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Abstract: River-based alkalinity modifications represent potentially effective approaches for removing 10 
atmospheric CO₂ and mitigating anthropogenic climate change. Evaluating their effectiveness requires 11 
consideration of downstream impacts on coastal ocean CO₂ air–sea exchange following intervention. In 12 
this study, we applied a high-resolution (5 km) regional coupled physical and biogeochemical model 13 
(CROCO-PISCES) to assess two carbon dioxide removal approaches, alkalinity enhancement (AE) and 14 
enhanced weathering (EW), in the northern portion of the Gulf of Mexico. Alkalinity and dissolved 15 
inorganic carbon inputs were added to riverine outflow from the Mississippi and Atchafalaya Rivers 16 
according to eight hypothetical scenarios with variable magnitude and timing. In the AE scenarios, 17 
simulations showed oceanic CO₂ uptake efficiencies ranging from 58% to 85%, with higher values under 18 
modest perturbations and summer additions when shallow mixed layers promoted near-surface retention 19 
of added alkalinity. In the EW scenarios, simulations indicated that 12–15% of land-based carbon 20 
sequestration was re-emitted to the atmosphere from the ocean, with the amount remaining largely 21 
consistent across scenarios, suggesting that the ocean-side leakage is relatively stable in the EW case and 22 
represents a relatively small component of the overall EW life cycle. Collectively, these findings 23 
demonstrate that the long-term carbon removal efficiency of river-based alkalinity modification will often 24 
depend on the ratio between alkalinity and dissolved organic carbon introduced to the coastal ocean. 25 
 26 
Plain Language Summary: Rivers carry large amounts of freshwater and dissolved materials to the 27 
ocean, linking land-based carbon processes with the marine environment. These connections make river 28 
systems important pathways for carbon dioxide removal strategies. Although these modifications may 29 
begin on land or in rivers, their overall climate benefits depend on what happens once the modified water 30 
reaches the ocean. In this study, we simulated how increasing alkalinity (representing alkalinity 31 
enhancement, AE) or both alkalinity and dissolved inorganic carbon (representing enhanced weathering, 32 
EW) in the Mississippi and Atchafalaya Rivers might affect ocean–atmosphere CO₂ exchange in the 33 
northern Gulf of Mexico. The simulations investigated scenarios with different magnitudes and timing of 34 
river modification. Our results show that AE can strengthen ocean CO₂ uptake, with an efficiency of 58–35 
85% depending on how much and when the alkalinity is added. EW simulations show that about 12–15% 36 
of the carbon stored on land is later released back to the atmosphere from the ocean, regardless of the 37 
simulated strategies, suggesting that the ocean-side carbon leakage remains relatively stable. 38 
 39 
1.Introduction 40 
To stabilize global warming below 2°C above the preindustrial mean temperature, the Intergovernmental 41 
Panel on Climate Change (IPCC) has emphasized the necessity of deploying negative emissions 42 
technologies alongside deep reductions in greenhouse gas emissions (UNFCCC, 2015; IPCC, 2022). 43 
Estimates suggest that achieving this target will require removing approximately 5–10 Gt CO₂ per year 44 
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from the atmosphere (IPCC, 2022). These urgent requirements have motivated growing interest in large-45 
scale geoengineering strategies aimed at removing and securely storing atmospheric CO₂ (NASEM, 46 
2019). Examples include ecological-based approaches such as reforestation (Griscom et al., 2017) and 47 
blue carbon ecosystem restoration (Duarte et al., 2013; Song et al., 2023), as well as human interventions 48 
including enhanced rock weathering (Beerling et al., 2020; Beerling et al., 2025a), ocean alkalinity 49 
enhancement and fertilization (Renforth & Henderson, 2017; Babakhani et al., 2022; Zhou et al., 2025). 50 
 51 
Oceans and rivers play an important role in the portfolio of carbon dioxide removal approaches. The 52 
ocean is the largest long-term carbon reservoir in Earth’s surface and the ultimate endpoint of the global 53 
water cycle (Ward et al., 2017; Davila et al., 2022; Regnier et al., 2022), and rivers act as natural 54 
conveyors linking land-based interventions to coastal seas. As a result, land- and river-based interventions 55 
can generate downstream impacts on coastal and open-ocean CO₂ air–sea exchange, and neglecting these 56 
effects may bias assessments of their effectiveness. Of particular relevance are approaches such as river-57 
based alkalinity enhancement and enhanced weathering, which alter river alkalinity or dissolved inorganic 58 
carbon (DIC) and subsequently influence ocean biogeochemistry and air–sea CO₂ exchange once 59 
freshwater plumes enter marine systems. 60 
 61 
Alkalinity enhancement (AE) refers to approaches designed to increase the capacity of surface waters to 62 
absorb atmospheric CO₂. Examples include reducing seawater acidity through electrochemical processes 63 
or adding aqueous alkaline substances such as NaOH or Ca(OH)₂ directly to the ocean (Kheshgi 1995; 64 
Renforth & Krüger, 2013; Renforth $ Henderson 2017; National Academies of Sciences, Engineering, 65 
and Medicine [NASEM], 2021; Eisaman et al., 2023; He & Tyka, 2023). A similar strategy can be applied 66 
in rivers by elevating river alkalinity, so that when freshwater plumes enter the ocean, they generate 67 
effects comparable to direct ocean additions (Fig. 1a). This river-based approach may be particularly 68 
effective in river-dominated coastal regions such as the southern coast of the United States and the 69 
northeastern coast of Brazil, where large rivers (e.g., the Mississippi and Amazon) create surface plumes 70 
that extend thousands of kilometers offshore (Coles et al., 2013; Mu et al., 2023; Ou et al., 2025). 71 
Moreover, river-based AE provides a practical pathway to integrate with wastewater alkalinity 72 
enhancement (Li et al., 2025; Zheng et al., 2025), since wastewater treatment plants are built at fixed 73 
locations and offer limited deployment flexibility. 74 

 75 
Fig. 1. Conceptual diagram showing changes in the ocean carbonate system following river-based AE(a) 76 
and EW (b).  77 
 78 



 

 

Considerations of AE applications primarily focus on the efficiency of oceanic CO₂ uptake, commonly 79 
denoted as η, which is typically defined as the ratio of moles of CO₂ removed from the atmosphere per 80 
mole of alkalinity added. This efficiency is influenced by seasonal and spatial variability in ocean 81 
dynamics, as well as by the magnitude of the perturbation, since the adjustment timescale of oceanic 82 
pCO₂ can range from weeks to years depending on the scale of alkalinity addition (Jones et al., 2014; He 83 
& Tyka, 2023; Suseji et al., 2025). At the same time, ocean mixing and transport redistribute both the 84 
added alkalinity and the newly formed DIC horizontally and vertically, further modifying efficiency 85 
(Fennel et al., 2023; Liu et al., 2025). Together, these processes underscore the fact that designing a 86 
feasible AE strategy requires careful consideration of both when it is applied and how it is implemented. 87 
In addition, it cannot be assumed that a given amount of alkalinity added will fully equilibrate via 88 
atmospheric CO2 uptake (Zhou et al., 2025), with obvious implications for the monitoring, reporting, and 89 
verification (MRV) protocols used to track the impacts of alkalinity modification on carbon markets. 90 
 91 
In contrast to AE which is typically designed to directly increase the capacity of the surface ocean to 92 
absorb CO₂, enhanced weathering (EW) initially increases the absorption of CO2 on land (or in rivers), 93 
which then causes runoff of added carbon and alkalinity. In this case, potential re-emission of CO₂ from 94 
riverine and oceanic systems must be considered (Fig. 1b). EW typically involves pulverizing 95 
weatherable rocks (e.g., basalt, olivine, or limestone) and applying them to soils or rivers, where they 96 
dissolve and capture atmospheric CO₂ in the form of bicarbonate (Beerling et al., 2020; Kanzaki et al., 97 
2025; Raymond et al., 2025). This bicarbonate can then be transported by rivers and streams to the ocean, 98 
where it may remain stored for timescales on the order of 10⁴ years (Broecker & Peng, 1987; Archer et 99 
al., 1997; Goodwin & Ridgwell, 2010). However, part of the initially captured carbon can be released 100 
back to the atmosphere as it interacts with riverine and marine carbonate systems during transit (Cao et 101 
al., 2010; Harrington et al., 2023). Using a dynamic river network model, Zhang et al. (2025) estimated a 102 
5–15% carbon loss during riverine transport depending on the location and stream/river transit path. On 103 
the ocean side, both the fraction of carbon outgassing and the timescales of this process remain poorly 104 
understood. Using an intermediate complexity Earth system model, Kanzaki et al. (2023) estimated a 105 
global loss of ~10% for silicate feedstocks and ~20% for carbonate feedstocks when normalized to an 106 
equivalent amount of direct air capture. However, no regional ocean modeling studies have yet assessed 107 
this leakage or how it may vary under different EW strategies applied at different times and magnitudes. 108 
 109 
In this study, we employed a coupled regional ocean and biogeochemistry model (CROCO-PISCES) at 5 110 
km horizontal resolution to evaluate river-based alkalinity modification approaches (AE and EW) in the 111 
northern portion of the Gulf of Mexico (hereafter the Northern Gulf). The Northern Gulf provides an ideal 112 
testbed for assessing the potential impacts of large-scale, river-based alkalinity modifications, as it is the 113 
endpoint of the United States’ largest river system (the Mississippi–Atchafalaya River system) and is 114 
strongly influenced by anthropogenic activities. In addition, the ocean currents in the Gulf help transport 115 
river-derived materials, extending their influence over larger regions. Seasonally varying wind-driven 116 
currents favor longshore transport, while the Loop Current - the most intense mesoscale current in the 117 
Gulf flowing clockwise into the basin from the Caribbean through the Yucatán Channel, and out of it 118 
through the Florida Straits - and its detached eddies facilitate offshore transport (Fig. 2). 119 



 

 

 120 
Fig. 2. General circulation features in the Northern Gulf model domain with the river mouths included in 121 
the simulations indicated in magenta. 122 
 123 
We designed eight scenarios in total to represent idealized AE and EW approaches. These scenarios were 124 
structured around addition strategies that varied in the duration of additions (annual versus one month), 125 
the magnitude of concentration increases in rivers (10% versus 100%), and the timing of initiation (winter 126 
versus summer). For both approaches, we investigated the optimal strategy and the factors influencing it 127 
by analyzing simulated air–sea CO₂ exchange dynamics and ocean dynamics in redistributing added 128 
materials. This study aims to advance scientific understanding of the efficiency of ocean carbon storage 129 
through river-based alkalinity modifications and to inform the development of adaptive and feasible 130 
carbon dioxide removal strategies for the southern United States. 131 
 132 
2.Method 133 
2.1 Model description 134 
In this study, we applied a regional coupled physical-biogeochemical modeling framework known as 135 
CROCO-PISCES. The Coastal and Regional Ocean Community model (CROCO v1.3) is a split-explicit, 136 
terrain-following ocean model built upon ROMS-AGRIF (Auclair et al., 2018). It is configured as a free-137 
evolving system designed to study regional, coastal, and nearshore ocean dynamics. Previous studies have 138 
demonstrated the ability of CROCO to realistically capture mesoscale variability and circulation features 139 
in the Northern Gulf (Liu et al., 2021a; Liu et al., 2022; Sun et al., 2022). The realistic representation of 140 
physical transport has supported its application in studies of coral reef and fish larval connectivity (Zhou 141 
et al., 2024; Lopera et al., 2025), underscoring the model’s utility for ecosystem-scale research. 142 
 143 
The biogeochemical module, PISCES, has been coupled to several ocean and Earth system modeling 144 
platforms (NEMO, CROCO, IPSL-CM, CNRM-CM, and EC-Earth). In its standard implementation it 145 
includes four nutrients (phosphorus, nitrogen, silica, and iron), two phytoplankton groups 146 
(nanophytoplankton and diatoms), two zooplankton groups (microzooplankton and mesozooplankton), 147 
and a detritus pool consisting of dissolved organic matter, small particles, and large particles (Fig. 3a). 148 
This structure enables PISCES to effectively describe the biogeochemical cycles of nutrients, carbon, and 149 
oxygen. A comprehensive description of the PISCES model can be found in Aumont et al. (2015). 150 
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 152 
Fig. 3. (a) Schematic diagram of the standard “Operational” version of PISCES (adapted from 153 
https://www.pisces-community.org/index.php/model-description/). (b) Daily freshwater discharge rates of 154 
all rivers flowing into the Gulf during 2017 and 2018, highlighting the dominant contributions of the 155 
Mississippi and Atchafalaya Rivers. 156 
 157 
2.2 Model configuration 158 
The CROCO-PISCES model applied in this study covers the upper portion of the Gulf to the north of 159 
24°N, and extending from 98°W to 82°W (Fig. 2). The model resolution is 70 sigma layers in the vertical 160 
and 5 km in the horizontal. Open boundaries were defined along the southern and eastern edges of the 161 
domain. Physical variables (temperature, salinity, currents, and sea surface elevation) were nudged every 162 
three hours using data from the HYCOM-NCODA analysis system (Cummings and Smedstad, 2013). 163 
Fourteen biogeochemical variables, including nutrients (nitrate, ammonium, phosphate, silicate, and iron), 164 
phytoplankton and zooplankton concentrations for different groups, dissolved organic and inorganic 165 
carbon, alkalinity, and calcite concentration, were provided as monthly climatological by MOM6-166 
COBALT-NWA12, a 1/12 degree model for marine applications in the Northwest Atlantic (Ross et al., 167 
2023). 168 
 169 
Atmospheric forcing was obtained from the Navy Global Environmental Model (NAVGEM), consistent 170 
with the forcing used in the HYCOM NCODA analysis system. The background atmospheric pCO₂ was 171 
prescribed at 402 ppm, assuming negligible influence from rising atmospheric CO₂ over the simulation 172 
period. Dust and nutrient deposition were not considered, as atmospheric inputs are not major nutrient 173 
sources in this region (Kim et al., 2020). 174 
 175 
A total of 23 rivers in the Northern Gulf were included in the simulation (Fig. 2). Discharge data were 176 
obtained from the U.S. Geological Survey (USGS) and the U.S. Army Corps of Engineers (USACE) at 177 
three-hour intervals. All river discharges were imposed as southward volume fluxes from the northern 178 
edge of grid cells near river mouths following the "active river" approach described by Sun et al. (2022). 179 
Biogeochemical tracers in each river, including nitrate, ammonium, phosphate, silicate, dissolved organic 180 
carbon, dissolved inorganic carbon, dissolved oxygen, and alkalinity, were primarily derived from the 181 
RC4USCOAST dataset, using monthly climatological values averaged over the period from 1990 to 2020 182 
(Gomez et al., 2023). For missing values in the dataset, literature sources and USGS station data were 183 
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used as supplemental inputs (Kaushal et al., 2013). 184 
 185 
The initial physical fields were obtained from Sun et al. (2022), and the biogeochemical variables were 186 
sourced from the MOM6-COBALT-NWA12 climatology. The model was spun up using repeated 2016 187 
forcing until the biogeochemical fields reached a stationary state. The year 2016 was selected for spin-up 188 
because its mesoscale dynamics and Loop Current behavior are close to the climatological patterns. 189 
Following the spin-up, simulations were conducted for 2017 and 2018. Previous studies have validated 190 
the physical performance of CROCO simulations in nearly identical configurations by comparing 191 
modeled water temperature, salinity, and current features with observations (Liu et al., 2021; Lopera et 192 
al., 2025). Further model calibration and validation specifically for the biogeochemical fields over all 193 
three years can be found in Appendix A. In general, our model successfully captures the main horizontal 194 
and vertical spatial patterns, as well as seasonal variability in chlorophyll concentrations, net primary 195 
production, concentrations of alkalinity and DIC, and surface pCO₂ when compared with satellite, ship-196 
based, and in-situ measurements. Although some data-model misfits remain, such as relatively poor 197 
performance in reproducing biogeochemical tracers along the coast of Florida, overall our results indicate 198 
that the model performance should capture the main dynamics and primary differences between different 199 
AE and EW scenarios. 200 
 201 
2.3 Alkalinity modification simulations 202 
We designed eight large scale river-based alkalinity modification scenarios (Table 1). All experiments 203 
focus on the consequences of increasing total alkalinity concentrations and for some of them DIC 204 
concentrations as well in the discharge from the Mississippi and Atchafalaya Rivers. These two rivers are 205 
the largest in the region and contribute the majority of freshwater and nutrient inputs to the Northern Gulf 206 
(Fig. 3b). 207 
 208 
Four scenarios simulate AE, in which only concentrations of alkalinity (ALK) were increased in the river 209 
discharge. The remaining four scenarios represent a simplified form of EW, in which both alkalinity and 210 
an equivalent amount of DIC were added to river discharge at a 1:1 ratio (Kanzaki et al., 2023). For both 211 
the AE and EW scenarios, we considered four modification strategies to evaluate how different input 212 
magnitudes and timings influence the efficiency of these interventions. First, we applied a 10% increase 213 
in riverine ALK (or ALK+DIC) concentrations sustained throughout the entire model year 2017 214 
(hereafter, Year10%). Second, we introduced a one-month pulse that doubled the concentrations in 215 
January 2017 (hereafter, Jan100%). Third, we applied a one-month pulse with a 10% increase in January 216 
2017 (hereafter, Jan10%). Forth, we applied the same total amount of alkalinity and DIC as in the third 217 
strategy but distributed it to river loadings beginning on May 12, 2017, at a time of high river discharge 218 
(Fig. 3b) and shallow surface mixed layer in the Northern Gulf (hereafter, MayEqJan10%). 219 
 220 
The interventions in the first and second strategies result in estimated total additions of 1.37 × 10¹¹ mol 221 
and 1.065 × 10¹¹ mol of alkalinity and DIC, respectively. These amounts are consistent with those used in 222 
other alkalinity enhancement studies, including the global estimates by Zhou et al. (2025), which applied 223 
additions of 2 × 10¹¹ mol and 6 × 10¹¹ mol per ocean patch, Liu et al. (2025) with 1.34 × 10¹¹ mol in the 224 
North Sea, and Ou et al. (2025) with 1.03 × 10¹¹ mol applied as in our case to the Northern Gulf. The third 225 
and fourth strategies involve a smaller addition of 1.065 × 10¹⁰ mol, which may be more easily attainable 226 



 

 

in regional deployments. 227 
 228 
Table 1. Summary of alkalinity modification scenarios. 229 
River modifications AE EW  

Control run - - 

10% increase in 2017 

(Year10%) 

1.37 × 10¹¹ mol extra ALK 

added through 2017 

1.37 × 10¹¹ mol extra ALK + 

equivalent DIC through 2017 

100% increase in Jan 

(Jan100%) 

1.065 × 10¹¹ mol extra ALK 

added through 2017 January 

1.37 × 10¹¹ mol extra ALK 

added through 2017 January 

10% increase in Jan 

(Jan10%) 

1.065 × 1010mol extra ALK 

added through 2017 January 

1.065 × 1010 mol extra ALK 

added through 2017 January 

10% increase (of Jan) in mid-

May 

(MayEqJan10%) 

1.065 × 1010 mol extra ALK 

added through 2017 May 

1.065 × 1010 mol extra ALK 

added through 2017 May 

 230 
In addition to the alkalinity modification scenarios, we conducted a simulation that continuously released 231 
passive tracers from the Mississippi and Atchafalaya Rivers during 2017–2018 to diagnose the spatial and 232 
temporal variability associated with physical advection and mixing. 233 
 234 
2.4 Calculation of 𝑪𝑶𝟐 uptake efficiency 235 
CO₂ uptake efficiency 𝜂 is originally defined as a dimensionless number equal to the ratio of the DIC 236 
inventory change to the cumulative added alkalinity (Eq. 1): 237 
 238 
𝜂 =  

Δ𝐷𝐼𝐶(𝑡)𝑉

∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟(𝑡)
                                                                                                                                       (1) 239 

 240 
where Δ𝐷𝐼𝐶(𝑡) is the difference in the spatially (volume-weighted) average of DIC concentration 241 
between a scenario run and a control run over time, summed across the simulated domain (𝑚𝑜𝑙 𝐶/𝑚3), V 242 
is the domain volume (𝑚3), and ∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟(𝑡) is the cumulative riverine alkalinity addition (mol eq).  243 
 244 
However, the definition in Equation 1 is not suitable for our study for two reasons. First, our model is a 245 
regional model and the model domain has an open-boundary system, such that DIC exchange across the 246 
open boundary complicates the attribution of cumulative DIC changes solely to atmospheric CO₂ uptake 247 
(Fig. S1). Since the perturbation is applied to the Northern Gulf coast, and the simulation is only run for 248 
<2 years, air-sea carbon exchange outside of the regional model domain is negligible on relatively short 249 
timescales. Second, in EW scenarios, there is additional DIC introduced through river inputs, which 250 
complicates the attribution of the simulated DIC change to air-sea CO2 exchange. The uptake efficiency 251 
can be measured focusing on the changes in air-sea carbon exchange rather than the DIC inventory 252 
change. Therefore, we modified Equation 1 by replacing the volume-integrated DIC change with the 253 
integrated air–sea CO₂ flux over time and surface area, allowing for a more direct quantification of DIC 254 
changes from the drawdown of atmospheric CO₂ alone. This leads to Equation 2: 255 
 256 



 

 

𝜂 =  
𝐴 ∫ Δ𝐹(𝑡)

𝑡

0

∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟(𝑡)
                                                                                                                                 (2) 257 

 258 
where Δ𝐹(𝑡) is the difference in the spatially (area-weighted) average of air–sea CO₂ flux between 259 
scenario runs and control run over time (𝑚𝑜𝑙 𝐶/𝑚2/day), integrated over the simulation period and A is 260 
the surface area of the model domain (𝑚2).  261 
 262 
In addition to integrating Δ𝐹(𝑡) over the simulation period to calculate 𝜂, we also defined a daily η (ηday) 263 
contribution, expressed as the instantaneous ratio of oceanic CO2 uptake, 𝐴Δ𝐹(𝑡), to the total alkalinity 264 
added to the river (Eq. 3). Summing the daily contributions recovers the overall 𝜂 value given in Eq. 2. 265 
Therefore, ηday reflects the short-term (daily-scale) efficiency in driving air–sea CO₂ exchange in units of 266 
day-1. To ensure comparability across different modification scenarios and to minimize noise from 267 
variability in continuous riverine inputs during the addition period, we use the total amount of alkalinity 268 
(∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟,𝑡𝑜𝑡𝑎𝑙)  added to the river rather than the time-dependent ∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟(𝑡) in the denominator of 269 
Equation 3. 270 
 271 
ηday   =  

𝐴Δ𝐹(𝑡)

∆𝐴𝐿𝐾𝑟𝑖𝑣𝑒𝑟,𝑡𝑜𝑡𝑎𝑙
                                                                                                       (3) 272 

 273 
2.5 Process attribution of air-sea CO2 exchange  274 
Ito and Reinhard (2025, hereafter IR25) proposed a new framework for attributing air–sea carbon fluxes 275 
to specific physical and biogeochemical processes. Briefly, this approach combines carbonate chemistry, 276 
surface carbon budget and gas exchange parameterization to express the evolution of air-sea CO2 277 
exchange as a first-order ordinary differential equation.  278 

𝑑𝐹

𝑑𝑡
= −𝜆𝐹 + ∑ 𝑓𝑛𝑛          (4) 279 

where  is the inverse of the air-sea CO2 exchange timescale, and fn are the forcing from physical and 280 
biogeochemical processes contributing to air–sea CO2 exchange (e.g., advection, mixing, biological 281 
uptake, changes in temperature, salinity, alkalinity, atmospheric CO₂, and gas exchange). Mathematical 282 
derivation and formulation of Eq (4) can be found in IR25. This approach has proven effective in both an 283 
idealized two-box nutrient–carbon cycle model and a three-dimensional simulation of an iron and 284 
alkalinity release in the Southern Ocean. Here, we applied the same framework to our study. The key 285 
concept of this framework is that air–sea CO2 flux integrates the effect of individual forcings over the 286 
CO2 exchange timescale as expressed as the negative feedback term (Eq. 4).  The timescale is set by G, 287 
the air-sea gas exchange coefficient (m/day), expressed as a function of wind speed and the Schmidt 288 
number for CO2 (Wanninkhof, 2014), 𝛼𝑐, a dimensionless carbonate chemistry coefficient that reflects the 289 
sensitivity of surface pCO2 to perturbations in DIC, and h, the surface mixed layer depth (m).   290 

𝜆 =  
𝐺𝛼𝐶

ℎ
                                                                                                                                  (5) 291 

where  𝜆 has unit of day⁻¹ and represents the strength of the negative feedback by which air–sea CO₂ flux 292 
drives the surface ocean back toward equilibrium after a disturbance induced by an external forcing. In 293 
other words, the larger the value of λ, the faster the surface ocean returns to equilibrium following a 294 
perturbation. G and h can vary due to atmospheric wind and ocean mixed layer variability, and their 295 



 

 

climatological mean values are used for the calculation of the representative  value. We applied this 296 
framework to the Northern Gulf by integrating over the full simulation period and focusing on the upper 297 
10 meters of the water column, representing the annually averaged mixed layer depth estimated through a 298 
regression-based diagnostic approach using model outputted sea surface temperature time series. 299 
Advection and mixing terms were obtained directly from the model’s DIC diagnostic equation. 300 
Temperature, salinity, and alkalinity were extracted from the standard model output. Values for the 301 
biological carbon sink, atmospheric CO₂, and gas transfer coefficient were obtained by modifying the 302 
model code to output these non-standard output variables. Eq. (4) is numerically integrated using Euler 303 
forward time-stepping scheme, and sensitivity tests with the fourth-order Runge–Kutta method confirmed 304 
the robustness of the numerical calculation.  305 
 306 

3.Results 307 
3.1 Natural seasonal and spatial variability 308 
To provide context on the Gulf's baseline conditions prior to any alkalinity modification, we present the 309 
two-year monthly averaged spatial distributions of air–sea CO₂ flux and passive tracer concentrations 310 
from the control run (Fig. 4). The air–sea CO₂ flux highlights the natural variability in CO₂ exchange 311 
across the region, and the passive tracers reveal the transport pathways that added alkalinity or DIC from 312 
riverine sources will be subject to. 313 
 314 
 315 

 316 
Fig. 4 Two-year monthly averaged spatial distributions of air–sea CO₂ flux (a) and passive tracer 317 
concentrations (b) from the control run. Positive values denote CO2 fluxes from the atmosphere into the 318 
surface ocean.  319 
 320 
Figure 4a shows that the Northern Gulf acts as an ingassing system during winter and spring, absorbing 321 
CO₂ from the atmosphere, and transitions to outgassing in summer and fall when surface waters are 322 
warmer. These seasonal changes are stronger in nearshore regions, following the spatial pattern of high 323 
chlorophyll concentrations where the biological pump consumes DIC (Fig. A3). Most of the CO₂ uptake 324 



 

 

occurs along the Northern Gulf coastline in winter, whereas peak outgassing is simulated along the 325 
Florida coast in summer. However, this pronounced summer outgassing along the Florida coast may 326 
reflect in part a numerical artifact, as satellite observations do not indicate high chlorophyll 327 
concentrations during that season (Fig. A3).  328 
 329 
Figure 4b shows that passive tracers released from the Mississippi and Atchafalaya Rivers are generally 330 
carried westward along the shoreline by surface currents driven by predominantly east-to-west winds. 331 
During summer (June–September), part of the plume is transported east of the Mississippi Delta as 332 
currents reverse under weakened winds, eventually interacting with the Loop Current system and 333 
spreading offshore into the open Gulf. This result suggests that under the proposed alkalinity modification 334 
scenarios additional air–sea CO₂ exchange is most likely to occur along the Texas–Louisiana coastline, 335 
with the strongest signals near the Mississippi Delta, rather than in the eastern Gulf. 336 
 337 
3.2 Distribution of added alkalinity 338 
The temporal and spatial distribution of added alkalinity and DIC in the surface ocean is critical for 339 
determining when and where CO₂ uptake occurs and how efficient it is, since only surface-retained 340 
additions contribute to air–sea exchange. We present the surface footprint of added alkalinity for the three 341 
one-month AE pulse scenarios in Figure 5. Alkalinity is emphasized here because surface DIC is 342 
influenced by both river inputs and air–sea CO2 exchange, whereas alkalinity is not affected by the air-sea 343 
CO2 exchange and primarily governed by hydrodynamics.  344 
 345 
The Jan100% scenario forms the largest surface alkalinity plume due to the greater riverine input. During 346 
the month of addition, most alkalinity remains near the Mississippi Delta, with stronger accumulation 347 
west of the delta rather than to the east. By the following month, it is advected eastward by wind-driven 348 
currents and entrained into the Loop Current, propagating southeastward into the open Gulf. The Jan10% 349 
scenario produces a similar spatial pattern, as alkalinity is also added in January. In comparison, the 350 
MayEqJan10% scenario spreads alkalinity over a broader region and retains it closer to the surface due to 351 
higher river discharge and shallower mixed layer. By the following month, most additions are transported 352 
west of the Delta, consistent with the passive tracer result. 353 



 

 

 354 

 355 
Fig. 5 Surface footprint of added alkalinity for the one-month AE pulse scenarios, represented as 356 
differences in average alkalinity concentrations in the upper 10 m between each scenario and the control 357 
run. Results are shown as monthly averages for the month of addition (left) and the subsequent month 358 
after the addition stopped (right). The EW scenarios (not shown) exhibit surface similar footprints. 359 
 360 
Figure 6 shows the amount of added alkalinity retained in the upper 10 m, which directly contributes to 361 
air–sea CO₂ exchange, expressed as both total inventory and percentage of riverine addition. The 362 
Jan100% scenario shows the highest retention inventory, peaking at about 7 × 10¹⁰ mol by the end of the 363 
one-month addition before declining as alkalinity is redistributed to deeper layers. The two 10% one-364 
month pulse scenarios follow a similar temporal pattern, with peak retention inventories about one 365 
seventh of the 100% scenario. 366 
 367 
The percentage results provide a different perspective. Among the one-month pulse scenarios, the 368 
MayEqJan10% scenario shows much higher retention than the two January additions, particularly 369 
between days 50 and 100. The two January scenarios yield nearly identical retention, as they are subject 370 
to the same winter–spring conditions.  371 
 372 
The added alkalinity in the MayEqJan10% scenario shows high retention, benefiting from both elevated 373 
river discharge and a shallow mixed layer. To disentangle these two effects, we conducted a sensitivity 374 
experiment in which the river discharge from January 2017 was shifted to begin in May 2017, and the 375 
10% one-month addition was repeated based on this modified run. The results show only minor 376 
differences between the control and sensitivity runs (green solid versus green dashed lines), indicating 377 
that changes in mixed layer depth are the primary factor determining the higher retention of the 378 
MayEqJan10% scenario.  379 



 

 

 380 
Fig. 6. Added alkalinity summed across the entire model domain and within the upper 10 m, shown as 381 
total inventory (left panel) and as the percentage of riverine additions (right panel). 382 
 383 
3.3 CO₂ uptake efficiency 384 
Figure 7 presents the temporal evolution of CO₂ uptake efficiency across all alkalinity modification 385 
scenarios. In AE scenarios, η increased rapidly during the first 7–8 months before stabilizing with only 386 
minor changes, reflecting the timescale for the air-sea CO2 transfer to fully respond to the added 387 
alkalinity. Final η values varied, with the Jan100% scenario yielding the lowest value (0.58). Reducing 388 
the addition to 10% in the same month increased η to 0.76, and similarly the Year10% scenario produced 389 
an efficiency of 0.72. These results suggest that smaller modifications in river alkalinity concentrations 390 
lead to higher η. This does not include the potential inorganic precipitation of calcium carbonate particles 391 
in the case of strong alkalinity increase (Jan100%), thus the efficiency of 0.58 should be considered as an 392 
upper bound (Fig. S2). The timing of addition also matters. The summer alkalinity release scenario 393 
(MayEqJan10%) reached an η of 0.85, considerably higher than the equivalent winter case (Jan10%). The 394 
higher summer efficiency coincided with both a shallower mixed-layer and with the transition towards 395 
seasonal outgassing. 396 
 397 
All EW scenarios produced small but negative η values, indicating that introducing both ALK and DIC in 398 
a 1:1 ratio result in CO₂ release to the atmosphere, through an ocean-side “carbon leakage” (e.g., Kanzaki 399 
et al., 2023). In the EW cases, η did not converge to a steady state but fluctuated within a relatively small 400 
absolute range. Final values differed only slightly, ranging between –0.12 and –0.15 (Fig. 7). A slight 401 
“leakage overshoot” was observed in the summer release scenario at the end of 2017, which was 402 
subsequently mitigated in early 2018 due to the influence of strong winter mixing due to high winds. 403 
These dynamics reflect the fact that for a given perturbation to marine ALK concentrations the EW case 404 
introduces DIC at a relative excess to background dissolved pCO2, but at a smaller deviation overall from 405 
the background ALK/DIC field (see Section 4.1). In addition, this implies that for a given alkalinity 406 
introduction the ultimate quantity of carbon storage will be larger for the EW case than for the AE case 407 
(Fig. 7). 408 



 

 

 409 
 410 

  411 
Fig. 7. The CO₂ uptake efficiency (𝜂) for different AE (left) and EW (right) scenarios. The accumulated 412 
CO₂ uptake used to calculate η is the sum over the entire model domain. 𝜂𝑓𝑖𝑛𝑎𝑙 indicates the η values for 413 
the different scenarios at the end of the simulations. The three one-month addition cases are simulated for 414 
about one year, as η changes only minimally after that period. The Year10% case runs for more than 500 415 
days because alkalinity is continuously added throughout an entire year, followed by an extended 416 
simulation to capture η changes beyond that period. 417 
 418 
3.4 Air–Sea CO₂ flux 419 
Besides surface retention of added alkalinity or DIC, temporal variations in the rate of air–sea CO₂ gas 420 
exchange influence uptake efficiency. A higher exchange rate reduces the chance that the alkalinity or 421 
DIC retained near the surface is advected to the deep ocean. Figure 8 shows Northern Gulf-integrated 422 
differences in air–sea CO₂ flux between modification scenarios and the control run, along with 423 
corresponding ηday contributions. The flux represents the total amount of CO₂ absorbed in the Northern 424 
Gulf, and ηday reflects changes in the efficiency of absorption. 425 
 426 
In the AE scenarios, one-month pulses follow similar temporal patterns, with flux peaking near the end of 427 
the modification period and gradually declining toward equilibrium afterward. Later, when vertical 428 
mixing in the ocean was enhanced by occasional hurricanes or by seasonally intensified winter mixing in 429 
the following year, the river-derived alkalinity that had been transported to subsurface layers was brought 430 
back to the surface, leading to several minor episodes of CO₂ uptake (e.g., day 250). The Jan100% 431 
scenario produces the largest flux and the longest recovery time, reflecting the stronger chemical 432 
disequilibrium it induces. The Jan10% and MayEqJan10% scenarios show comparable but smaller fluxes, 433 
with the January scenario recovering more slowly. ηday contributions, however, diverge from the flux 434 
patterns. The Jan100% scenario, despite yielding the highest flux, produces the lowest ηday during and 435 
after modification, consistent with its prolonged recovery time. The Jan10% and MayEqJan10% scenarios 436 
achieve similar peak efficiencies, but the May addition sustains a broader window of high efficiency 437 
during the first 50 days. 438 
 439 
The difference between the Jan100% and Jan10% scenarios can be attributed to the 𝛼𝐶  term in Eq. 5. A 440 
larger river alkalinity input pushes the system farther from equilibrium, which reduces the sensitivity of 441 



 

 

CO₂ uptake per unit alkalinity added. The slight increase from Jan10% to MayEqJan10% is because of the 442 
shallower mixed layer in summer compared with winter. 443 
 444 
The EW scenarios reproduce the AE pattern of air–sea CO₂ flux but with negative values (outgassing) and 445 
much smaller magnitudes. For example, in the Jan100% case, the peak flux is ~3.8 × 10⁸ mol C/day, 446 
about one third of the corresponding AE value (1.2 × 10⁹ mol C/day). Moreover, similar subsequent minor 447 
episodes of air–sea CO₂ exchange occurred in the EW cases as well, appearing as either uptake or 448 
outgassing depending on the ratio of river-derived DIC and ALK that were mixed back into the surface 449 
layer. Daily contributions to the efficiency are nearly identical in the Jan100% and Jan10% cases, while 450 
the MayEqJan10% simulation is characterized by a lagged peak and stronger fluctuations. However, these 451 
variations in ηday are small (on the order of 10⁻³), and overall differences among the efficiencies in the EW 452 
scenarios negligible. 453 
 454 

  455 
Fig. 8. Upper panels: daily domain-summed air–sea CO₂ flux differences between the control run and the 456 
AE (a1) and EW (b1) scenarios. Lower panels: ηday contributions from the corresponding AE (a2) and EW 457 
(b2) scenarios. The black dashed line represents the zero baseline. 458 
 459 
3.5 Attribution of air–sea CO₂ flux changes 460 
The mechanisms driving the air-sea carbon fluxes in both AE and EW scenarios are highlighted in Figure 461 
9. We selected the Jan100% case, because it induces the largest disequilibrium and produces the clearest 462 
anomaly signals above background variability. Dynamic patterns of air–sea CO₂ exchange, however, are 463 
consistent across AE and EW scenarios, with a representative exchange timescale (𝜆−1) of approximately 464 
58 days. Full air-sea equilibration takes 2-3 times this e-folding timescale, consistent with the evolution of 465 
air-sea CO2 flux in Fig. 8.  466 
 467 
In the AE simulations, adding alkalinity promotes atmospheric CO₂ uptake at the surface, enhanced by 468 
wind-driven exchange. Physical transport and mixing simultaneously dilute newly formed DIC, 469 



 

 

sustaining active uptake. Once the addition is stopped, dilution of surface alkalinity creates localized 470 
reductions that can trigger sea-to-air outgassing. This process, however, is largely offset by the 471 
redistribution of absorbed DIC, allowing fluxes to return toward equilibrium. 472 
 473 
In the EW case, the dynamics differ because rivers also supply additional DIC, which appears in the 474 
transport term. The imbalance between the added DIC and ALK leads to net outgassing in the first month, 475 
further amplified by wind. Once additions cease, transport and mixing dilute both DIC and ALK, 476 
returning air–sea fluxes toward equilibrium, as in the AE case. 477 
 478 

 479 
Fig. 9. Attribution of air-sea CO2 flux anomalies for the 2017-Jan100% scenario in AE and EW. 480 
Anomalies are integrated over the entire model domain, with positive values indicating fluxes into the 481 
ocean. Only the dominant drivers identified by the attribution framework, accounting for 99% of the 482 
fluxes, are shown. 483 
 484 
4.Discussion 485 
4.1 A framework for explaining efficiency changes across modification scenarios  486 
A simple framework in DIC/ALK space can help explain how η varies under different modification 487 
pathways. In Figure 10, we show equilibrium CO₂(aq) contours calculated with CO2SYS at T = 25 ℃ and 488 



 

 

S = 35.5 psu using a range of DIC and alkalinity combinations. The black dot marks the background 489 
ocean state, and the dotted line shows the background DIC/ALK ratio (0.87), which is closely aligned 490 
with the equilibrium CO₂(aq) contours. Although this ratio varies seasonally and regionally in the Northern 491 
Gulf (0.85–0.90), a single reference is used for clarity. The yellow and pink lines represent the AE and 492 
EW pathways, respectively.  493 
 494 
Post-perturbation, DIC/ALK values asymptotically approach the background ratio via a non-linear 495 
trajectory. If the air–sea CO₂ exchange was the only process at play (e.g., neglecting ocean dynamics), the 496 
trajectories would follow the vertical pink and yellow arrows in Fig. 10 until they intersect the 497 
background line. These intersections mark the maximum potential CO₂ uptake for AE and the maximum 498 
potential CO₂ loss for EW, respectively. The corresponding efficiency is given by 499 
 500 
𝜂𝑚𝑎𝑥 =  −

𝐷𝐼𝐶𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐴𝐿𝐾𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
+

𝐷𝐼𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐴𝐿𝐾𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
                                                                                          (6) 501 

 502 
Where the 𝜂𝑚𝑎𝑥 represents the difference between the DIC/ALK ratio (

𝐷𝐼𝐶𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝐴𝐿𝐾𝑚𝑜𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
) imposed by the 503 

alkalinity modification and the background ocean DIC/ALK ratio (
𝐷𝐼𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐴𝐿𝐾𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
). In the AE scenario the 504 

modification ratio equals 0, so 𝜂𝑚𝑎𝑥  is determined by the background ratio (0.87). In the EW scenario, the 505 
modification ratio equals one, which gives 𝜂𝑚𝑎𝑥 = - 0.13. All simulated η values in Section 3.3 for AE 506 
scenarios are smaller than this theoretical maximum, and the values from EW scenarios are around the 507 
theoretical maximum. 508 
 509 
In reality, ocean dynamics impact efficiency. For AE, transport and mixing redistribute added alkalinity 510 
from the surface to depth, and this contribution is represented as a retreat along the yellow trajectory, with 511 
the vertical offset from the background line representing the realized CO₂ uptake. This retreat lowers 512 
realized η relative to ηₘₐₓ, as shown by the white arrow. Stronger winter mixing compared to summer 513 
mixing enhances alkalinity loss (a greater retreat), causing η from the Jan10% scenario to be smaller than 514 
the MayEqJan10% scenario. In addition, in the Jan100% scenario a slow air–sea exchange prolongs 515 
equilibration, allowing more time for ocean advection to redistribute alkalinity to depth, further reducing 516 
η.  517 
 518 
In the EW scenarios, physical transport and mixing contribute to the removal of both DIC and ALK from 519 
the mixed layer. This is represented as a retreat along the pink trajectory, with the vertical offset from the 520 
background line indicating the total amount of CO₂ loss. However, this contribution is difficult to quantify 521 
in the simulated η values because the EW perturbations are small relative to the background ALK/DIC 522 
field and equilibrate rapidly in the shallow coastal regions where outgassing occurs. As a result, most 523 
simulated values remain close to the theoretical maximum. This is a key contrast between AE and EW — 524 
stronger physical transport and mixing reduce the effectiveness of AE, but increase the relative 525 
effectiveness of EW, with respect to ocean carbon storage. 526 



 

 

 527 

 528 
Fig. 10. Conceptual diagram showing how η varies across different alkalinity modification scenarios in 529 
the DIC/alkalinity space. Arrows represent conceptual directions, and do not reflect the actual results of 530 
the simulations. 531 
 532 
4.2 η in the Northern Gulf across the literature 533 
The simulated η values for the AE scenarios in this work range from 0.58 to 0.85. This range encloses the 534 
Gulf-wide efficiency of 0.6–0.7 reported by an independent study using one-month alkalinity pulses 535 
across globally distributed ocean patches (Zhou et al., 2025). Ou et al. (2025) simulated river-sourced 536 
alkalinity enhancement scenarios in the Gulf by increasing river alkalinity by 10% during 2021–2022, 537 
with a total addition of 1.03 × 10¹¹ mol, comparable to our Year10% scenario (1.065 × 10¹¹ mol). Despite 538 
similar amounts added, their simulated a CO₂ uptake (~4.09 × 10¹⁰ mol, η = 0.4) is substantially lower 539 
than ours (~9.9 × 10¹⁰ mol, η = 0.72). This difference may be attributed in part to model resolution. Their 540 
1 km model permits submesoscale dynamics, which enhance vertical transport, reducing the retention of 541 
added alkalinity in surface waters and lowering η. Their framework also showed strong CO₂ outgassing in 542 
the open Gulf, which was not captured in our simulation. This discrepancy may also stem from structural 543 
differences between their biogeochemical module and parameterization choices, as well as sensitivity to 544 
hydrodynamic variability at fine scales. 545 
 546 
Comparisons with OAE experiments in other parts of the word indicate that, with an appropriately 547 
designed strategy, η can exceed 0.70, as found for the North Sea and northern Brazil (η > 0.7; He and 548 



 

 

Tyka, 2023; Liu et al., 2025). These regions share an upper ocean stratification that favors alkalinity 549 
retention in the mixed layer for long enough to sustain air–sea CO₂ exchange. Some open-ocean regions 550 
report even higher efficiencies, reaching 0.96 in the Bering Sea (Wang et al., 2023) and above 0.8 in the 551 
Southern Ocean (Burt et al., 2021). However, coastal or river-based enhancement strategies retain 552 
significant cost and operational advantages against dispersing large quantities of alkaline material 553 
offshore. AE when performed at river mouths has an added benefit of the discharge naturally spreading 554 
alkalinity, expanding the area available for CO₂ uptake. 555 
 556 
For the EW case, our simulations suggest that approximately 12–15% of the CO₂ drawdown through 557 
land-based strategies is subsequently released back to the atmosphere from the ocean, independently of 558 
the details of the discharge. Although there are fewer existing estimates of ocean-side CO2 leakage 559 
(Kanzaki et al., 2023; Beerling et al., 2025a), our results are generally consistent with existing work 560 
indicating that ocean CO2 leakage is a relatively small component of the overall EW life cycle  (e.g., at or 561 
below ~10-15% for silicate feedstocks and ~20-30% for carbonate feedstocks). However, it will be 562 
important to further refine these estimates at additional locations and with higher resolution ocean models 563 
that include a fully comprehensive ocean-sediment carbonate system. 564 
 565 
4.3 Planning perspective 566 
Our simulations show that small additions of alkalinity to riverine discharge yield higher CO₂ uptake 567 
efficiency than large perturbations. Strategies that sustain modest increases in alkalinity over longer 568 
periods are therefore likely to be more efficient than short, concentrated pulses (e.g., Year10% vs. 569 
Jan100%). In the Northern Gulf, alkalinity enhancement is also more effective in summer than in winter 570 
because a stronger stratification and shallower mixed layer promote a longer surface retention of the 571 
added alkalinity (e.g., MayEqJan10% vs. Jan10%). 572 
 573 
While smaller perturbations maximize efficiency, they may not achieve the total CO₂ uptake needed for 574 
large-scale mitigation. In our simulations, one-month 10% additions produced about 8–9 × 10⁹ mol of 575 
uptake, about an order of magnitude less than the more expensive Jan100% scenario or Year10% 576 
scenarios, highlighting a trade-off between efficiency, total carbon removal, and implementation costs. 577 
Cost-effective strategies would favor smaller additions, whereas maximizing sequestration would require 578 
accepting lower efficiency. 579 
 580 
For EW cases, our simulations reveal only minor differences in the amount of ocean-side leakage, making 581 
it a less pressing concern for strategy design. Instead, effective approaches should focus on land-based 582 
factors such as mineral feedstock, weathering kinetics, cost, and signal resolvability (Paulo et al., 2021; 583 
Deng et al., 2023; Li et al., 2024; Suhrhoff et al., 2024; Beerling et al., 2025a, b, Kanzaki et al., 2025). In 584 
addition, our results imply that in general for a given amount of ALK modification, EW approaches will 585 
tend to result in more effective ocean carbon storage because they will tend to deviate less strongly from 586 
the background ALK/DIC field during transient ALK modification. 587 
 588 
4.4 Limitations and future work 589 
Limitations of this study are in the regional ocean model framework, the resolution of the ocean model, 590 
and the uncertainties related to the representation of the biogeochemical processes. The regional 591 
framework prevents tracers exiting the Northern Gulf from being tracked. This may cause an 592 



 

 

underestimation of both amount and efficiency of CO₂ uptake in alkalinity enhancement scenarios, since 593 
alkalinity transported beyond the boundary is no longer represented, and could resurface elsewhere. 594 
However, most CO₂ uptake occurs within the first 100 to 150 days after addition (Fig. 6, Fig. S2). By the 595 
time the added alkalinity exits the Northern Gulf, the majority (about 80%) has already entered the 596 
subsurface layer. Consequently, any subsequent alkalinity mixing back to the surface, whether within the 597 
Northern Gulf or elsewhere, would contribute little compared with the uptake that occurs during the initial 598 
4-5 months. Addressing this remaining uncertainty would require nesting the regional configuration 599 
within a global model to track the fate and potential resurfacing of exited alkalinity. In addition, we used a 600 
prescribed background atmospheric pCO₂ in this study, which we consider reasonable given the regional 601 
perturbations and the short, two-year simulation period. However, a fully coupled ocean–atmosphere 602 
system with a freely evolving pCO₂ field is required to accurately capture air–sea CO₂ exchange under 603 
larger and longer-term perturbations (Kanzaki et al., 2023; Tyka et al., 2025). 604 
 605 
The horizontal resolution of our simulations (5 km) is insufficient to resolve submesoscale processes, 606 
which generally require grid spacing finer than 2 km. Submesoscale circulations alter biogeochemical 607 
tracer transport, especially in the vertical, (Liu et al., 2022), affecting air–sea CO₂ exchange. In the 608 
Northern Gulf, these processes modify freshwater plume spreading, deepen the mixed layer, and enhance 609 
vertical transport especially around mesoscale eddies (Luo et al., 2016; Liu et al., 2021, 2022). Higher-610 
resolution simulations are needed to better constrain efficiency, but their computational costs, especially 611 
when coupled with a biogeochemical model, remain too high to allow the kind of scenario exploration 612 
performed in this work.  In this regard, it is worth noting that while AE and EW are negative-emission 613 
approaches aimed at mitigating climate change, evaluating their feasibility through numerical simulations 614 
produces a substantial carbon footprint. Each of our one-year scenarios required ~30,720 CPU hours, 615 
equivalent to ~125.75 kg CO₂ emissions (Lannelongue et al., 2021; https://calculator.green-616 
algorithms.org/). Finer resolution or a global investigation could increase this cost by an order of 617 
magnitude. A path forward may be represented by the development and adoption of AI-based emulators, 618 
which would enable a broad exploration of potential strategies at a lower carbon cost. 619 
 620 
Lastly, in the PISCES framework, calcite precipitation is represented only through biologically mediated 621 
contributions to the biological pump. Specifically, calcite formation is driven through a specified ratio 622 
between particulate organic carbon (POC) and inorganic carbon (PIC) export and is then scaled to export 623 
production. However, abiotic calcite precipitation may occur if the saturation state (Ω) of calcite or 624 
aragonite is transiently driven to elevated values. In some cases, this may result in rapid, non-linear 625 
carbonate formation and in extreme cases could lead to net alkalinity export from the mixed layer 626 
(Hartmann et al., 2022; Moras et al., 2023). In our simulations, only a small area within the Mississippi 627 
Delta reached 𝛺𝑐𝑎𝑙𝑐𝑖𝑡𝑒  > 7, (Fig. S2), which indicates limited potential for abiotic calcite precipitation in 628 
our simulated perturbations. Abiotic precipitation will remove more alkalinity under a stronger pulse due 629 
to a greater increase in local alkalinity. Without the abiotic precipitation parameterization, a stronger pulse 630 
(Jan100%; =0.58) is less efficient than a weaker one (Jan10%; =0.76). While we suggest that modeling 631 
estimates of the effectiveness of ocean carbon storage through alkalinity modification should be 632 
standardized to include saturation-state dependent carbonate formation, we would not expect this to alter 633 
the primary results of this study, in particular that weaker pulses exhibit higher CO2 uptake efficiency.  634 
 635 
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5.Conclusion 636 
In this study, we applied a high-resolution regional ocean–biogeochemistry model to evaluate the 637 
effectiveness of two river-based alkalinity modification approaches (AE and EW) in the Northern Gulf of 638 
Mexico. We conducted eight hypothetical scenarios that varied the timing, magnitude, and duration of 639 
alkalinity and DIC additions in the Mississippi and Atchafalaya Rivers. Our analysis focused on the 640 
simulated amount and efficiency of CO₂ uptake or leakage for each strategy adopted, and the roles of 641 
ocean dynamics and air–sea fluxes in shaping the outcomes were examined. These results provide 642 
valuable guidance for designing carbon dioxide removal plans in the southern United States. 643 
 644 
For the AE experiments, simulated CO₂ uptake efficiencies ranged from 0.58 to 0.85. Efficiency was 645 
higher for modest perturbations and for summer-time deployment. Smaller additions kept the system 646 
closer to the background equilibrium state, resulting in higher carbon uptake per alkalinity addition and 647 
greater integrated CO₂ uptake. In summer, warmer surface waters produced a shallower mixed layer, 648 
allowing more of the added alkalinity to remain near the surface and sustaining a broader window of high 649 
uptake efficiency. 650 
 651 
For the EW experiments, the model results indicated that 12–15% of the carbon sequestered on land was 652 
re-emitted to the atmosphere from the ocean, largely independent of the timing or magnitude of the 653 
additions. This stable leakage from the ocean side can be explained by the relatively small perturbations 654 
of EW compared to AE. The EW simulations showed anomalies in air–sea CO₂ flux and 𝜂𝑑𝑎𝑦 values that 655 
were an order of magnitude smaller than those in AE. As such, although the choice of strategy may still 656 
influence the percentage of leakage, the perturbation magnitude is so small that these differences are 657 
difficult to detect. 658 
 659 
Lastly, we presented a simple framework in DIC–alkalinity space to explain efficiency differences across 660 
AE and EW scenarios. Theoretical efficiencies or leakages are determined by the initial DIC/alkalinity 661 
ratios in river inputs relative to the background ocean ratio, which in turn reflects the equilibrium 662 
carbonate chemistry. Ocean dynamics, through the vertical mixing of alkalinity, lower these theoretical 663 
values by redistributing added materials vertically, with part of the additions lost to the subsurface ocean 664 
before absorbing CO2 from the atmosphere. Our results indicate that ocean dynamics exert a stronger 665 
influence on AE because of the larger perturbations in DIC–alkalinity space, necessitating explicit 666 
consideration of alkalinity loss to the ocean interior when developing AE strategies. In contrast, EW is 667 
less sensitive to ocean dynamics, and its effectiveness, life cycle assessment and sustainability potential 668 
should be assessed primarily in terms of land-based factors such as mineral feedstock and weathering 669 
processes. 670 
 671 
Appendix A: Model validation and calibration 672 
Observational data 673 
Observational data from multiple sources were used to validate and calibrate the model. In situ 674 
measurements were obtained from two buoy stations located along the coastlines of Mississippi and 675 
Louisiana (Coastal MS and Coastal LA, Fig. A1), operated by the Pacific Marine Environmental 676 
Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA). These stations 677 
provided continuous observations of sea surface temperature, salinity, and pCO2 for model comparison 678 
(https://www.pmel.noaa.gov/co2/story/Coastal+MS and 679 
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https://www.pmel.noaa.gov/co2/story/Coastal%20LA, accessed August 2025). 680 
 681 
In addition to in situ observations, satellite-derived datasets were used to evaluate model-simulated 682 
chlorophyll concentration and net primary production (NPP). MODIS-AQUA provides 7-day mean 683 
chlorophyll data for the southeastern United States 684 
(https://erddap.marine.usf.edu/erddap/griddap/index.html?page=1&itemsPerPage=1000, accessed August 685 
2025). The Oregon State University Ocean Productivity Lab provides global NPP estimates from multiple 686 
algorithms (MODIS-CBPM, MODIS-standard VGPM, VIIRS-CBPM, and VIIRS-standard VGPM) 687 
(https://orca.science.oregonstate.edu/npp_products.php, accessed August 2025). 688 
 689 
Moreover, the project: Collaborative Research: pH Dynamics and Interactive Effects of Multiple 690 
Processes in a River-Dominated Eutrophic Coastal Ocean conducted multiple cruise-based measurements 691 
of dissolved inorganic carbon (DIC), total alkalinity (TA), pH, dissolved oxygen, and pCO2 in the 692 
Northern Gulf from 2017 to 2019, with cruise trajectories shown in Fig. A1. The TA and DIC data from 693 
these cruises were used to validate model simulations. All observations were obtained from the Biological 694 
and Chemical Oceanography Data Management Office (BCO-DMO) portal (https://www.bco-695 
dmo.org/project/751332, accessed August 2025). 696 
 697 
Finally, the SeaFlux product, a global 1° × 1° gridded dataset of pCO2 constructed using an ensemble 698 
approach that integrates six observation-based mapping products, was used to evaluate the model 699 
performance in simulating spatial patterns of pCO2 (Fay et al., 2021). 700 
 701 

 702 
Fig. A1. Map showing the locations of in situ observations and the trajectories of cruise measurements. 703 
 704 
Buoy-Based Observational Comparisons 705 
Figure A2 compares sea surface temperature (SST), sea surface salinity (SSS), and pCO₂ between high-706 
frequency buoy measurements and model outputs at two stations near the Mississippi Delta, both strongly 707 
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influenced by river discharge from Mississippi and Atchafalaya rivers. For SST, the model and 708 
observations show strong agreement for SST results at both stations (R>0.95), though the model 709 
underestimates values by ~1–1.5 °C, especially in spring when temperatures rise rapidly. Nonetheless, 710 
this level of agreement is encouraging, considering that the simulation is free-evolving, and the coarse-711 
resolution model cannot capture complex submesoscale coastal processes. 712 
 713 
For SSS, the comparison between the model and observations shows generally good agreement, with 714 
better consistency at Coastal LA than at Coastal MS.  At Coastal MS, the model misses salinity decreases 715 
in May–June 2016 and 2017 because river salinity was prescribed as a fixed 4 PSU (Sun et al., 2022) to 716 
avoid numerical instability, preventing representation of temporal variability. 717 
 718 
For pCO₂, the model captures the overall magnitude at both stations, again with better agreement at 719 
Coastal LA. At Coastal MS. At Coastal MS, it fails to reproduce the low values observed during summer. 720 
This bias likely arises from the use of monthly climatological riverine biogeochemical inputs, which 721 
cannot resolve sub-monthly variability. Incorporating higher-frequency biogeochemical riverine inputs 722 
would likely improve model performance. 723 
 724 

 725 
Fig. A2. Time series comparing SST, SSS, and seawater pCO₂ between observations at the Coastal LA 726 
and Coastal MS sites and corresponding model outputs. 727 
 728 
Satellite-Derived Product Comparisons 729 
Compared with satellite observations, the model reproduces the main spatial and seasonal patterns of 730 
chlorophyll in the Northern Gulf (Fig. A3). Observations show high concentrations (>2 mg/m³) in coastal 731 
waters, peaking near the Mississippi Delta (>10 mg/m³), and decreasing offshore with depth. The model 732 
captures this coastal-to-offshore gradient but produces a broader band of high chlorophyll that extends 733 
farther offshore than observed. Model performance in the Florida region is less consistent. Chlorophyll is 734 
underestimated along the northern Florida coast and overestimated along the southern Florida coast. 735 
Because chlorophyll patterns in this region are strongly influenced by local river inputs, the model biases 736 



 

 

are likely attributable to the limited availability and quality of river discharge and riverine biogeochemical 737 
tracer data used to represent this region. For the seasonal differences, both observations and the model 738 
show high open-sea chlorophyll in winter, though the model tends to overestimate its magnitude. 739 
 740 

 741 
Fig. A3. Modeled surface chlorophyll concentration compared with satellite-derived data, shown as the 742 
2016–2018 seasonal mean average. 743 
 744 
Figure A4 compares model-simulated domain-averaged NPP in the open sea (h > 150 m) with satellite-745 
derived estimates from various products. Estimates were limited to the open sea because satellite 746 
algorithms perform reliably in clear waters but poorly in turbid coastal regions (Gómez-Letona et al., 747 
2017; Xu et al., 2022). Observed NPP ranges from ~200 to 900 mg C m⁻² day⁻¹, with higher values in 748 
winter and lower in summer. The model reproduces both the magnitude and seasonal cycle, though 749 
simulated variability is slightly larger, especially in summer 2016 and winter 2018. 750 



 

 

 751 
Fig. A4. Comparison between modeled NPP and satellite-derived NPP for the open-sea domain (h > 150 752 
m) of the Northern Gulf. 753 
 754 
Cruise-Based Observational Comparisons 755 
Cruise-based observational comparisons to the model were conducted in two ways. First, several cruise 756 
trajectories followed roughly linear tracks from the coastal region to the open sea, with multiple 757 
measurements taken along each track. These discrete measurements along a single linear trajectory were 758 
used to validate model-simulated transects. Because the measurements along a given trajectory were 759 
collected over several days, we used the monthly average of the corresponding model output for 760 
comparison. Overall, DIC, TA, and their ratio show good agreement (Fig. A5). The model captures the 761 
offshore increase of DIC (e.g., Fig. A5a2) as well as the increase of DIC with depth, although it tends to 762 
simulate slightly lower DIC values relative to the observations. TA exhibits weaker vertical gradients, and 763 
while the model reproduces the magnitude reasonably well, it produces extreme low values in some 764 
shallow coastal regions (e.g., Fig. A5a6). For the DIC/TA ratio, observed values are slightly lower than 765 
the model, a discrepancy attributable to the model’s overestimation of DIC. 766 
 767 
Second, all TA and DIC cruise measurements (2,827 data points) were paired with model output at the 768 
same locations, depths, and times. These paired datasets were then compared using a whisker plot (Fig. 769 
A5b). Result shows that model exhibits a systematic positive bias, with the model overestimating DIC by 770 
~ 40 µmol/kg, and TA by ~20 µmol/kg relative to the median values (red line in Fig. A5b). The DIC/TA 771 
ratio is also slightly overestimated, although model values remain within the wide observational range. 772 



 

 

 773 
Fig. A5. (a) Example comparison of DIC, TA, and the DIC/TA ratio from cruise measurements (scattered 774 
dots) with corresponding model outputs along the cruise transect. (b) Whisker plots comparing all cruise 775 
measurements with corresponded model outputs. 776 
 777 
SeaFlux Product Evaluation (month ave or value) 778 
Figure A6 shows the three-year averaged spatial distribution of pCO₂ from the SeaFlux product (ensemble 779 
mean of six products) and the model output. Both show the same seasonal cycle, with lowest values in 780 
winter when the Northern Gulf absorbs atmospheric CO₂ and highest in summer when it outgasses. 781 
Compared to SeaFlux, the model simulates slightly lower winter pCO₂ and higher summer values. 782 
Spatially, SeaFlux shows lower pCO₂ in coastal regions and higher values offshore, with the lowest near 783 
the Mississippi Delta under strong freshwater influence. The model reproduces this gradient but also 784 
simulates high pCO₂ near the estuary, a discrepancy expected given the 1° × 1° resolution cannot resolve 785 
fine-scale outgassing where river water with high DIC/TA ratios (~1) mixes with ocean water of lower 786 
ratios (~0.8). he model also overestimates pCO₂ along the Florida coast, likely due to its poor 787 
representation of chlorophyll in that region. 788 



 

 

 789 

 790 
Fig. A6. Comparison of the three-year (2016–2018) seasonal averages of pCO₂ between the SeaFlux 791 
ensemble mean and the model output. 792 
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are available upon request. 819 
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Fig. S1. Diagnostic DIC budget difference (integrated over the entire Gulf) between the Jan100% 

alkalinity enhancement scenario and the control run. The combined effects of transport (advection and 

mixing) and air–sea flux differences account for nearly all DIC changes that occurred in 2017. The air–

sea flux term shows a clear signal of CO₂ uptake, whereas the transport term primarily reflects noise 

originating from the open boundary. 
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Fig. S2. Spatial distribution of  𝛺𝐶𝑎𝑙  values for the one-month AE and EW pulse scenarios. Results are 

shown as monthly averages for the month of addition (left panel) and for the following month after the 

addition ceased (right panel). The yellow line represents the isoline where 𝛺𝐶𝑎𝑙  >7. 
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