalinity over longer
periods are therefore likely to be more efficient than short, concentrated pulses (e.g., Year10% vs.
Jan100%). In the Northern Gulf, alkalinity enhancement is also more effective in summer than in winter
because a stronger stratification and shallower mixed layer promote a longer surface retention of the
added alkalinity (e.g., MayEqJan10% vs. Jan10%).

While smaller perturbations maximize efficiency, they may not achieve the total CO: uptake needed for
large-scale mitigation. In our simulations, one-month 10% additions produced about 8-9 x 10° mol of
uptake, about an order of magnitude less than the more expensive Jan100% scenario or Year10%
scenarios, highlighting a trade-off between efficiency, total carbon removal, and implementation costs.
Cost-effective strategies would favor smaller additions, whereas maximizing sequestration would require
accepting lower efficiency.

For EW cases, our simulations reveal only minor differences in the amount of ocean-side leakage, making
it a less pressing concern for strategy design. Instead, effective approaches should focus on land-based
factors such as mineral feedstock, weathering kinetics, cost, and signal resolvability (Paulo et al., 2021;
Deng et al., 2023; Li et al., 2024; Suhrhoff et al., 2024; Beerling et al., 2025a, b, Kanzaki et al., 2025). In
addition, our results imply that in general for a given amount of ALK modification, EW approaches will
tend to result in more effective ocean carbon storage because they will tend to deviate less strongly from
the background ALK/DIC field during transient ALK modification.

4.4 Limitations and future work

Limitations of this study are in the regional ocean model framework, the resolution of the ocean model,
and the uncertainties related to the representation of the biogeochemical processes. The regional
framework prevents tracers exiting the Northern Gulf from being tracked. This may cause an
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underestimation of both amount and efficiency of CO: uptake in alkalinity enhancement scenarios, since
alkalinity transported beyond the boundary is no longer represented, and could resurface elsewhere.
However, most CO: uptake occurs within the first 100 to 150 days after addition (Fig. 6, Fig. S2). By the
time the added alkalinity exits the Northern Gulf, the majority (about 80%) has already entered the
subsurface layer. Consequently, any subsequent alkalinity mixing back to the surface, whether within the
Northern Gulf or elsewhere, would contribute little compared with the uptake that occurs during the initial
4-5 months. Addressing this remaining uncertainty would require nesting the regional configuration
within a global model to track the fate and potential resurfacing of exited alkalinity. In addition, we used a
prescribed background atmospheric pCOs: in this study, which we consider reasonable given the regional
perturbations and the short, two-year simulation period. However, a fully coupled ocean—atmosphere
system with a freely evolving pCO:x field is required to accurately capture air—sea CO2 exchange under
larger and longer-term perturbations (Kanzaki et al., 2023; Tyka et al., 2025).

The horizontal resolution of our simulations (5 km) is insufficient to resolve submesoscale processes,
which generally require grid spacing finer than 2 km. Submesoscale circulations alter biogeochemical
tracer transport, especially in the vertical, (Liu et al., 2022), affecting air—sea CO: exchange. In the
Northern Gulf, these processes modify freshwater plume spreading, deepen the mixed layer, and enhance
vertical transport especially around mesoscale eddies (Luo et al., 2016; Liu et al., 2021, 2022). Higher-
resolution simulations are needed to better constrain efficiency, but their computational costs, especially
when coupled with a biogeochemical model, remain too high to allow the kind of scenario exploration
performed in this work. In this regard, it is worth noting that while AE and EW are negative-emission
approaches aimed at mitigating climate change, evaluating their feasibility through numerical simulations
produces a substantial carbon footprint. Each of our one-year scenarios required ~30,720 CPU hours,
equivalent to ~125.75 kg CO: emissions (Lannelongue et al., 2021; https://calculator.green-
algorithms.org/). Finer resolution or a global investigation could increase this cost by an order of

magnitude. A path forward may be represented by the development and adoption of Al-based emulators,
which would enable a broad exploration of potential strategies at a lower carbon cost.

Lastly, in the PISCES framework, calcite precipitation is represented only through biologically mediated
contributions to the biological pump. Specifically, calcite formation is driven through a specified ratio
between particulate organic carbon (POC) and inorganic carbon (PIC) export and is then scaled to export
production. However, abiotic calcite precipitation may occur if the saturation state (£) of calcite or
aragonite is transiently driven to elevated values. In some cases, this may result in rapid, non-linear
carbonate formation and in extreme cases could lead to net alkalinity export from the mixed layer
(Hartmann et al., 2022; Moras et al., 2023). In our simulations, only a small area within the Mississippi
Delta reached 0.4;cite > 7, (Fig. S2), which indicates limited potential for abiotic calcite precipitation in
our simulated perturbations. Abiotic precipitation will remove more alkalinity under a stronger pulse due
to a greater increase in local alkalinity. Without the abiotic precipitation parameterization, a stronger pulse
(Jan100%; n=0.58) is less efficient than a weaker one (Jan10%; n=0.76). While we suggest that modeling
estimates of the effectiveness of ocean carbon storage through alkalinity modification should be
standardized to include saturation-state dependent carbonate formation, we would not expect this to alter
the primary results of this study, in particular that weaker pulses exhibit higher CO, uptake efficiency.


https://calculator.green-algorithms.org/
https://calculator.green-algorithms.org/

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

5.Conclusion

In this study, we applied a high-resolution regional ocean—biogeochemistry model to evaluate the
effectiveness of two river-based alkalinity modification approaches (AE and EW) in the Northern Gulf of
Mexico. We conducted eight hypothetical scenarios that varied the timing, magnitude, and duration of
alkalinity and DIC additions in the Mississippi and Atchafalaya Rivers. Our analysis focused on the
simulated amount and efficiency of CO: uptake or leakage for each strategy adopted, and the roles of
ocean dynamics and air—sea fluxes in shaping the outcomes were examined. These results provide
valuable guidance for designing carbon dioxide removal plans in the southern United States.

For the AE experiments, simulated CO- uptake efficiencies ranged from 0.58 to 0.85. Efficiency was
higher for modest perturbations and for summer-time deployment. Smaller additions kept the system
closer to the background equilibrium state, resulting in higher carbon uptake per alkalinity addition and
greater integrated CO- uptake. In summer, warmer surface waters produced a shallower mixed layer,
allowing more of the added alkalinity to remain near the surface and sustaining a broader window of high
uptake efficiency.

For the EW experiments, the model results indicated that 12—15% of the carbon sequestered on land was
re-emitted to the atmosphere from the ocean, largely independent of the timing or magnitude of the
additions. This stable leakage from the ocean side can be explained by the relatively small perturbations
of EW compared to AE. The EW simulations showed anomalies in air-sea CO2 flux and 144, values that
were an order of magnitude smaller than those in AE. As such, although the choice of strategy may still
influence the percentage of leakage, the perturbation magnitude is so small that these differences are
difficult to detect.

Lastly, we presented a simple framework in DIC—alkalinity space to explain efficiency differences across
AE and EW scenarios. Theoretical efficiencies or leakages are determined by the initial DIC/alkalinity
ratios in river inputs relative to the background ocean ratio, which in turn reflects the equilibrium
carbonate chemistry. Ocean dynamics, through the vertical mixing of alkalinity, lower these theoretical
values by redistributing added materials vertically, with part of the additions lost to the subsurface ocean
before absorbing CO; from the atmosphere. Our results indicate that ocean dynamics exert a stronger
influence on AE because of the larger perturbations in DIC—alkalinity space, necessitating explicit
consideration of alkalinity loss to the ocean interior when developing AE strategies. In contrast, EW is
less sensitive to ocean dynamics, and its effectiveness, life cycle assessment and sustainability potential
should be assessed primarily in terms of land-based factors such as mineral feedstock and weathering
processes.

Appendix A: Model validation and calibration

Observational data

Observational data from multiple sources were used to validate and calibrate the model. In situ
measurements were obtained from two buoy stations located along the coastlines of Mississippi and
Louisiana (Coastal MS and Coastal LA, Fig. A1), operated by the Pacific Marine Environmental
Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA). These stations
provided continuous observations of sea surface temperature, salinity, and pCO2 for model comparison
(https://www.pmel.noaa.gov/co2/story/Coastal+MS and
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https://www.pmel.noaa.gov/co2/story/Coastal%20LA, accessed August 2025).

In addition to in situ observations, satellite-derived datasets were used to evaluate model-simulated
chlorophyll concentration and net primary production (NPP). MODIS-AQUA provides 7-day mean
chlorophyll data for the southeastern United States
(https://erddap.marine.usf.edu/erddap/griddap/index.html?page=1&itemsPerPage=1000, accessed August
2025). The Oregon State University Ocean Productivity Lab provides global NPP estimates from multiple
algorithms (MODIS-CBPM, MODIS-standard VGPM, VIIRS-CBPM, and VIIRS-standard VGPM)
(https://orca.science.oregonstate.edu/npp_products.php, accessed August 2025).

Moreover, the project: Collaborative Research: pH Dynamics and Interactive Effects of Multiple
Processes in a River-Dominated Eutrophic Coastal Ocean conducted multiple cruise-based measurements
of dissolved inorganic carbon (DIC), total alkalinity (TA), pH, dissolved oxygen, and pCO2 in the
Northern Gulf from 2017 to 2019, with cruise trajectories shown in Fig. A1. The TA and DIC data from
these cruises were used to validate model simulations. All observations were obtained from the Biological
and Chemical Oceanography Data Management Office (BCO-DMO) portal (https://www.bco-
dmo.org/project/751332, accessed August 2025).

Finally, the SeaFlux product, a global 1° x 1° gridded dataset of pCO2 constructed using an ensemble
approach that integrates six observation-based mapping products, was used to evaluate the model
performance in simulating spatial patterns of pCO2 (Fay et al., 2021).
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Fig. A1. Map showing the locations of in situ observations and the trajectories of cruise measurements.

Buoy-Based Observational Comparisons
Figure A2 compares sea surface temperature (SST), sea surface salinity (SSS), and pCO: between high-
frequency buoy measurements and model outputs at two stations near the Mississippi Delta, both strongly
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influenced by river discharge from Mississippi and Atchafalaya rivers. For SST, the model and
observations show strong agreement for SST results at both stations (R>0.95), though the model
underestimates values by ~1—-1.5 °C, especially in spring when temperatures rise rapidly. Nonetheless,
this level of agreement is encouraging, considering that the simulation is free-evolving, and the coarse-
resolution model cannot capture complex submesoscale coastal processes.

For SSS, the comparison between the model and observations shows generally good agreement, with
better consistency at Coastal LA than at Coastal MS. At Coastal MS, the model misses salinity decreases
in May—June 2016 and 2017 because river salinity was prescribed as a fixed 4 PSU (Sun et al., 2022) to
avoid numerical instability, preventing representation of temporal variability.

For pCO-, the model captures the overall magnitude at both stations, again with better agreement at
Coastal LA. At Coastal MS. At Coastal MS, it fails to reproduce the low values observed during summer.
This bias likely arises from the use of monthly climatological riverine biogeochemical inputs, which
cannot resolve sub-monthly variability. Incorporating higher-frequency biogeochemical riverine inputs
would likely improve model performance.
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Fig. A2. Time series comparing SST, SSS, and seawater pCO: between observations at the Coastal LA
and Coastal MS sites and corresponding model outputs.

Satellite-Derived Product Comparisons

Compared with satellite observations, the model reproduces the main spatial and seasonal patterns of
chlorophyll in the Northern Gulf (Fig. A3). Observations show high concentrations (>2 mg/m?) in coastal
waters, peaking near the Mississippi Delta (>10 mg/m?), and decreasing offshore with depth. The model
captures this coastal-to-offshore gradient but produces a broader band of high chlorophyll that extends
farther offshore than observed. Model performance in the Florida region is less consistent. Chlorophyll is
underestimated along the northern Florida coast and overestimated along the southern Florida coast.
Because chlorophyll patterns in this region are strongly influenced by local river inputs, the model biases
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are likely attributable to the limited availability and quality of river discharge and riverine biogeochemical
tracer data used to represent this region. For the seasonal differences, both observations and the model
show high open-sea chlorophyll in winter, though the model tends to overestimate its magnitude.
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Fig. A3. Modeled surface chlorophyll concentration compared with satellite-derived data, shown as the
2016-2018 seasonal mean average.

Figure A4 compares model-simulated domain-averaged NPP in the open sea (h > 150 m) with satellite-
derived estimates from various products. Estimates were limited to the open sea because satellite
algorithms perform reliably in clear waters but poorly in turbid coastal regions (Gémez-Letona et al.,
2017; Xu et al., 2022). Observed NPP ranges from ~200 to 900 mg C m2 day', with higher values in
winter and lower in summer. The model reproduces both the magnitude and seasonal cycle, though
simulated variability is slightly larger, especially in summer 2016 and winter 2018.
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Fig. A4. Comparison between modeled NPP and satellite-derived NPP for the open-sea domain (h > 150
m) of the Northern Gulf.

Cruise-Based Observational Comparisons

Cruise-based observational comparisons to the model were conducted in two ways. First, several cruise
trajectories followed roughly linear tracks from the coastal region to the open sea, with multiple
measurements taken along each track. These discrete measurements along a single linear trajectory were
used to validate model-simulated transects. Because the measurements along a given trajectory were
collected over several days, we used the monthly average of the corresponding model output for
comparison. Overall, DIC, TA, and their ratio show good agreement (Fig. A5). The model captures the
offshore increase of DIC (e.g., Fig. ASa2) as well as the increase of DIC with depth, although it tends to
simulate slightly lower DIC values relative to the observations. TA exhibits weaker vertical gradients, and
while the model reproduces the magnitude reasonably well, it produces extreme low values in some
shallow coastal regions (e.g., Fig. A5a6). For the DIC/TA ratio, observed values are slightly lower than
the model, a discrepancy attributable to the model’s overestimation of DIC.

Second, all TA and DIC cruise measurements (2,827 data points) were paired with model output at the
same locations, depths, and times. These paired datasets were then compared using a whisker plot (Fig.
AS5D). Result shows that model exhibits a systematic positive bias, with the model overestimating DIC by
~ 40 pmol/kg, and TA by ~20 umol/kg relative to the median values (red line in Fig. A5b). The DIC/TA
ratio is also slightly overestimated, although model values remain within the wide observational range.
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Fig. AS. (a) Example comparison of DIC, TA, and the DIC/TA ratio from cruise measurements (scattered
dots) with corresponding model outputs along the cruise transect. (b) Whisker plots comparing all cruise
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Figure A6 shows the three-year averaged spatial distribution of pCO: from the SeaFlux product (ensemble
mean of six products) and the model output. Both show the same seasonal cycle, with lowest values in
winter when the Northern Gulf absorbs atmospheric CO2 and highest in summer when it outgasses.
Compared to SeaFlux, the model simulates slightly lower winter pCO- and higher summer values.
Spatially, SeaFlux shows lower pCO: in coastal regions and higher values offshore, with the lowest near
the Mississippi Delta under strong freshwater influence. The model reproduces this gradient but also
simulates high pCO: near the estuary, a discrepancy expected given the 1° x 1° resolution cannot resolve
fine-scale outgassing where river water with high DIC/TA ratios (~1) mixes with ocean water of lower
ratios (~0.8). he model also overestimates pCO: along the Florida coast, likely due to its poor
representation of chlorophyll in that region.
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Fig. A6. Comparison of the three-year (2016—2018) seasonal averages of pCO: between the SeaFlux
ensemble mean and the model output.
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The CROCO-PISCES model is available at https://www.croco-ocean.org/ . River forcing data can be
obtained from https://geo.gcoos.org/river discharge/ and https://catalog.data.gov/dataset/rc4uscoast-a-

river-chemistry-dataset-for-regional-ocean-model-application-in-the-u-s-east-gulf-1. Atmospheric forcing

and physical open boundary conditions are available from https://www.hycom.org/dataserver/navgem and
https://www.hycom.org/data/gomlOpt04. The biogeochemical initial fields and open boundary conditions
were extracted from the MOM6-COBALT-NWA 12 simulation and can be obtained by contacting the
Geophysical Fluid Dynamics Laboratory (GFDL). The model outputs generated specifically for this study
are available upon request.
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Fig. S1. Diagnostic DIC budget difference (integrated over the entire Gulf) between the Jan100%
alkalinity enhancement scenario and the control run. The combined effects of transport (advection and
mixing) and air—sea flux differences account for nearly all DIC changes that occurred in 2017. The air—
sea flux term shows a clear signal of CO: uptake, whereas the transport term primarily reflects noise
originating from the open boundary.
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Fig. S2. Spatial distribution of (2¢,; values for the one-month AE and EW pulse scenarios. Results are
shown as monthly averages for the month of addition (left panel) and for the following month after the
addition ceased (right panel). The yellow line represents the isoline where 2.4, >7.
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