

1 Integrating experiments and models to unravel interactions
2 between soil organic matter and enhanced weathering.

3 *Arthur Vienne¹, Tom Cox¹, Harun Niron¹, Bertrand Guenet², Reinaldy Poetra³, Laura
4 Steinwidder¹, Charline Vandenbroucke¹, Sara Vicca¹*

5 ¹ Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp,
6 Antwerp, Belgium.

7 ² Laboratoire de Géologie ENS, PSL Research University, CNRS, UMR 8538, IPSL, Paris, France

8 ³ Department of Earth System Sciences, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

9

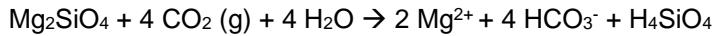
10 **Corresponding Author:** Arthur Vienne (arthur.vienne@uantwerpen.be)

11 KEYWORDS: Basalt, Enhanced weathering, soil organic matter, specific surface area, MRV

12 ABSTRACT

13 Enhanced weathering (EW) aims to accelerate rock dissolution to sequester atmospheric CO₂.
14 Here, we investigated key uncertainties in modelling C sequestration through EW by comparing a
15 coupled inorganic-organic geochemical model against soil measurements and soil CO₂ efflux from
16 a 389-day mesocosm experiment with soils amended with varying manure, basalt and dunite
17 inputs.

18


19 Silicate amendments did not enhance dissolved inorganic C leaching or
20 significantly increase pedogenic carbonate accumulation. PHREEQC simulations indicate that
21 base cations preferentially precipitated as secondary clays instead of carbonates, thereby inhibiting
22 inorganic CO₂ removal. Sequential extractions suggest that Al, Fe and base cations

23 were retained in soils through cation exchange, adsorption to (hydr)oxides and organic matter,
24 with model results indicating additional retention in secondary clays. Cumulative soil CO₂ efflux
25 and was not significantly altered by rock amendments.

26 Higher organic matter addition did not increase the release of elements from basalt (and even
27 reduced leached K and Fe), while decreasing the reactive surface area of basalt, indicating a
28 counteractive effect of organic matter on rock weathering. Cumulative soil CO₂ efflux did not
29 differ significantly among silicate-amended treatments, consistent with PHREEQCENTERY
30 simulations. The model predicted limited treatment effects on CO₂ efflux in this soil due to minor
31 changes in soil pH and moisture and limited stabilization of organic C that may correspond to
32 MAOM formation.

33 **1. Introduction**

34 To achieve the well below 2 °C warming target of the Paris Agreement, carbon dioxide removal
35 (CDR) approaches must be deployed alongside conventional emission-reduction strategies rather
36 than as stand-alone solutions (IPCC, 2023). Enhanced weathering (EW) is an emerging CDR
37 technique, which has attracted significant attention in recent years. Global CDR potentials on
38 cropland were estimated to exceed several gigatons per year (Strefler et al., 2018). CO₂ is
39 sequestered by reaction of silicate (or carbonate) rock with H₂O and CO₂, increasing HCO₃⁻ and
40 base cations (Na, K, Mg and Ca) in solution (as illustrated in **Reaction 1** for forsterite, the Mg-
41 endmember of olivine). Dissolved base cations and HCO₃⁻ can subsequently precipitate as
42 carbonates, halving CDR as 50% of the initially captured CO₂ is degassed (**Reaction 2**). These
43 reactions already sequester CO₂ in natural geological systems, yet at a slow rate. Natural
44 weathering can be accelerated by grinding rock to fine powders, which drastically increases
45 specific surface area (SSA) and therefore CDR rates (Schuiling & Krijgsman, 2006).

Reaction 1

Reaction 2

46

47 Dunite, mainly composed of olivine (>90% $(\text{Mg},\text{Fe})_2\text{SiO}_4$), and basalt are considered promising
48 feedstocks for EW because of their global abundance and high CDR potential. Basalts contain a
49 mixture of minerals, including olivine as well as pyroxene and plagioclase minerals. Based on their
50 base cation content, CDR potentials of dunite and basalt have been estimated to approximate 1100
51 and 300 kg CO_2 t rock $^{-1}$ respectively (Strelf et al. (2018)). These values represent maximum
52 CDR potentials, assuming no base cation uptake by carbonate precipitation, by secondary minerals
53 or other mechanisms.

54 The first models that predicted the CDR potential of EW were only constrained by rock weathering
55 rates derived from lab-scale rock dissolution experiments (Palandri & Kharaka, 2004). Recently,
56 more complex, geochemical reactive transport models have been developed to deal with the
57 complex environment of soils, for example using THOUGHREACT or PHREEQC software
58 (Beerling et al., 2020; Kelland et al., 2020; Lewis et al., 2021; Schwartz, 2022; Vienne et al., 2022).
59 The CDR rates predicted by EW models are, however, sensitive to several key variables including
60 CO_2 pressure, secondary mineral formation, specific surface area (SSA) and soil organic matter
61 (SOM) decomposition, which could all be influenced by interactions between rocks and soil
62 organic C (SOC) in soils.

63 Soil organic matter decomposition is a major contributor to the soil CO_2 pressure, which enhances
64 carbonic acid formation and lowers soil pH, thereby stimulating rock weathering (Amann et al.,
65 2022). Moreover, as pH decreases, OH^- and CO_3^{2-} ions decrease, limiting the formation of

66 hydroxide-bearing secondary minerals and pedogenic carbonates. Secondary minerals influence
67 the dissolution of primary minerals by incorporating or sorbing ions and altering porewater
68 chemistry (Lewis et al., 2021). By removing ions from solution, secondary mineral formation can
69 maintain undersaturation, further stimulating mineral dissolution. Surface passivation by
70 precipitated phases, on the other hand, can reduce dissolution rates (Hellmann et al., 2013; Oelkers
71 et al., 2018). The type of secondary minerals present is important in this regard. For example,
72 Lewis et al. (2021) showed that whether Al forms amorphous or crystalline Al(OH)_3 (gibbsite)
73 strongly impacts Al scavenging and aluminosilicate weathering, and hence also CDR.

74 When rocks weather with CO_2 and H_2O , dissolved HCO_3^- and base cations increase (e.g. **reaction**
75 **1**). Subsequently, the base cations can become incorporated into secondary minerals resulting in
76 protons release (illustrated here with the formation of chlorite in **Reaction 3**), which can then react
77 with carbonates (CO_3^{2-} and HCO_3^-) to form CO_2 and H_2O , hence inhibiting inorganic CO_2 removal.

78 A third key parameter is the surface area of rocks, which can be determined experimentally through
79 Brunauer Emmett Teller (BET) adsorption measurement (BET-SSA) or can be modelled based on
80 particle size. This modelled or geometric SSA is easier to determine as it only requires information
81 about particle size distribution (Rinder & von Hagke, 2021), yet can be an order of magnitude
82 smaller than those determined through gas absorption (Renforth et al., 2015). In addition, changes
83 in rock porosity over time due to adsorption of organics on surfaces may lead to erroneous
84 estimates of actual SSA.

85 Last, rock dissolution may influence the decomposition of SOM. Increases in pH can stimulate
86 decomposition while cation release and secondary mineral formation can stimulate SOM

87 stabilization (Vicca et al., 2022). In peatlands, Klemme et al., (2022) simulated that increased pH
88 after rock amendment can increase decomposition rates and losses SOC. On the other hand,
89 secondary minerals such as clays or Fe-/Al hydroxides can adsorb dissolved organic C (DOC) and
90 thus protect SOC from microbial respiration (Kothawala et al., 2009), potentially increasing SOC
91 stocks (Niron et al., 2024; Vicca et al., 2022; Xu et al., 2024). These EW-SOC interactions are
92 usually not considered in EW models (Kelland et al., 2020; Lewis et al., 2021; Schwartz, 2022),
93 yet recent studies indicate that interactions with SOC are critical to understand to climate impact
94 of EW (Boito et al., 2025; Lei et al., 2025; Steinwidder et al., 2025; Vicca et al., 2022; Xu et al.,
95 2024, 2025).

96 In this study, we aim to integrate experimental results with model predictions, while gaining
97 insights into interactions and model uncertainties. We conducted a mesocosm experiment testing
98 the interactions between silicates and organic matter for two rock types: basalt and dunite. To
99 assess the influence of SOC, two amounts of manure were added in separate treatments. Key
100 investigated parameters include leached elements, leached dissolved inorganic C (DIC), soil
101 inorganic C (SIC), secondary mineral formation, rock surface area and soil CO₂ efflux (SCE) in
102 unplanted soils. In addition, we compared our measurements with PHREEQC model predictions.
103 To this end, we coupled PHREEQC to an established organic C model (Century) resulting in a
104 coupled model: PHREEQCENTURY.

105 **2. Material and Methods**

106 **2.1 Experimental set-up**

107 In total, our experiment lasted approximately 1 year and 1 month (389 days). The experiment
108 consisted of 35 mesocosm (56 × 39 × 28 cm—area: 0.22 m²). On November 22, 2022, the control
109 pots were filled with 30 kg of acidic sandy-loam soil. This soil was then mixed with 0.55 kg of

110 cow manure using a concrete mixer to increase the SOC to 1%, ensuring sufficient CO₂ production
 111 in the soils. Additionally, to create a 3% SOC soil, we added 3.35 kg of cow manure to achieve
 112 the desired SOC level. The mesocosms were then amended with rock powders of different particle
 113 sizes (F = fine, M = medium, C = coarse). Treatments included basalt, dunite, and controls without
 114 rock powder amendment (B, D, C). Basalt (type DURUBAS) was sourced from Rheinischen
 115 Provinzial- Basaltund Lavawerke (RBPL) applied at 100 t ha⁻¹, while dunite was delivered by
 116 Sibelco and applied at a rate of 5 t ha⁻¹. An overview of the treatments is provided in Table 1. The
 117 fine basalt treatment with 1% SOC was also included in the study on the effect of *B. subtilis*
 118 addition presented in Niron et al (2024). Details on the composition of the utilized soil and manure
 119 (which was alkaline) for relevant parameters can be found in **Table 2**, while rock characterization
 120 can be found in **Table 3**.

121 **Table 1:** Overview of experimental treatments.

122 *Diameter larger than 90% of particles

Treatment code	C1	FB1	C 3	FB3	CB3	FD3	MD3	CD3
silicate type	/	Basalt	/	Basalt	Basalt	Dunite	Dunite	Dunite
ton silicate ha ⁻¹	0	100	0	100	100	5	5	5
amount of silicate (kg) per mesocosm	0	2.2	0	2.2	2.2	0.11	0.11	0.11
amount of manure (kg) per mesocosm	0.55	0.55	3. 35	3.35	3.35	3.35	3.35	3.35
D90 particle size (μm)*	/	292	/	292	670	71	278	1030
Initial SOC (%)	1	1	3	3	3	3	3	3

123 **Table 2:** Properties of rainwater, unamended soil and manure. Adapted from Niron et al. (2024).

124 *BD= Below the detection limit.

Sample	pH (in H ₂ O 2.5 mL:1g for solids)	EC (µS/cm)	Solid inorganic carbon (%)	Texture
Rainwater	6.960 ± 0.01	130.35 ± 1.15	/	/
Soil	5.585 ± 0.234	84.775 ± 33.315	*BD	Sandy loam (61% sand, 4% clay, 35 % silt)
Manure	8.213 ± 0.118	6997 ± 619.2	0.1705	/

126

127

Table 3: XRD data of the applied Durubas basalt and dunite rock.

128	*	XRD				XRF			
		129	Mineral phase	Durubas basalt (wt%)	Mineral phase	Dunite (wt%)	Oxide	Durubas Basalt (wt%)	Dunite (wt%)
130			Augite	50	Olivine*	86.6	SiO ₂	44.6	41.6
131			Plagioclase	35	Clinopyroxene	1.2	Fe ₂ O ₃	11.7	7.3
132			Olivine	5	Orthopyroxene	4.4	CaO	10.8	0.4
133			Illite	5	Chlorite	2.4	MgO	12.9	47.9
134			Chlorite	5	Serpentine	2.3	Al ₂ O ₃	11.5	0.8
135					Talc	0.4	Na ₂ O	2.6	0.0
136					2:1 layer silicates	2.6	TiO ₂	2.3	0.0
137							K ₂ O	0.7	0.0
							P ₂ O ₅	0.9	0.0
							MnO	0.2	0.1

138 *The mineralogy of olivine approximates the Mg-endmember (forsterite, Mg₂SiO₄) (Amann et al., 2022).

139 During the first 130 days after amendment, temperature and soil moisture were continuously
 140 monitored with sensors buried at 12 cm depth (CS655, Campbell Scientific, USA). Afterwards,
 141 due to limited sensor availability, temperature and moisture were registered biweekly. As the

142 experiment took place indoors, temperature fluctuations in time were minor (although temperature
143 was higher during summer). Temperature and soil moisture are provided in **Fig. S1**. Each
144 mesocosm was watered with 1 L of rainwater per week, corresponding to 223 mm year⁻¹.
145 Rainwater was collected from a local roof and analyzed for pH, EC and elements (**Table 2** and
146 **Table S1**). The percolated water (hereafter named “leachate”) was collected in a container below
147 the mesocosms.

148 In order to investigate changes in SSA and carbonates in rock powders, mesh bags (140 × 157 mm,
149 45 µm pore size, Top Zeven B.V., NLD) filled with pure basalt and dunite were placed horizontally
150 in each mesocosm at 5–6 cm depth. After 130 days, about 20g of rock powder was sampled from
151 mesh bags, which were then placed back into the soil. Similar disturbance activity was performed
152 for the control soils without mesh bags to account for potential disturbance effects. After 392 days,
153 mesh bags were sampled in an identical way.

154 **2.2 Sampling and measurements**

155 Leachate samples were collected biweekly and filtered (0.45 µm PET filter, Merck, USA) for
156 further analyses. pH and conductivity were measured with a pH/conductometer (914, Methrohm,
157 CHE). Elemental (Ca, Mg, K, Na, Fe, Al, Si, P, and Ni) analyses were measured on three occasions
158 (days 14, 56, and 113 corresponding to leachates of weeks 0–2, 6–8, and 14–16, respectively).
159 Elemental analysis was performed with ICP-OES (iCAP 6300 duo, Thermo Scientific, USA) for
160 Ca, Mg, K, and Na and with HR-ICP-MS (Element 2, Thermo Scientific) for other elements using
161 acidified samples (19:1–2%- HNO₃:Sample, TraceMetal Grade, Fisher Chemical). Calibration
162 standards were prepared using a multi-element standard (CPAChem). Alkalinity analysis was
163 performed using a continuous flow analyzer (SAN++, Skalar, NLD). DIC and DOC were
164 measured with a catalytic combustion-based TOC analyzer (FormacsHT, Skalar, NLD) and

165 initially analyzed biweekly until day 130. While the last soil water sample for elemental analyses
166 other than C was taken at day 130 of the experiment, monitoring of DIC and DOC continued
167 monthly until day 389.

168 Two types of solid material were analyzed for each mesocosm: silicate–soil mixtures and unmixed
169 silicates in mesh bags, both sampled after 130 days. Dissolved element losses (Na, K, Ca, Mg, Fe,
170 Al, Si) were assessed by measuring leaching and by sequential extractions (after Tessier et al.,
171 1979) to quantify retention in four soil pools: exchangeable, carbonate-associated, reducible
172 (hydroxide-associated), and oxidizable (SOM-associated) (Table 4; Niron et al., 2024).

173 **Table 4:** Modified version of the sequential extraction procedure from Tessier et al. (1979).

Fraction	Solvent	Conditions
Exchangeable	1 M BaCl ₂ , pH 7.0, 8 ml	Room temperature, 1 h, continuous agitation
Carbonate bound	1M NaOAc, pH 5.0 (adjusted with HOAc), 8 ml	Room temperature, 4 h, continuous agitation
Reducible	0.04 NH ₂ OH.HCl in 25% (v/v) HOAc, 20 ml	96°C, 6 h, occasional agitation
Oxidizable	(i) 0.02 M HNO ₃ , 3 ml + 30% H ₂ O ₂ , pH 2.0, 5 ml (adjusted with HNO ₃) (ii) 30% H ₂ O ₂ , pH 2.0 (adjusted with HNO ₃), 3 ml (iii) 3.2 M NH ₄ (CH ₃ COO), 5 ml in 20% (v/v) HNO ₃ + H ₂ O, 4 ml	(i) 85°C, 2 h (ii) 85°C, 3 h (iii) RT, 0.5 h, continuous agitation

174
175 Carbonates were measured in mesh-bags filled with silicates and in the bulk soil. Calcimetry was
176 applied only to pure rock powders in mesh bags (methodology, see supplement, section 4). In the
177 bulk soil, Carbonate-associated cations were quantified from base cations in the Tessier carbonate-
178 associated soil pool, similar to Larkin et al. (2022). After extraction of 1 g of sample with 8 mL
179 1M BaCl₂, samples were centrifuged at 3000 rotations per minute (rpm) for 5 minutes, washed
180 once with 20 mL of DI water, centrifuged at 3000 rpm for 5 minutes again and the pellet was re-

181 extracted using 8 mL of 1M Na acetate adjusted to pH 5.0 with acetic acid. Through charge
182 balance, for every mol of Ca and Mg in the acetate extracts, 1 mol of SIC was assumed to be
183 extracted. The extract volume was 8 mL in this case (**Equation 1**).

$$184 \Delta SIC[\%] = \frac{\left((\Delta Ca + \Delta Mg + \Delta Fe) \left[\frac{mol}{L} \right] + \left(\frac{\Delta K}{2} \right) \left[\frac{mol}{L} \right] \right) * Extract\ Volume\ [L] * 12 \left[\frac{g\ SIC}{mol\ SIC} \right] * 100}{Soil\ mass\ [g\ soil]} \quad (1)$$

185 SSA can be simulated based on particle size distribution, yet changes in rock porosity over time
186 may lead to erroneous estimates of actual SSA. We therefore measure SSA using gas adsorption:
187 BET-SSA of mesh-bag samples was measured with a Quantachrome Autosorb iQ using N₂
188 adsorption (multi-point, 5 points, 77 K). Samples of the same treatment were pooled to reduce cost
189 and time, degassed at 300 °C for 200 min, and measured in triplicate with frequent reference checks
190 (BAM-PM-102, Bundesanstalt für Materialforschung und -prüfung, Germany) for quality control.
191 Silicate particle size was analyzed with a Mastersizer 2000 and Hydro 2000G after sieving at 1
192 mm (for a detailed particle size distribution, see **Table S4**). Coarse dunite contained particles >1
193 mm, quantified separately by manual sieving.

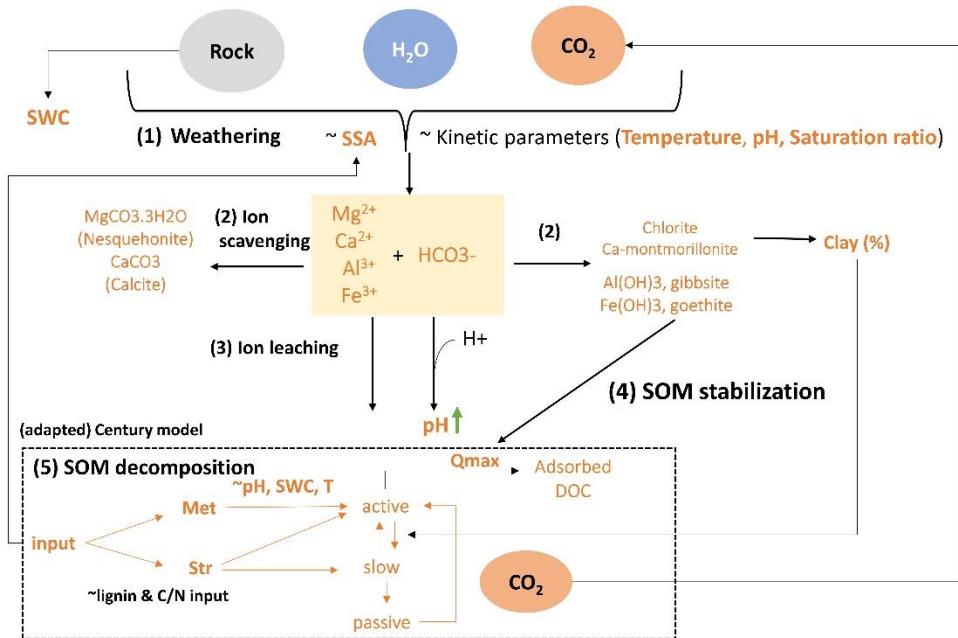
194 In addition to the abovementioned liquid and solid analyses, SCE was measured using a cylindrical
195 chamber (0.98 L, 0.0082 m²), which fitted on a collar that was placed in the soil. The chamber was
196 connected to a portable gas analyzer (Picarro, G2201- i, CA US) for approximately 90 seconds to
197 monitor the changes in CO₂ concentration (ppmv/s). CO₂ was measured on 32 occasions (i.e. on
198 average once every 12 days).

199

200 **2.3 Statistical analyses**

201 For time-series variables (e.g., SCE, leachate chemistry), repeated-measures mixed models were
202 fitted using lmer (lme4 package), with mesocosm as random factor, and significances was assessed
203 with Anova (car package). Tessier soil fractions, which were measured once, were analyzed using
204 multiple linear regression followed by Anova.

205 To address different questions with appropriate factorial structures, we analyzed two subsets of
206 the data. Treatments C1, FBS1, C3, and FB3 were used to test basalt and SOM effects in a full
207 factorial design (1 vs. 3% SOC) to assess their interaction. To examine particle-size effects and
208 the qualitative effect of rock type, we analyzed the 3% SOC treatments only (FB3, CB3, FD3,
209 MD3, CD3, C3). In this dataset, “rock” was treated as a factor with three levels (“none,” “basalt,”
210 or “dunite”). Pairwise comparisons were performed using emmeans (Tukey method). To test
211 potential interactions with time, we used the functions emtrends and pairs.


212 To evaluate treatment effects independent of potential differences in temperature and SWC, the
213 time series for SCE were first fitted to temperature and soil moisture using a multiple linear
214 regression (lmer) of CO_2 flux ($\mu\text{mol m}^{-2} \text{s}^{-1}$) against temperature and soil moisture ($\text{CO}_2 = a + b$
215 Temperature + c SWC + d SWC²; as in Niron et al. (2024)). Residuals of this model were then
216 used as dependent variable to test for the effect of basalt, dunite and SOC in the two subsets of the
217 data as described above. Statistical significance was set at $p < 0.05$, and all analyses were
218 performed in RStudio (v2023.9.1.494).

219 For graphical representation only, delta values (Δ) were calculated as the difference between an
220 amended soil (basalt or dunite treatment) and the respective control soil (C1 for FB1 and C3 for
221 FB3, CD3, MD3 and FD3). These delta values were not included in the statistical analyses.

222 **2.4 Model structure and parameterization**

223 In order to simulate the interaction between weathering reactions and SOC, we combined the
224 inorganic PHREEQC model (based on the work of Kelland et al. (2020), Vienne et al. (2022) and
225 Lewis et al. (2021)) with an organic module (based on the ‘Century model’ with DOC adsorption
226 by Fe-/Al-hydroxides (Camino-Serrano et al., 2018)(**Figure 1**). Note that Century is a plant-soil
227 model (Dimassi et al., 2018) and only the soil module was used in this decomposition experiment
228 with bare soil. The Century SOC model divides the C input into a metabolizable soil pool and a
229 structural soil pool based on C/N and lignine content of the input organic matter. These pools then
230 decompose into three C pools (active, slow, and passive) each with distinct turnover rates. The
231 active/slow pool conversions are influenced by the clay content of the soil; In addition, mineral
232 surfaces (Fe- and Al-hydroxides) increase the maximal DOC adsorption capacity (Qmax) and
233 transfer active C into adsorbed DOC, unavailable for microbial respiration (**Figure 1**).

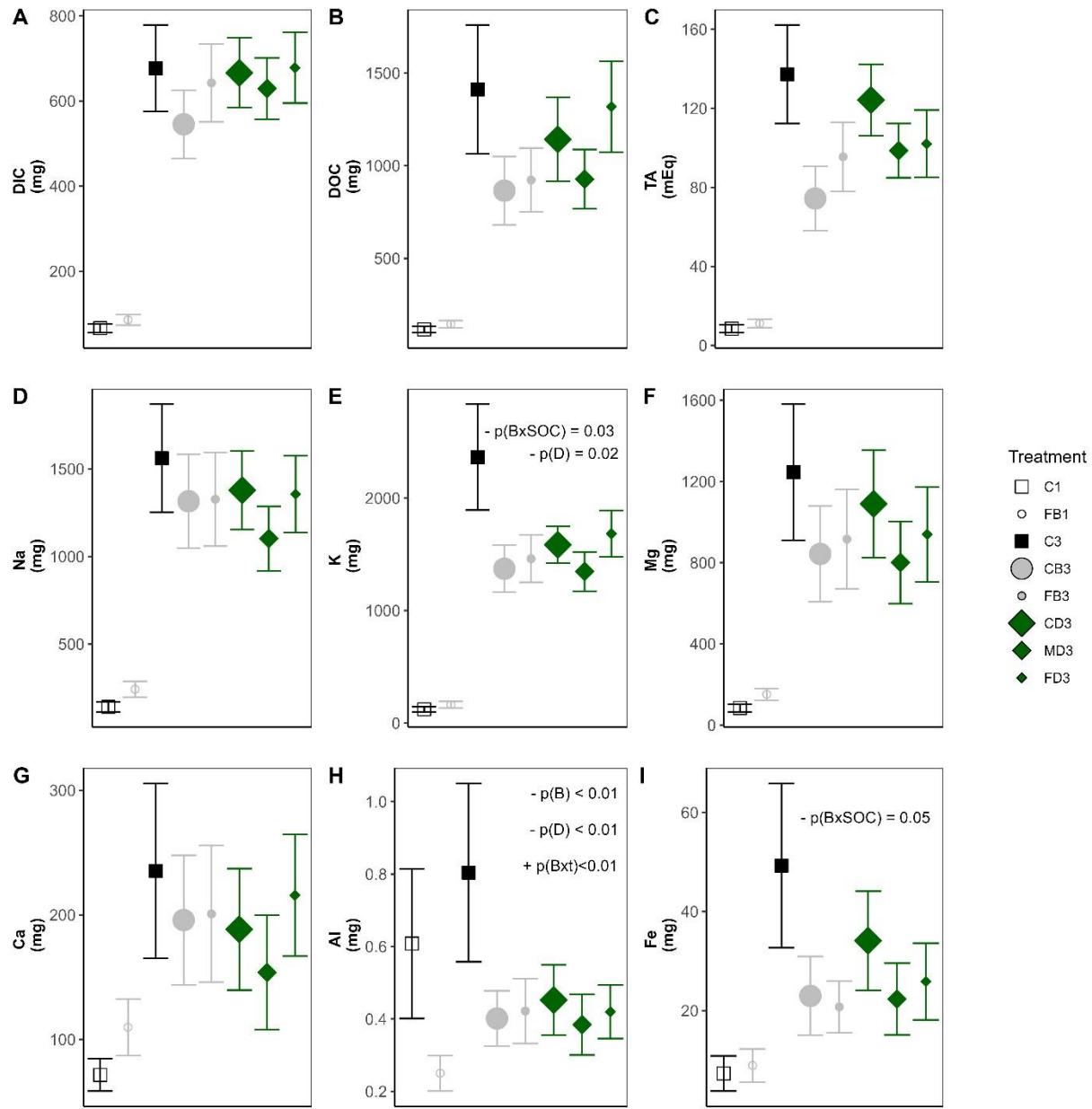
234 In the weathering module of the model, plagioclase in basalt was simulated as the Ca-Na
235 intermediate labradorite, while olivine in basalt was simulated as an Fe-Mg olivine intermediate
236 and we ensured the stoichiometry of simulated basalt matched the stoichiometry derived from XRF
237 data.

238

239 **Figure 1:** Overview of the coupled PHREEQC / Century (PHREEQCentury) model. Variables in
 240 orange are dynamic and thus change at every timestep. SWC = Soil water content, SSA = specific
 241 minerals, Qmax = Maximum DOC sorption capacity, Met= metabolizable soil pool, Str=
 242 Structural soil pool.

243 The mesocosms were simulated as single well mixed batches/volumes. Initial values of the pore
 244 water composition was set to observed concentrations of the soil-leachate. Daily experimental
 245 inputs of SWC, SCE, SSA, and temperature were provided, with SSA and SCE fitted to
 246 experimental values for each treatment. The time step of the model was daily. "Temperature and
 247 moisture effects on SOM decomposition rates were taken into account with a classical Q10
 248 function for temperature (Q10 = 2) and Gompertz relationship for soil moisture (Sierra et al.,
 249 2015).

250 The pCO_2 at mean soil depth was calculated from observed SCE via Fick's law (Roland et al.,
 251 2015; Vienne et al., 2022) and pH was simulated by PHREEQC based on pCO_2 and total alkalinity.
 252 To modify SOM decomposition with pH, we introduced a pH modifier based on Leifeld et al.'s
 253 (2008) S-shaped pH modifier (0 at pH 2, 1 at pH 8). Secondary minerals (Al/Fe-hydroxides,


254 gibbsite, Ca-montmorillonite, goethite, chlorite) were included in the equilibrium phase function
255 with precipitation thresholds based on saturation index (SI), allowing for oversaturation (Knapp &
256 Tipper (2022); Kelland et al., 2020). Minerals dissolved when $SI < 0$ and precipitated when $SI \geq$
257 0. For Mg- and Ca-carbonates (nesquehonite, calcite) we set a precipitation threshold $SI \geq 0$ or SI
258 ≥ 1 to precipitate in initial simulations. Based on comparison with observations, we used a $SI \geq 1$
259 threshold for carbonate precipitation in the eventual simulations. DOC adsorption to Fe/Al-
260 hydroxides was simulated sensu Camino-Serrano et al (2018), with Q_{max} calculated from
261 simulated Fe/Al hydroxides with the relation from (Kothawala et al (2009), table 4). Clay mass
262 fractions (based on the mass of chlorite, Ca-montmorillonite) were dynamically updated, affecting
263 Century active/slow pool C conversions. All simulations were performed in R and phreeqc, making
264 use of the phreeqc R-package (version 3.7.6)

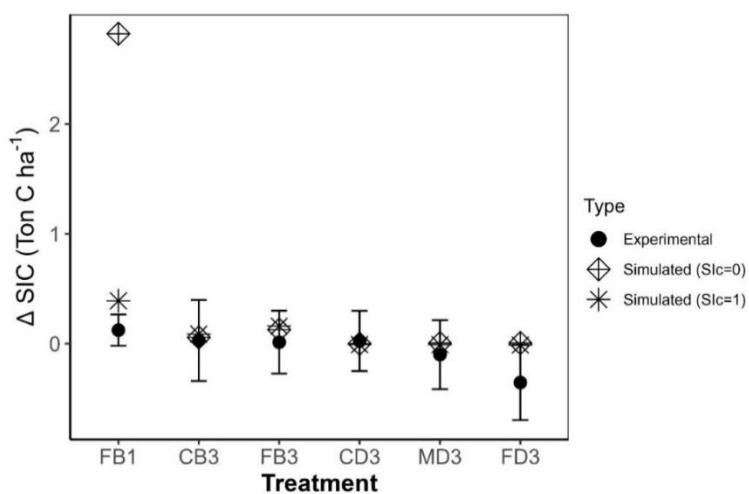
265 **3. Results**

266 **3.1 Inorganic CO₂ removal**

267 **3.1.1 Leachate concentrations**

268 Leaching of DIC did not significantly increase after rock amendment (**Figure 2**). While leaching
269 of DIC, DOC, TA and base cations was on average higher in treatment FB1 relative to the control
270 C1, we observed no significantly positive basalt effects on leaching. Furthermore, basalt and dunite
271 significantly decreased leachate Al (both $p < 0.01$ **Figure 2, Table S2**). Dunite also significantly
272 decreased leached K ($p = 0.02$). Rock particle size did not significantly affect leaching of elements.
273 Increasing SOC amendment elevated elemental concentrations in leachate for all elements except
274 Al. In addition, we observe a negative SOC x basalt interaction effect for Fe ($p = 0.05$), K ($p = 0.03$)
275 and a non-significant interaction tendency for TA leaching ($p = 0.11$). Although not significant, this
276 tendency for a negative SOC x basalt interaction can be observed also for all other elements in
277 **Figure 2** (except for Al).

278


279 **Figure 2:** Leachate mass (in mg for elements and mEq for TA) of (A) DIC (B) DOC (C) TA (D)
280 Na (E) K (F) Mg (G) Ca (H) Al and (I) Fe flushed from the soil, combining all leachate data from
281 days 14, 56, and 113 after amendment. Points and error bars indicate averages from all leachate
282 samplings \pm standard errors of the mean. Raw data of every separate leachate collection is shown
283 in Fig.S2 and Fig. S3. Green, grey and black symbols are dunite, basalt and controls,
284 respectively. 1% and 3% SOC soils are unfilled and filled respectively; The size of the symbols
285 reflects the particle size of the rocks. Significant effects are indicated as p(B) for basalt
286 amendment, p(D) for dunite, p(BxSOC) for basalt x SOC interaction and p(B size) and p(D size)
287 for t basalt and dunite size effects, respectively. Extended leachate data for all leaching dates can
288 be found in **Fig. S2** and **Fig. S3**. Significant effects are indicated in this figure , an extended

289 overview of statistics can be found in **Table S2**. For A1, the basalt effect was negative and $p < 0.01$
290 for both of the two subsets of the dataset.

291 **3.1.2 Soil inorganic C**

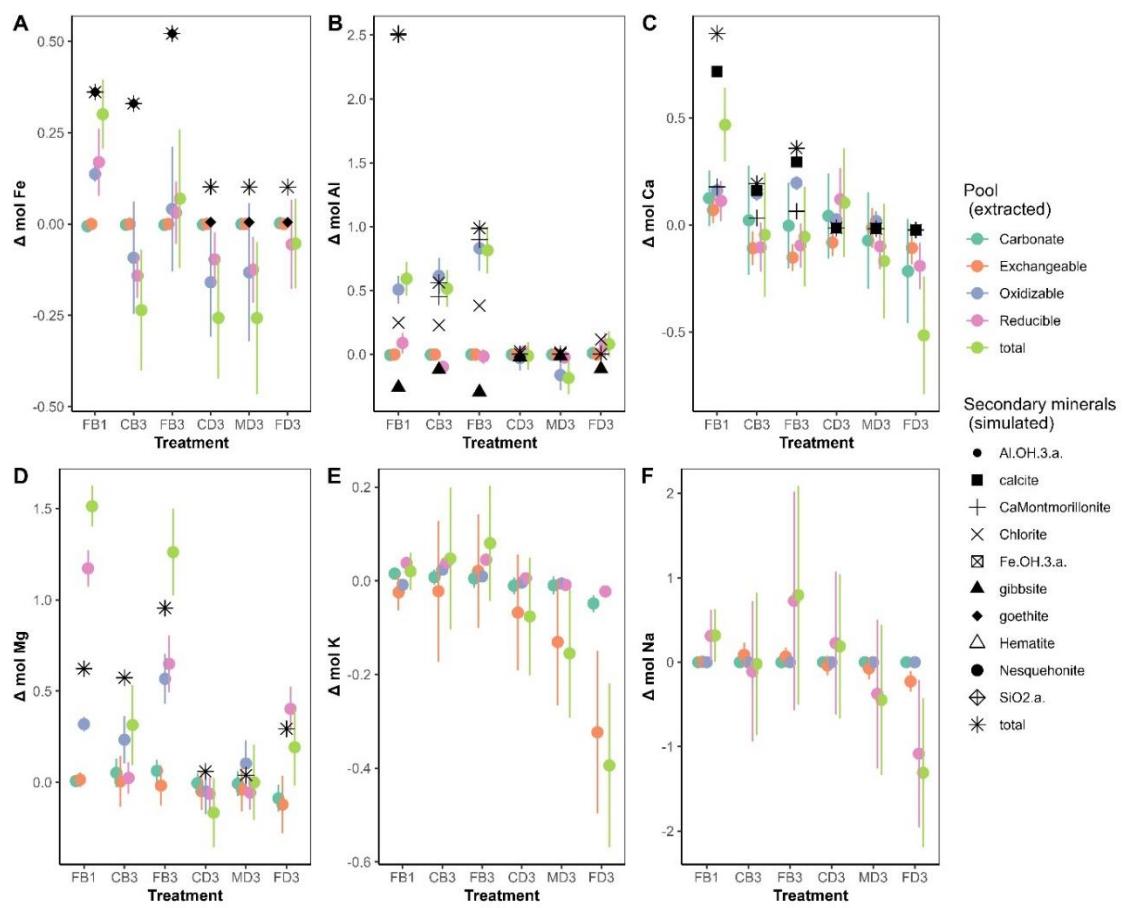
292 No significant changes in bulk soil SIC were found after basalt/dunite amendment (**Table 5**). Not
293 only in the bulk soil, but also in mesh bags filled with pure silicates we did not observe
294 accumulation of carbonates. In mesh bags filled with dunite, SIC was even lower after 119 days
295 relative to the start of the experiment, when finer dunite was applied ($p < 0.01$, **Fig. S4**).

296 Only treatment FB1 showed an increase in Δ SIC ($\sim 0.1 \text{ t C ha}^{-1}$). FB1 (1% SOC with basalt) was
297 also the only treatment in which PHREEQCENTERY predicted higher SIC than the control
298 (**Figure 3**). The model suggested that Ca from basalt weathering formed Ca-montmorillonite rather
299 than CaCO_3 , while predictions indicate that Mg preferentially formed chlorite instead of Mg-
300 carbonates. PHREEQCENTERY overestimated Δ SIC in FB1, but this was reduced by raising the
301 CaCO_3 saturation index threshold from 0 to 1. Manure alone significantly increased SIC (Table 5),
302 but no significant basalt \times SOC interaction was detected.

303
304 **Figure 3:** Comparison of simulated and experimental SIC change after 130 days, calculated from
305 carbonate-associated base cations as in **Equation 1**. Dots and error bars show experimental
306 averages and standard errors of the mean for SIC, quantified from base cations in soil extracts

307 leached with acetate. Simulations were repeated for two different carbonate precipitation
 308 thresholds (SIc=0 or SIc=1).

309 **Table 5:** Summary statistics for dissolved inorganic carbon (DIC) in leachates, soil inorganic
 310 carbon (SIC) (after 130 days) and cumulative soil CO₂ efflux (SCE) after 389 days. Effects of each
 311 predictor on the response variable are expressed as regression coefficients, with corresponding
 312 p-values in parentheses. For the SOC × basalt and time x basalt interaction, p-values are only
 313 shown when significant; non-significant interaction terms were removed from the final model
 314 (indicated with N.S.). “/” is written for time effects in measurements that were not repeated in
 315 time.


y-variable (Unit)	Treatments in dataset: C3, FB3, CB3, FD3, MD3, CD3					Treatments in dataset: C1, FB1, C3, FB3			
	Basalt effect	Particle size basalt	Basalt x time	Dunite effect	Particle size Dunite	Basalt effect	SOC	Basalt x SOC	Basalt x time
DIC (mg) (389 days)	+40.18 (0.97)	-0.26 (0.41)	N.S.	-21.6 (0.98)	0 (0.97)	-6.12 (0.93)	290.92 (<0.01)	N.S.	N.S.
SIC (%) (130 days)	+10 e -5 (p=1.00)	2e-6 (p=0.96)	/	-0.019 (p=0.29)	2e-5 (p=0.23)	+0.005 (p=0.60)	+0.040 (p<0.01)	N.S.	/
Cumulative SCE (ton C/ha) (389 days)	-0.15 (p=0.99)	+0.01 (p=0.37)	/	-2.79 (p=0.59)	+6 e-3 (p=0.22)	+1.24 (p=0.66)	+10.98 (p<0.01)	N.S.	/

316

317 3.2 Sequential extractions

318 The sequential extractions revealed that rock amendments redistributed Fe, Al and base cations
 319 among different soil pools (**Figure 4**; **Table 6**). Basalt amendment significantly increased
 320 exchangeable Ca and Al (**Table 6**). In the carbonate pool, the only significant change was a
 321 decrease in Fe with basalt addition. The reducible pool showed a relatively large and significant
 322 Mg increase after basalt and dunite amendment. Basalt also significantly increased oxidizable
 323 (SOM-associated) Mg, Al and Ca and dunite increased oxidizable Mg (**Figure 4**, **Table 6**). Rock
 324 particle size did not significantly affect elements in the extracted soil pools.

325 Amendment with only organics significantly increased all elements throughout all Tessier-
 326 extractable soil pools, except for exchangeable Fe and Al, reducible Mg and oxidizable K. In
 327 addition, we observed negative interaction effects between SOC and basalt: exchangeable Ca
 328 (**Figure 4C**) and reducible Mg (**Figure 4D**) significantly decreased in basalt-amended soils at
 329 higher SOC (both $p=0.01$). The sum of elements recovered from all extracted soil pools can be
 330 compared with the weathered element fluxes predicted by PHREEQCENTERY. As shown in
 331 **Figure 4**, the magnitude of the observed increase in soil weathering products is broadly consistent
 332 with PHREEQC predictions, which reproduced the correct order of magnitude of weathering
 333 products using weathering rates from Palandri et al. (2004) (after 130 days of experiment).

334

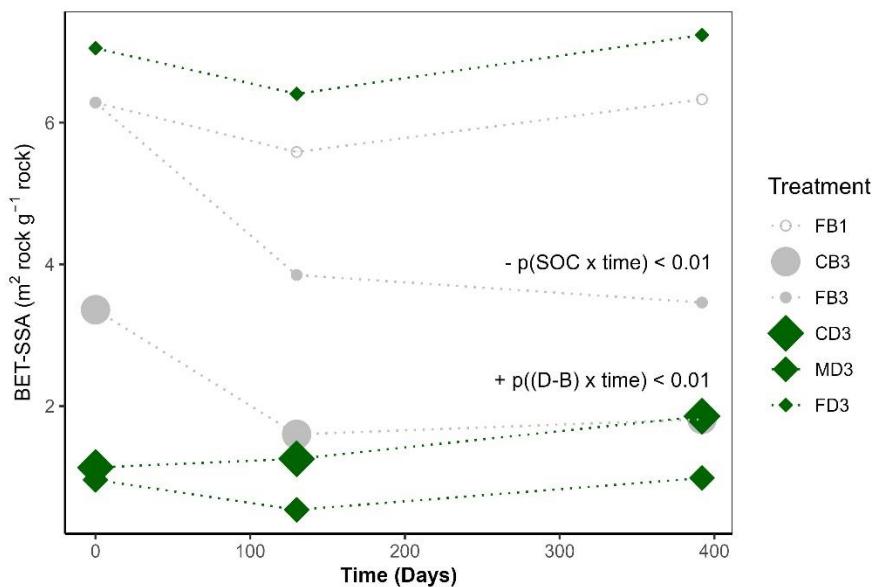
335 **Figure 4:** Changes in elemental concentrations in the extracted soil pools (Tessier extractions,
 336 colored symbols) after 130 days, for each treatment relative to control soils and comparison with
 337 simulated secondary minerals for (A) Fe, (B) Al, (C) Ca, (D) Mg, (E) K and (F) Na. Only those
 338 secondary minerals are shown that were formed according to the model. Colored symbols and
 339 error bars show experimental averages and standard errors of the mean. No Na- and K-bearing
 340 secondary minerals were allowed to form in simulations. Results of the statistical analyses are
 341 provided in **Table 6**. Symbols for totals for Mg overlap with Chlorite, while the total increase in
 342 Fe-bearing secondary minerals in basalt and dunite soils overlap with goethite and hematite
 343 respectively. A saturation index threshold for carbonate formation of 1 was used in these
 344 simulations. Note that for dunite, the visualized increase in Fe-holding secondary minerals is a
 345 consequence of the amendment with hematite rather than neoformation of Fe-holding secondary
 346 minerals.

347 **Table 6:** Results of the statistical analyses for the treatment effects (SOC, basalt, basalt particle
 348 size, dunite particle size and dunite) on the Tessier sequential extraction fractions for different soil
 349 pools and elements. Soil samples for these measurements were taken after 130 days. Effect
 350 estimates coefficients are presented with corresponding p-values in (parentheses). For the SOC \times
 351 basalt interaction, p-values are only shown when significant; non-significant interaction terms
 352 were removed from the final model (indicated with N.S.).

pool	element	Treatments in dataset: C3, FB3, CB3, FD3, MD3, CD3				Treatments in dataset: C1, FB1, C3, FB3		
		Basalt	Basalt particle size	Dunite	Dunite particle size	Basalt	SOC	Basalt \times SOC
Exchangeable	Fe	-2.3e-04 (0.04)	3.4e-07 (0.06)	-3e-05 (0.65)	1.3e-07 (0.05)	-2.4e-04 (0.03)	-4.8e-05 (0.34)	N.S.
Exchangeable	Al	3.7e-03 (0.41)	-2.8e-06 (0.7)	4.5e-03 (0.11)	-5.1e-07 (0.85)	4.7e-03 (0.03)	4.7e-04 (0.63)	N.S.
Exchangeable	Ca	-1.9e-01 (0.09)	1.1e-04 (0.52)	-6.6e-02 (0.33)	-4.9e-06 (0.94)	1.8e-01 (0.05)	1.6e-01 (<0.01)	-1.1e-01 (0.01)
Exchangeable	Mg	-3.5e-02 (0.84)	6.1e-05 (0.84)	-9.5e-02 (0.41)	5.3e-05 (0.64)	-5.8e-04 (0.99)	2.8e-01 (<0.01)	N.S.
Exchangeable	K	5.4e-02 (0.79)	-1.1e-04 (0.73)	-2.7e-01 (0.04)	2.2e-04 (0.09)	-3.1e-03 (0.95)	4.2e-01 (<0.01)	N.S.
Exchangeable	Na	5.2e-02 (0.73)	5.5e-05 (0.82)	-1.8e-01 (0.06)	1.6e-04 (0.1)	3.4e-02 (0.43)	2.3e-01 (<0.01)	N.S.
Carbonate	Fe	-3e-03 (0.44)	1.2e-06 (0.85)	1.8e-03 (0.46)	-3.4e-06 (0.17)	-4.3e-03 (0.01)	-8.5e-03 (<0.01)	N.S.
Carbonate	Al	1.9e-04 (0.99)	-3.9e-06 (0.83)	7e-03 (0.32)	-9e-06 (0.2)	-2.9e-03 (0.56)	-2.3e-02 (<0.01)	N.S.

pool	element	Treatments in dataset: C3, FB3, CB3, FD3, MD3, CD3				Treatments in dataset: C1, FB1, C3, FB3		
		Basalt	Basalt particle size	Dunite	Dunite particle size	Basalt	SOC	Basalt x SOC
Carbonate	Ca	-2.3e-02 (0.94)	6.7e-05 (0.9)	-1.9e-01 (0.33)	2.4e-04 (0.23)	6.4e-02 (0.56)	4.1e-01 (<0.01)	N.S.
Carbonate	Mg	7.1e-02 (0.45)	-2.9e-05 (0.85)	-6.3e-02 (0.3)	6.5e-05 (0.28)	3.3e-02 (0.21)	1.5e-01 (<0.01)	N.S.
Carbonate	K	2.8e-03 (0.92)	7.5e-06 (0.88)	-3.6e-02 (0.06)	2.9e-05 (0.12)	1e-02 (0.25)	4.7e-02 (<0.01)	N.S.
Reducible	Fe	1.6e-01 (0.29)	-4.6e-04 (0.08)	-8.3e-02 (0.4)	-2.1e-05 (0.82)	1e-01 (0.12)	-1.4e-01 (<0.01)	N.S.
Reducible	Al	4.8e-02 (0.67)	-2.2e-04 (0.26)	3.4e-02 (0.64)	-2.5e-05 (0.72)	4e-02 (0.41)	-1.7e-01 (<0.01)	N.S.
Reducible	Ca	-8.8e-02 (0.57)	-2.5e-05 (0.92)	-2e-01 (0.05)	3.2e-04 <td>1.4e-02 (0.83)</td> <td>1.2e-01 (<0.01)</td> <td>N.S.</td>	1.4e-02 (0.83)	1.2e-01 (<0.01)	N.S.
Reducible	Mg	1.1e+00 (<0.01)	-1.7e-03 (<0.01)	2.6e-01 (0.06)	-3.6e-04 (0.01)	1.4e+00 (<0.01)	1e-01 (0.14)	-2.6e-01 (0.01)
Reducible	K	5e-02 (<0.01)	-1.8e-05 (0.37)	-2.1e-02 (0.01)	2.7e-05 (<0.01)	4.1e-02 (<0.01)	1.6e-02 (<0.01)	N.S.
Reducible	Na	1.4e+00 (0.26)	-2.2e-03 (0.27)	-9.7e-01 (0.21)	1.2e-03 (0.11)	5.1e-01 (0.43)	1.1e+00 (<0.01)	N.S.
Oxidizable	Fe	1.4e-01 (0.53)	-3.5e-04 (0.36)	-1.2e-01 (0.51)	-3.6e-05 (0.85)	9.2e-02 (0.25)	3.1e-01 (<0.01)	N.S.
Oxidizable	Al	1e+00 (<0.01)	-5.7e-04 (0.12)	-2.1e-01 (0.23)	1.8e-04 (0.34)	6.6e-01 (<0.01)	3.9e-01 (<0.01)	N.S.
Oxidizable	Ca	2.3e-01 (<0.01)	-1.3e-04 (0.17)	1.6e-02 (0.72)	7.8e-06 (0.87)	1.8e-01 (<0.01)	3.4e-02 (<0.01)	N.S.
Oxidizable	Mg	8.3e-01 (<0.01)	-8.8e-04 (<0.01)	1.6e-01 (0.13)	-2e-04 (0.07)	4.4e-01 (<0.01)	1.5e-01 (<0.01)	N.S.
Oxidizable	K	-1.7e-03 (0.85)	3.8e-05 (0.02)	-6.8e-03 (0.36)	3.3e-06 (0.67)	-9.6e-05 (0.98)	4.3e-03 (0.08)	N.S.

353

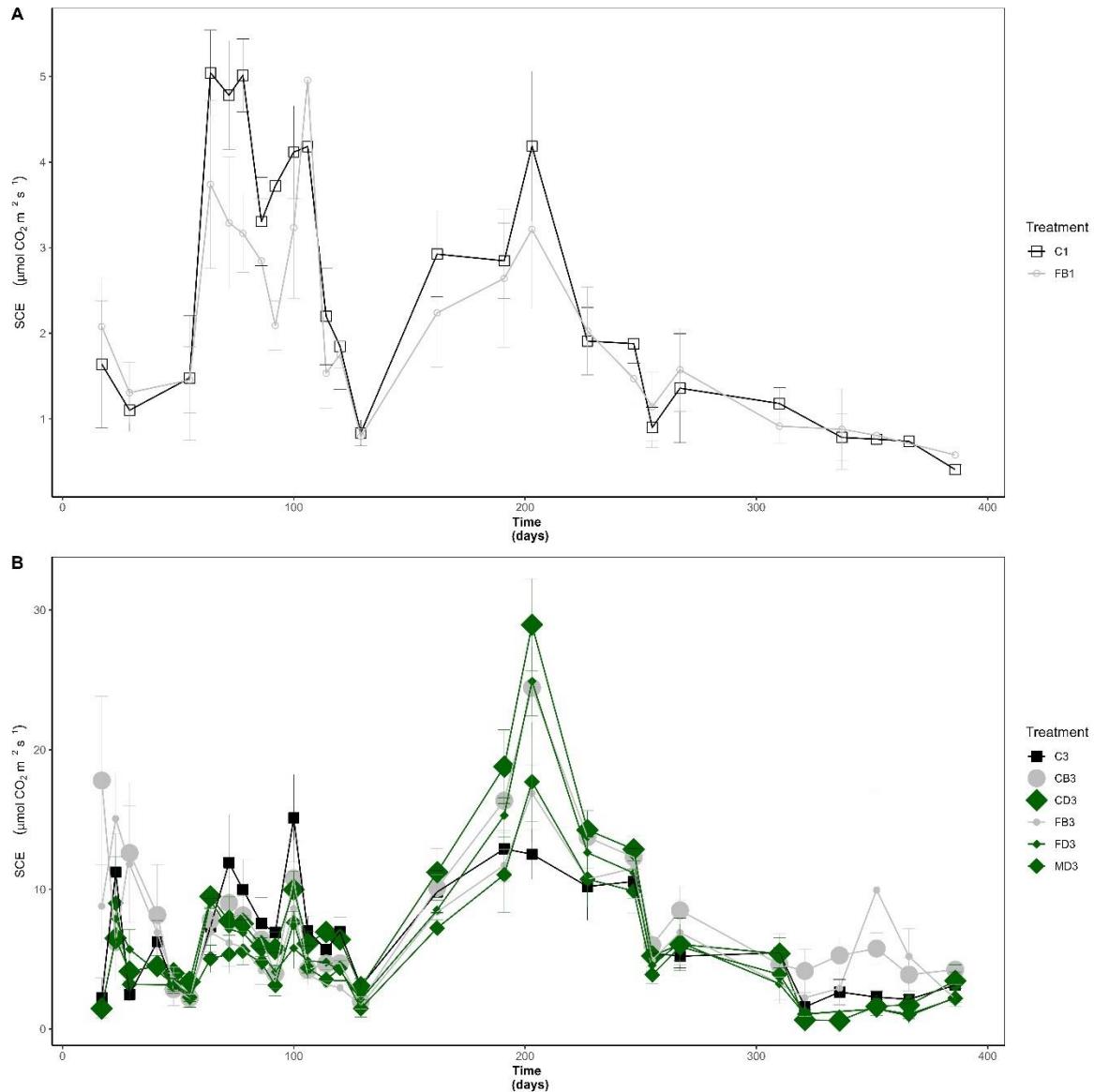

354

355

356

357 3.3 Changes in SSA

358 In general, BET-SSA was larger for finer particles, with the exception of coarse dunite, which had
359 a larger BET-SSA than medium dunite (CD3 versus MD3). BET-SSA was not constant in time as
360 basalts' BET-SSA decreased in soils with higher SOC: BET-SSA of FB3 decreased with
361 approximately 2 units more than the BET-SSA of FB1 (**Figure 5**). The BET-SSA change in time
362 was significantly more negative for basalt than for dunite treatments ($p<0.01$).



363

364 **Figure 5:** Temporal evolution of BET-SSA. $n=3$ for day 0 and day 130, $n=1$ for day 389, note that
365 plotted points are larger than error bars and that the standard error of the mean is not visible in this
366 figure. The positive D-B x time effect means that the BET-SSA change in time was significantly
367 more positive for dunite than for basalt.

368 3.4 SCE

369 The SCE showed strong temporal variation, which was partly associated with changes in
370 temperature (Figure S9). We did not observe any significant treatment effect on SCE dynamics
371 (**Table 6**) or on cumulative SCE after 389 days (**Table 5**).

372

373 **Figure 6:** Difference in soil CO_2 efflux ($\mu\text{mol CO}_2 \text{ m}^{-2} \text{ s}^{-1}$) over time for treatments (A) 1% SOC
 374 soils and (B) 3% SOC soils.

375 **Table 6:** Effects of parameters (basalt, SOC, SOC x basalt interaction, dunite amendment, basalt
 376 and dunite d90 particle size) on SCE residuals (in $\mu\text{mol/m}^2/\text{s}$), with p values in parentheses.
 377 Significant values are indicated in bold. For the SOC \times basalt interaction, p-values are only shown
 378 when significant; non-significant interaction terms were removed from the final model (indicated
 379 with N.S.).

Treatments in dataset: C3, FB3, CB3, FD3, MD3, CD3						Treatments in dataset: C1, FB1, C3, FB3			
Basalt	Basalt particle size	Basalt x Time	Dunite	Dunite particle size	Dunite x Time	Basalt	Basalt x Time	SOC	SOC x Basalt
-0.36 (0.90)	0.10e-2 (0.72)	N.S.	-0.30 (0.85)	0.54e-3 (0.53)	N.S.	-0.11 (0.78)	N.S.	0.34 (0.09)	N.S.

380

381 **4. Discussion**382 **4.1 Inhibition of inorganic CO₂ removal**383 Contrary to our expectations, silicate amendments did not significantly increase DIC (**Table 5**).384 This is in line with several other EW studies that failed to detect significant DIC increases in
385 leachates from basalt and dunite amended soils (Amann et al., 2020; Holden et al., 2024;
386 Steinwidder et al., 2025), despite weathering being evident from base cation monitoring.387 Besides the absence of a DIC increase, we did not observe significant accumulation of soil
388 inorganic carbon (SIC). Although carbonates were oversaturated in our simulations, the model
389 predicted no (for dunite) to modest pedogenic carbonate formation (for treatment FB1) (**Figure**
390 **3**), even in this alkaline soil-manure mixture (soil pH was approximately 8, see **Fig S3.D**). The
391 absence of significant SIC accumulation is in contrast with basalt quarry fine amendment where a
392 substantial SIC increase (up to 30% SIC) was detected after 7 years (Manning et al., 2013).
393 Notably, Manning et al. (2013) applied a substantial rate (about 7,500 t ha⁻¹, corresponding to a
394 25 cm layer of basalt with an assumed density of 3 g cm⁻³). Lei et al., (2025) only applied 50 t
395 basalt ha⁻¹ and observed a small increase in SIC (0.5-1 mg g⁻¹ soil). In another, three year duration,
396 agricultural field study, SIC was increased significantly (yet <0.5 mg g⁻¹ soil) after basalt addition
397 (and only without compost and/or biochar co-amendment; Sohng et al., 2025).

398 Together, these studies indicate that basalt amendments generally result in only small SIC
399 increases (<1 mg/g soil), consistent with our findings. In our experiment, the treatment with the
400 highest SIC increase was the 1% SOC soil. Here, the addition of 100 t basalt ha⁻¹ increased SIC
401 by 0.45 ± 0.52 t CO₂ ha⁻¹ after 130 days, which is equivalent to a sequestration of 0.013 ± 0.015
402 t CO₂ t⁻¹ basalt year⁻¹. This increase was thus minor, and not statistically significant, indicating
403 very limited realized CDR.

404 Hydrological conditions may have contributed to the low CDR realization in our experiment. The
405 irrigation flux was relatively low (223 mm yr⁻¹), with only ~23% infiltrating due to evaporation -
406 conditions that likely favored secondary mineral formation. While relatively low, this flux is
407 comparable to dryland agriculture, whereas tropical soils with more rainfall may export more DIC.
408 However, recent field studies in both temperate and tropical regions report similarly low CDR
409 based on DIC export, with estimates of ~0.0001–0.001 t CO₂ t⁻¹ basalt y⁻¹ (Anthony et al., 2025;
410 Holden et al., 2024; McBride et al., 2025), which is two to three orders of magnitude below
411 inorganic CO₂ removal estimates used for upscaling by for example Beerling et al. (2020). More
412 recent commercial EW field trials by InPlanet in Brazil, using lower basalt application rates (10–
413 20 t ha⁻¹) are more encouraging (0.038–0.064 t gross CDR t⁻¹ basalt year⁻¹ and 0.025–0.036 t net
414 CDR t⁻¹ basalt year⁻¹, after deduction of life cycle emissions; Isometric, 2025)), yet still one order
415 of magnitude lower than the ~0.154 t CO₂ t⁻¹ basalt y⁻¹ assumed by Beerling et al. (2020).

416 Low DIC export and low inorganic CDR do not necessarily reflect low weathering rates. Rock
417 weathering can proceed without DIC export when base cations released during dissolution are
418 retained in soils. Cation retention can occur through cation exchange, sorption processes and
419 uptake in clays, all of which generate acidity that promotes CO₂ degassing rather and suppress
420 carbonate formation and leaching. Capturing this behavior in EW models therefore requires

421 representing these cation-scavenging mechanisms explicitly. Currently, EW is commonly
422 modelled by applying empirical reduction factors to intrinsic mineral dissolution rates (Bertagni
423 et al., 2024). In contrast, our mechanistic approach uses dissolution kinetic constants from existing
424 databases (Palandri et al., 2004) and regulates inorganic CO₂ removal through modelling base
425 cation scavenging in soils (**Figure 4**).

426 Although our model and data suggest substantial base-cation scavenging, uncertainty remains
427 regarding the mineral phases responsible for base cation retention. According to model predictions,
428 base cation-bearing clay minerals (such as montmorillonite and chlorite) formed preferentially
429 over CaCO₃ and MgCO₃.H₂O (**Figure 4**), producing protons and shifting the system towards CO₂
430 degassing. Clays were not allowed to form in several previous EW modelling (Kelland et al.,
431 2020), which instead directed base cations exclusively to carbonate formation. Our results suggest
432 that inorganic CDR may have been overestimated in these models by Kelland et al. (2020) and
433 Vienne et al., (2022). Although clay formation was suggested earlier in the context of EW (Iff et
434 al., 2024; Vienne et al., 2024) (Iff et al., 2024; Steinwidder et al., 2026; Vienne et al., 2024) and
435 is quantifiable with Li isotopes (Pogge von Strandmann et al., 2021, 2022, 2025), clay formation
436 is challenging to quantify and remains uncertain based on our dataset. If no base cation bearing
437 clays would be formed here, the acidity release may have been entirely due to cation sorption to
438 amorphous (hydr)oxides and SOM.

439 Co-amending rocks with organic matter was expected to enhance weathering rates while
440 suppressing secondary clay mineral and pedogenic carbonate formation through CO₂-driven pH
441 lowering. However, we found no indications that higher SOC stimulated weathering rates, as none
442 of the weathering indicators (DIC and TA leaching, SIC formation, as well as base cations in the
443 different soil fractions) increased for the high SOC basalt treatment (**Figure 2-4**). We speculate

444 that increased acidity release from organic matter decomposition and organic acids promoted
445 degassing of CO₂, outweighing the expected positive effect of higher CO₂ pressure and reduced
446 secondary mineral formation on the weathering rates. Accordingly, Lei et al. (2025) observed SIC
447 increases after basalt addition only without organic (straw) amendment, as straw-derived acids
448 lowered pH, reducing DIC and SIC.

449 The lack of increased SIC formation and DIC leaching with higher amendments may result not
450 only from acidity release but also from surface passivation inhibiting primary mineral weathering.
451 The formation of inert, ‘unweatherable’ coatings could passivate rock surfaces and prevent rock
452 weathering (Amann et al., 2020). Inhibitory surface coatings that can reduce olivine weathering
453 by an order of magnitude are known to be amorphous SiO₂ and Fe(OH)₃ (Oelkers et al., 2018), yet
454 also organic passivation coatings could slow down weathering (Corbett et al., (2024)).

455 In our experiment, basalt BET-SSA declined with higher SOC, pointing to the formation of surface
456 coatings that may have reduced mineral reactivity and thus inorganic CO₂ removal. Potentially, a
457 combination of the abovementioned compounds (clays, Fe-hydroxides) crosslinked with DOC,
458 creating a ‘organo-minerallic glue’ or mineral associated organic matter (MAOM) (Heckman et
459 al., 2018; Wagai et al., 2013). Sequential “Heckman” extractions showed declining Al and Si
460 weathering between day 130 and 389 (**Fig. S5, S6 and S7**), with Mg, Ca, and Fe even decreasing
461 (suggesting incorporation into more crystalline or organo-mineral forms resistant to extraction).
462 These findings, consistent with Steinwidder et al. (2025), indicate that newly formed
463 (organo)minerals contributed to surface passivation and reduced inorganic CO₂ removal in our
464 experiment.

465 **4.2 SOM responses to EW and implications for modeling**

466 SOM may not only influence inorganic CO₂ removal, the decomposition of SOM itself can also be
467 influenced by rock amendment. Rock weathering can influence decomposition of SOM in multiple
468 ways, including through changes in pH, moisture and DOC sorption to secondary minerals.

469 Soil water pH, measured at atmospheric pCO₂, exceeded 8 in all treatments (likely due to CaCO₃
470 in the input manure). At higher pCO₂ conditions in soils, model simulations predicted a pH of pH
471 7 in 3% SOC soils while 1% SOC soils had a relatively lower pCO₂ so that pH remained above 8.
472 Nonetheless, this shift had little effect on decomposition and could not explain SCE patterns,
473 pointing to other drivers such as moisture or temperature. According to the Gompertz relationship,
474 soil moisture was non-limiting (normalized SWC > 0.2 in all treatments; Sierra et al., 2015). Hence,
475 the moisture modifier remained 1 in all treatments. Despite the significant increase in SWC after
476 basalt amendment (**Fig. S1**), the model thus did not predict differences in decomposition from
477 moisture changes (**Fig. S10**), unlike in other models (Demeter, Standcarb) that also account for
478 excess-moisture inhibition of decomposition.

479 While our modelling results indicate that rock amendments had only minor effects on SOM
480 decomposition, we also found indications for effects on SOC stabilization. The model predicted
481 that Fe and Al release can positively impact SOC through MAOM formation, although the
482 magnitude was small (~100 kg MAOM-C ha⁻¹ in 3% SOC basalt mesocosms (**Fig. S11**) and even
483 less MAOM-C in dunite soils). In addition, clays influenced the distribution between active and
484 slow SOM pools (**Fig. S11**). Nonetheless, PHREEQCENTERY's prediction for MAOM-C remain
485 uncertain because MAOM-C cannot be directly measured or compared with observational data.

486 To disentangle contributions of SOM stabilization in the form of MAOM and decomposition of
487 labile SOC pools (e.g. particulate organic matter (POM)), models with well defined, measurable

488 MAOM pools are needed. The MEMS framework addresses this need by representing 14
489 measurable soil C pools where POM, MAOM, and litter chemistry jointly govern SOM dynamics
490 (Zhang et al., 2021). Although MEMS represents the current SOM paradigm well, its large number
491 of pools complicates parameterization, and it omits key factors such as pH effects on
492 decomposition and SOM stabilization through aggregation. Aggregates should be included in
493 coupled EW–SOC models, as enhanced SOM occlusion has been observed in EW studies (Sokol
494 et al., 2024; Steinwidder et al., 2025). To the best of our knowledge, only the Millennial model
495 has achieved simulation of aggregate formation (Abramoff et al., 2018), with inclusion of a pH
496 modifier using a lower amount of measurable pools relative to MEMS (Abramoff et al., 2022).
497 Hence, Millennial may serve as a suitable alternative to the CENTURY model for developing
498 future integrated EW–SOC models.

499 **5. Conclusion**

500 In this study, we did not observe significant inorganic CO₂ removal after soil amendment with
501 basalt and dunite, despite clear weathering signals. Base cations were retained in soil pools
502 associated with hydroxides and SOM, preventing DIC leaching, with only modest SIC formation.
503 Base cation scavenging by exchange, and sorption to (hydr)oxides and SOM generated acidity that
504 counteracted inorganic CO₂ removal. PHREEQCENTURY simulations indicated that dissolved
505 base cations preferentially precipitated into secondary clays rather than pedogenic carbonates,
506 reducing inorganic CDR.

507 While we expected that higher CO₂ production in organic-rich soils would stimulate realized
508 inorganic CO₂ removal, we did not observe a stimulation in DIC efflux and SIC did not increase
509 in amended 3% SOC soils. Basalt specific surface area decreased in the presence of more SOC,
510 indicating inhibitory surface passivation of SOC for weathering.

511 These findings suggest that the fraction of inorganic CO₂ removal realized in the field will depend
512 on SOC inputs and mineralogical context, and may be substantially lower than implied by
513 approaches that neglect cation scavenging and secondary mineral formation. Improving field-scale
514 predictions will require integrating mechanistic mineral and SOC controls into EW models and
515 validating these processes across contrasting soils, climates and management regimes.

516 **Supporting Information.**

517 All supplementary Tables and Figures can be found in the file ‘SI.docx’. The model code and required model
518 functions can be found in the zipfile ‘modelcode.zip’. Experimental data and R scripts are made publicly available
519 in zenodo: <https://zenodo.org/records/18018582>.

520 AUTHOR INFORMATION

521 **Author Contributions**

522 The manuscript was written through contributions of all authors. All authors have given approval to the final
523 version of the manuscript. Contribution by author: TC: implementation of the coupled model in R studio, HN:
524 co-executed experiment during intensive monitoring phase (first 130 days). BG: implementation Centruy model.
525 CV: drafted discussion on SOM models and the requirement for measurable pools. Heckman extractions were
526 executed in collaboration with LS. RP: executed the BET-SSA measurements. SV: research conceptualization,
527 assistance in writing and general supervision.

528 **Funding Sources**

529 We also acknowledge support of the UPSURGE project, which has received funding from the European Union’s
530 Horizon 2020 research and innovation program under grant agreement No 101003818. This research was
531 supported by the Research Foundation— Flanders (FWO) [1S06325N], 1174925N] and [G000821N] (Biotic
532 controls of the potential of enhanced silicate weathering for land-based climate change mitigation) and the C-
533 Farms project (S004023N). BG received government funding from the ALAMOD project of the exploratory
534 research program FairCarboN managed by the Agence Nationale de la Recherche under the France 2030 program
535 (ANR-22-PEXF-002-projet ALAMOD).

536 ACKNOWLEDGMENTS

537 We thank Anne Cools, Steven Joosen and Anke De Boeck for their assistance with ICP-OES for sequential
538 extraction samples. A large language model (Microsoft Copilot) was utilized to enhance the clarity, grammar,
539 and phrasing of language in this manuscript.

540 ABBREVIATIONS

541 CDR, Carbon dioxide removal, DIC, dissolved inorganic C; DOC, dissolved organic C; EW, Enhanced
542 Weathering; MAOM, Mineral-associated organic matter; POM, Particulate organic matter; RTM Reactive
543 transport model; SI, Saturation index; SIC, Soil inorganic Carbon;
544 SOC, Soil organic Carbon; SOM, Soil organic Matter; t, ton.

545 REFERENCES

546 Abramoff, R., Xu, X., Hartman, M., O'Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D., Schimel, J.,
547 Torn, M., & Mayes, M. A. (2018). The Millennial model: in search of measurable pools and
548 transformations for modeling soil carbon in the new century. *Biogeochemistry*, 137(1–2), 51–71.
549 <https://doi.org/10.1007/s10533-017-0409-7>

550 Abramoff, R. Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Viscarra Rossel, R. A., Yuan, W., & Ciais, P.
551 (2022). Improved global-scale predictions of soil carbon stocks with Millennial Version 2. *Soil Biology
552 and Biochemistry*, 164(May 2021), 108466. <https://doi.org/10.1016/j.soilbio.2021.108466>

553 Amann, T., Hartmann, J., Hellmann, R., Pedrosa, E. T., & Malik, A. (2022). Enhanced weathering
554 potentials—the role of in situ CO₂ and grain size distribution. *Frontiers in Climate*, 4.
555 <https://doi.org/10.3389/fclim.2022.929268>

556 Amann, T., Hartmann, J., Struyf, E., De Oliveira Garcia, W., Fischer, E. K., Janssens, I., Meire, P., &
557 Schoelynck, J. (2020). Enhanced Weathering and related element fluxes - A cropland mesocosm
558 approach. *Biogeosciences*, 17(1), 103–119. <https://doi.org/10.5194/bg-17-103-2020>

559 Anthony, T. L., Jones, A. R., & Silver, W. L. (2025). Supplementing Enhanced Weathering With Organic
560 Amendments Accelerates the Net Climate Benefit of Soil Amendments in Rangeland Soils. *AGU
561 Advances*, 6(2). <https://doi.org/10.1029/2024AV001480>

562 Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., Sarkar, B., Andrews, M.
563 G., James, R. H., Pearce, C. R., Mercure, J. F., Pollitt, H., Holden, P. B., Edwards, N. R., Khanna, M.,
564 Koh, L., Quegan, S., Pidgeon, N. F., Janssens, I. A., ... Banwart, S. A. (2020). Potential for large-scale
565 CO₂ removal via enhanced rock weathering with croplands. *Nature*, 583(7815), 242–248.
566 <https://doi.org/10.1038/s41586-020-2448-9>

567 Bertagni, M. B., Calabrese, S., Cipolla, G., Valerio Noto, L., & Porporato, A. M. (2024). Advancing Enhanced
568 Weathering Modeling in Soils: Systematic Comparison and Validation with Experimental Data.
569 *Journal of Advances in Modeling Earth Systems*, 1–25.
570 <https://doi.org/10.22541/essoar.170559500.09183720/v1>

571 Boito, L., Steinwidder, L., Rijnders, J., Berwouts, J., Janse, S., Niron, H., Roussard, J., Vienne, A., & Vicca, S.
572 (2025). Enhanced Rock Weathering Altered Soil Organic Carbon Fluxes in a Plant Trial. *Global Change
573 Biology*, 31(8), 1–19. <https://doi.org/10.1111/gcb.70373>

574 Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, V., De Vos, B., Gielen, B., Gleixner, G.,
575 Jornet-Puig, A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., Schrumpf, M., Vicca, S.,
576 Vuichard, N., Walmsley, D., & Janssens, I. A. (2018). ORCHIDEE-SOM: Modeling soil organic carbon
577 (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe.

578 *Geoscientific Model Development*, 11(3), 937–957. <https://doi.org/10.5194/gmd-11-937-2018>

579 Corbett, T. D. W., Westholm, M., Rosling, A., Calogiuri, T., Poetra, R., Niron, H., Hagens, M., Vidal, A., Van
580 Groenigen, J. W., Hartmann, J., Janssens, I. A., Rieder, L., Struyf, E., Van Tendeloo, M., Vlaeminck, S.
581 E., Vicca, S., & Neubeck, A. (2024). Organic carbon source controlled microbial olivine dissolution in
582 small-scale flow-through bioreactors, for CO₂ removal. *Npj Materials Degradation*, 8(1).
583 <https://doi.org/10.1038/s41529-024-00454-w>

584 Dimassi, B., Guenet, B., Saby, N. P. A., Munoz, F., Bardy, M., Millet, F., & Martin, M. P. (2018). The impacts
585 of CENTURY model initialization scenarios on soil organic carbon dynamics simulation in French long-
586 term experiments. *Geoderma*, 311(October 2017), 25–36.
587 <https://doi.org/10.1016/j.geoderma.2017.09.038>

588 Heckman, K., Lawrence, C. R., & Harden, J. W. (2018). A sequential selective dissolution method to
589 quantify storage and stability of organic carbon associated with Al and Fe hydroxide phases.
590 *Geoderma*, 312(September 2017), 24–35. <https://doi.org/10.1016/j.geoderma.2017.09.043>

591 Hellmann, R., Daval, D., & Wirth, R. (2013). Formation of Amorphous Silica Surface Layers by Dissolution-
592 Reprecipitation During Chemical Weathering: Implications for CO₂ Uptake. *Procedia Earth and*
593 *Planetary Science*, 7(May), 346–349. <https://doi.org/10.1016/j.proeps.2013.03.154>

594 Holden, F. J., Davies, K., Bird, M. I., Hume, R., Green, H., Beerling, D. J., & Nelson, P. N. (2024). In-field
595 carbon dioxide removal via weathering of crushed basalt applied to acidic tropical agricultural soil.
596 *Science of the Total Environment*, 955(October), 176568.
597 <https://doi.org/10.1016/j.scitotenv.2024.176568>

598 Iff, N., Renforth, P., & Pogge von Strandmann, P. A. E. (2024). The dissolution of olivine added to soil at
599 32°C: the fate of weathering products and its implications for enhanced weathering at different
600 temperatures. *Frontiers in Climate*, 6(April), 1–18. <https://doi.org/10.3389/fclim.2024.1252210>

601 IPCC. (2023). Summary for Policymakers of the Intergovernmental Panel on Climate Change. *Climate
602 Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment
603 Report of the Intergovernmental Panel on Climate Change*, pp. 1–34.
604 <https://doi.org/10.59327/IPCC/AR6-9789291691647.001>

605 Isometric. (2025). *Isometric registry*. <https://registry.isometric.com/>

606 Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., Lomas, M. R., Cotton, T.
607 E. A., Kemp, S. J., James, R. H., Pearce, C. R., Hartley, S. E., Hodson, M. E., Leake, J. R., Banwart, S. A.,
608 & Beerling, D. J. (2020). Increased yield and CO₂ sequestration potential with the C4 cereal Sorghum
609 bicolor cultivated in basaltic rock dust-amended agricultural soil. *Global Change Biology*, 26(6),
610 3658–3676. <https://doi.org/10.1111/gcb.15089>

611 Klemme, A., Rixen, T., Müller, M., Notholt, J., & Warneke, T. (2022). Destabilization of carbon in tropical
612 peatlands by enhanced weathering. *Communications Earth and Environment*, 3(1), 1–9.
613 <https://doi.org/10.1038/s43247-022-00544-0>

614 Knapp, W. J., & Tipper, E. T. (2022). The efficacy of enhancing carbonate weathering for carbon dioxide
615 sequestration. *Frontiers in Climate*, 4. <https://doi.org/10.3389/fclim.2022.928215>

616 Kothawala, D. N., Moore, T. R., & Hendershot, W. H. (2009). Soil Properties Controlling the Adsorption of
617 Dissolved Organic Carbon to Mineral Soils. *Soil Science Society of America Journal*, 73(6), 1831–1842.
618 <https://doi.org/10.2136/sssaj2008.0254>

619 Larkin, C. S., Andrews, M. G., Pearce, C. R., Yeong, K. L., Beerling, D. J., Bellamy, J., Benedick, S., Freckleton,
620 R. P., Goring-harford, H., Sadekar, S., & James, R. H. (2022). Quantification of CO removal in a large-
621 scale enhanced weathering field trial on an oil palm plantation in Sabah , Malaysia. *Frontiers in*
622 *Climate*. <https://doi.org/10.3389/fclim.2022.959229>

623 Lei, K., Bucka, F. B., Teixeira, P. P. C., Buegger, F., Just, C., & Kögel-Knabner, I. (2025). Balancing Organic
624 and Inorganic Carbon Dynamics in Enhanced Rock Weathering: Implications for Carbon
625 Sequestration. *Global Change Biology*, 31(4). <https://doi.org/10.1111/gcb.70186>

626 Leifeld, J., Zimmermann, M., & Fuhrer, J. (2008). Simulating decomposition of labile soil organic carbon:
627 Effects of pH. *Soil Biology and Biochemistry*, 40(12), 2948–2951.
628 <https://doi.org/10.1016/j.soilbio.2008.08.019>

629 Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L., Yeong, K. L., Davies, K., Nelson,
630 P. N., Bird, M. I., Kantola, I. B., Masters, M. D., DeLucia, E., Leake, J. R., Banwart, S. A., & Beerling, D.
631 J. (2021). Effects of mineralogy, chemistry and physical properties of basalts on carbon capture
632 potential and plant-nutrient element release via enhanced weathering. *Applied Geochemistry*,
633 132(February), 105023. <https://doi.org/10.1016/j.apgeochem.2021.105023>

634 Manning, D. A. C., Renforth, P., Lopez-Capel, E., Robertson, S., & Ghazireh, N. (2013). Carbonate
635 precipitation in artificial soils produced from basaltic quarry fines and composts: An opportunity for
636 passive carbon sequestration. *International Journal of Greenhouse Gas Control*, 17, 309–317.
637 <https://doi.org/10.1016/j.ijggc.2013.05.012>

638 McBride, A. L., Wade, P., Betz, J., Stubbs, A., Bierowiec, T., Albahri, T., Cazzagon, G., Chen, C., Frew, A.,
639 Healey, M., Idam, I., Jones, L., Kelland, M. E., Mann, J., Manning, D., Mitchell, C., Murphy, M. J.,
640 Radkova, A., Tostevin, R., ... Wilkie, M. (2025). *Quantifying potential carbon dioxide removal via*
641 *enhanced weathering using porewater from a field trial in Scotland. September.*
642 <https://doi.org/10.3389/fclim.2025.1606574>

643 Niron, H., Vienne, A., Frings, P., Poetra, R., & Vicca, S. (2024). Exploring the synergy of enhanced
644 weathering and *Bacillus subtilis*: A promising strategy for sustainable agriculture. *Global Change*
645 *Biology*, 30(9), 1–18. <https://doi.org/10.1111/gcb.17511>

646 Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., & Schott, J. (2018). Olivine dissolution rates: A critical
647 review. *Chemical Geology*, 500(October), 1–19. <https://doi.org/10.1016/j.chemgeo.2018.10.008>

648 Palandri, J. L., & Kharaka, Y. K. (2004). A compilation of rate parameters of water-mineral interaction
649 kinetics for application to geochemical modeling. *USGS Open File Report*, 2004–1068, 71.
650 <http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA440035>

651 Pogge von Strandmann, P. A. E., He, X., Zhou, Y., & Wilson, D. J. (2025). Comparing open versus closed
652 system weathering experiments using lithium isotopes. *Applied Geochemistry*, 189(July 2024),
653 106458. <https://doi.org/10.1016/j.apgeochem.2025.106458>

654 Pogge von Strandmann, P. A. E., Renforth, P., West, A. J., Murphy, M. J., Luu, T. H., & Henderson, G. M.
655 (2021). The lithium and magnesium isotope signature of olivine dissolution in soil experiments.
656 *Chemical Geology*, 560(November 2020), 120008. <https://doi.org/10.1016/j.chemgeo.2020.120008>

657 Pogge von Strandmann, P. A. E., Tooley, C., Mulders, J. J. P. A., & Renforth, P. (2022). The Dissolution of
658 Olivine Added to Soil at 4°C: Implications for Enhanced Weathering in Cold Regions. *Frontiers in*
659 *Climate*, 4(February), 1–11. <https://doi.org/10.3389/fclim.2022.827698>

660 Renforth, P., Pogge von Strandmann, P. A. E., & Henderson, G. M. (2015). The dissolution of olivine added
661 to soil: Implications for enhanced weathering. *Applied Geochemistry*, 61, 109–118.
662 <https://doi.org/10.1016/j.apgeochem.2015.05.016>

663 Rinder, T., & von Hagke, C. (2021a). Carbon dioxide removal through enhanced weathering of basalt on
664 agricultural land - Assessing the potential in Austria. *Preprint, Submitted to Journal of Cleaner
665 Production, January*, 1–40. <https://doi.org/10.31223/X51G76>

666 Rinder, T., & von Hagke, C. (2021b). The influence of particle size on the potential of enhanced basalt
667 weathering for carbon dioxide removal - Insights from a regional assessment. *Journal of Cleaner
668 Production*, 315(January), 128178. <https://doi.org/10.1016/j.jclepro.2021.128178>

669 Roland, M., Vicca, S., Bahn, M., Ladreiter-Knauss, T., Schmitt, M., & Janssens, I. A. (2015). Importance of
670 nondiffusive transport for soil CO₂ efflux in a temperate mountain grassland. *Journal of Geophysical
671 Research: Biogeosciences*, 120(3), 502–512. <https://doi.org/10.1002/2014JG002788>

672 Schuiling, R. D., & Krijgsman, P. (2006). Enhanced weathering: An effective and cheap tool to sequester
673 CO₂. *Climatic Change*, 74(1–3), 349–354. <https://doi.org/10.1007/s10584-005-3485-y>

674 Schwartz, M. O. (2022). Modelling a basalt reactor for direct air CO₂ capture. *Environmental Earth
675 Sciences*, 81(7), 1–9. <https://doi.org/10.1007/s12665-022-10320-0>

676 Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015). Sensitivity of decomposition
677 rates of soil organic matter with respect to simultaneous changes in temperature and moisture.
678 *Journal of Advances in Modeling Earth Systems*, 7(1), 335–356.
679 <https://doi.org/10.1002/2014MS000358>

680 Sohng, J., Sokol, N. W., Whiteaker, S., Schmidt, R., Holzer, I., Goertzen, H., Peña, J., Houlton, B. Z.,
681 Montañez, I., O'Geen, A., & Scow, K. (2025). Combining organic amendments with enhanced rock
682 weathering shifts soil carbon storage in croplands. *Science of the Total Environment*, 998(July).
683 <https://doi.org/10.1016/j.scitotenv.2025.180179>

684 Sokol, N. W., Sohng, J., Moreland, K., Slessarev, E., Goertzen, H., Schmidt, R., Samaddar, S., Holzer, I.,
685 Almaraz, M., Geoghegan, E., Houlton, B., Montañez, I., Pett-Ridge, J., & Scow, K. (2024). Reduced
686 accrual of mineral-associated organic matter after two years of enhanced rock weathering in
687 cropland soils, though no net losses of soil organic carbon. *Biogeochemistry Letters*, 167(8), 989–
688 1005. <https://doi.org/10.1007/s10533-024-01160-0>

689 Steinwidder, L., Boito, Lucilla de Schutter, Anthony Frings, Patrick J. Miladinović, Nina Niron, Harun
690 Rijnders, Jet Roussard, Jasper van Acker, K., van Gerven, T., & Vienne, Arthur Watjanatepin,
691 Ponnapat Vicca, S. (2026). Higher inorganic CO₂ removal despite slower weathering in an enhanced
692 weathering experiment with steel slags and basalt (in Press.). *Global Change Biology*, 23(1).
693 <https://doi.org/10.1111/gcb.70666>

694 Steinwidder, L., Boito, L., Frings, P. J., Niron, H., Rijnders, J., de Schutter, A., Vienne, A., & Vicca, S. (2025).
695 Beyond Inorganic C: Soil Organic C as a Key Pathway for Carbon Sequestration in Enhanced
696 Weathering. *Global Change Biology*, 31(7). <https://doi.org/10.1111/gcb.70340>

697 Strefler, J., Amann, T., Bauer, N., Kriegler, E., & Hartmann, J. (2018). Potential and costs of carbon dioxide
698 removal by enhanced weathering of rocks. *Environmental Research Letters*, 13(3).
699 <https://doi.org/10.1088/1748-9326/aaa9c4>

700 Vicca, S., Goll, D., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck, A., Peñuelas, J., Poblador, S., Rijnders,

701 J., Sardans, J., Struyf, E., Swoboda, P., van Groenigen, J. W., Vienne, A., & Verbruggen, E. (2022). Is
702 the climate change mitigation effect of enhanced silicate weathering governed by biological
703 processes? *Global Change Biology*, July, 1–16. <https://doi.org/10.1111/gcb.15993>

704 Vienne, A., Frings, P., Poblador, S., Steinwidder, L., Rijnders, J., Schoelynck, J., Vinduskova, O., & Vicca, S.
705 (2024). Earthworms in an enhanced weathering mesocosm experiment : Effects on soil carbon
706 sequestration , base cation exchange and soil CO 2 efflux. *Soil Biology and Biochemistry*, 199(June),
707 109596. <https://doi.org/10.1016/j.soilbio.2024.109596>

708 Vienne, A., Poblador, S., Portillo-estrada, M., Hartmann, J., Ijehon, S., Wade, P., & Vicca, S. (2022).
709 Enhanced Weathering Using Basalt Rock Powder : Carbon Sequestration , Co-benefits and Risks in a
710 Mesocosm Study With Solanum tuberosum. *Frontiers in Climate*, 4(May), 1–14.
711 <https://doi.org/10.3389/fclim.2022.869456>

712 Wagai, R., Mayer, L. M., Kitayama, K., & Shirato, Y. (2013). Association of organic matter with iron and
713 aluminum across a range of soils determined via selective dissolution techniques coupled with
714 dissolved nitrogen analysis. *Biogeochemistry*, 112(1–3), 95–109. <https://doi.org/10.1007/s10533-011-9652-5>

716 Xu, T., Li, H., Vicca, S., Goll, D. S., Yang, Z., Wang, X., & Yuan, Z. (2025). *Enhanced Rock Weathering
717 Promotes Soil Organic Carbon Accumulation : A Global Meta- - Analysis Based on Experimental
718 Evidence*. <https://doi.org/10.1111/gcb.70483>

719 Xu, T., Yuan, Z., Vicca, S., Goll, D. S., Li, G., Lin, L., Chen, H., Bi, B., Chen, Q., Li, C., Wang, X., Wang, C., Hao,
720 Z., Fang, Y., & Beerling, D. J. (2024). Enhanced silicate weathering accelerates forest carbon
721 sequestration by stimulating the soil mineral carbon pump. *Global Change Biology*, 30(8), 1–17.
722 <https://doi.org/10.1111/gcb.17464>

723 Zhang, Y., Lavallee, J. M., Robertson, A. D., Even, R., Ogle, S. M., Paustian, K., & Cotrufo, M. F. (2021).
724 Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically defined
725 MEMS 2.0 model. *Biogeosciences*, 18(10), 3147–3171. <https://doi.org/10.5194/bg-18-3147-2021>

726

727

728

729

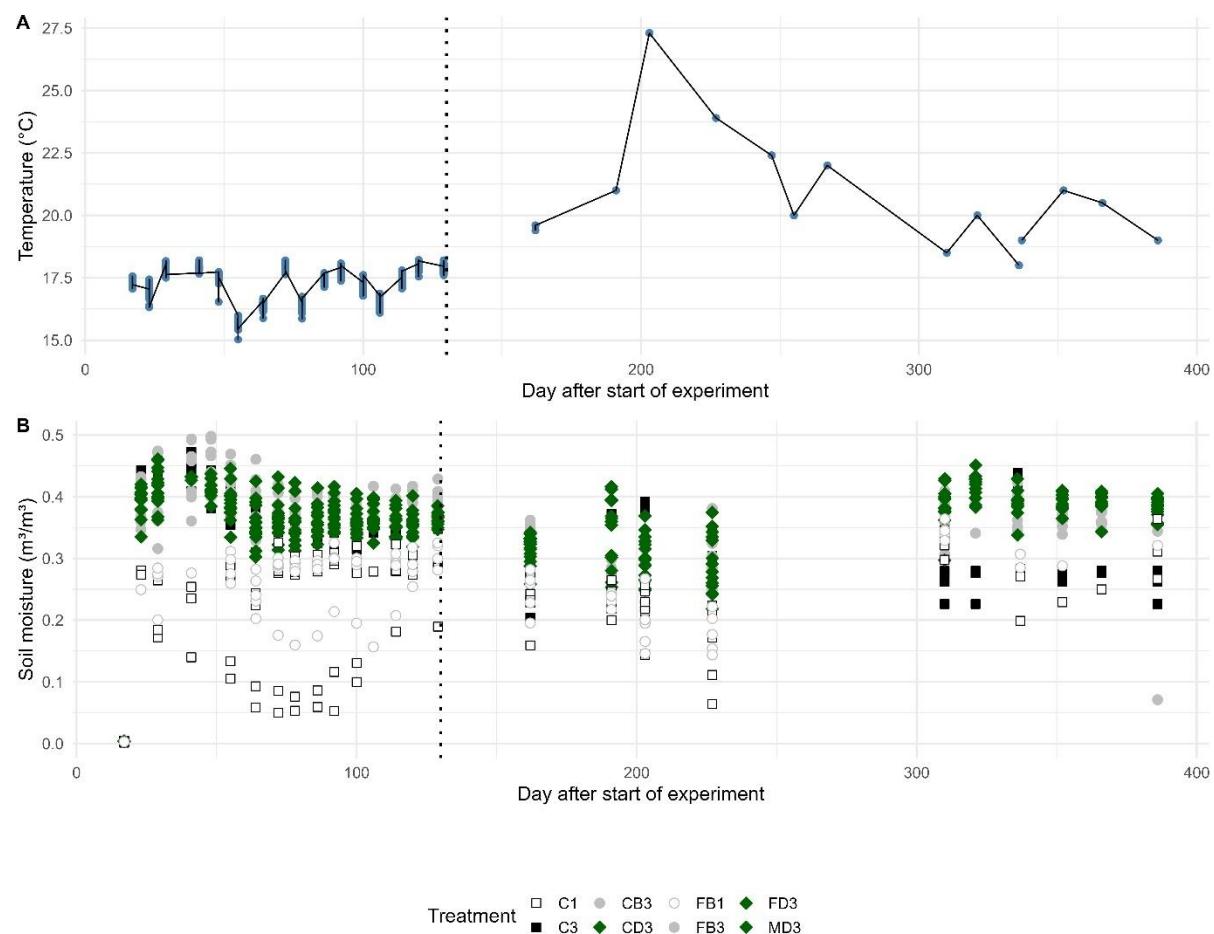
730

731

732

733

Supplementary information


734

1. Soil water content and temperature

735

While temperature was the same in every treatment, moisture was significantly affected by rock amendment. Basalt significantly increased SWC ($p<0.01$), both in the basalt-only and 3% SOC datasets. In the 3% SOC dataset there was a significantly positive basalt x time interaction effect ($p<0.01$) as well as a significantly positive dunite x time interaction on SWC ($p<0.01$), indicating that these silicates gradually increased SWC. .

739

740

741

Fig. S1: (A) Experimental temperature and (B) soil moisture at every moment of SCE measurements. Before day 130 (dotted vertical line) a temperature and moisture sensor was installed in every mesocosm. After day 130 temperature and SWC were measured manually. The data gap for SWC between day 227 and day 310 was due to technical problems.

745

746

747

748

749

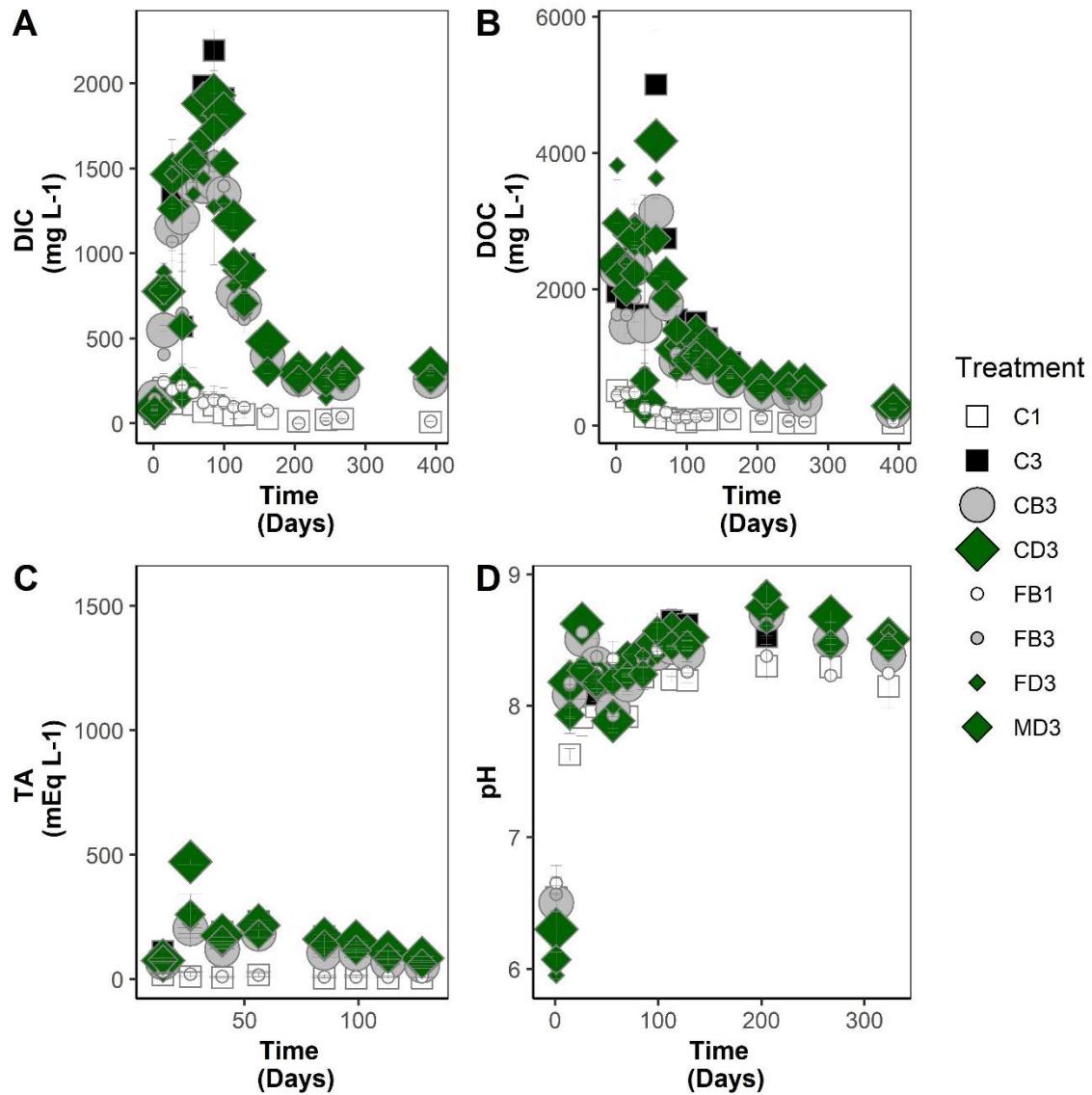
750

751

2. Water inputs and leachates

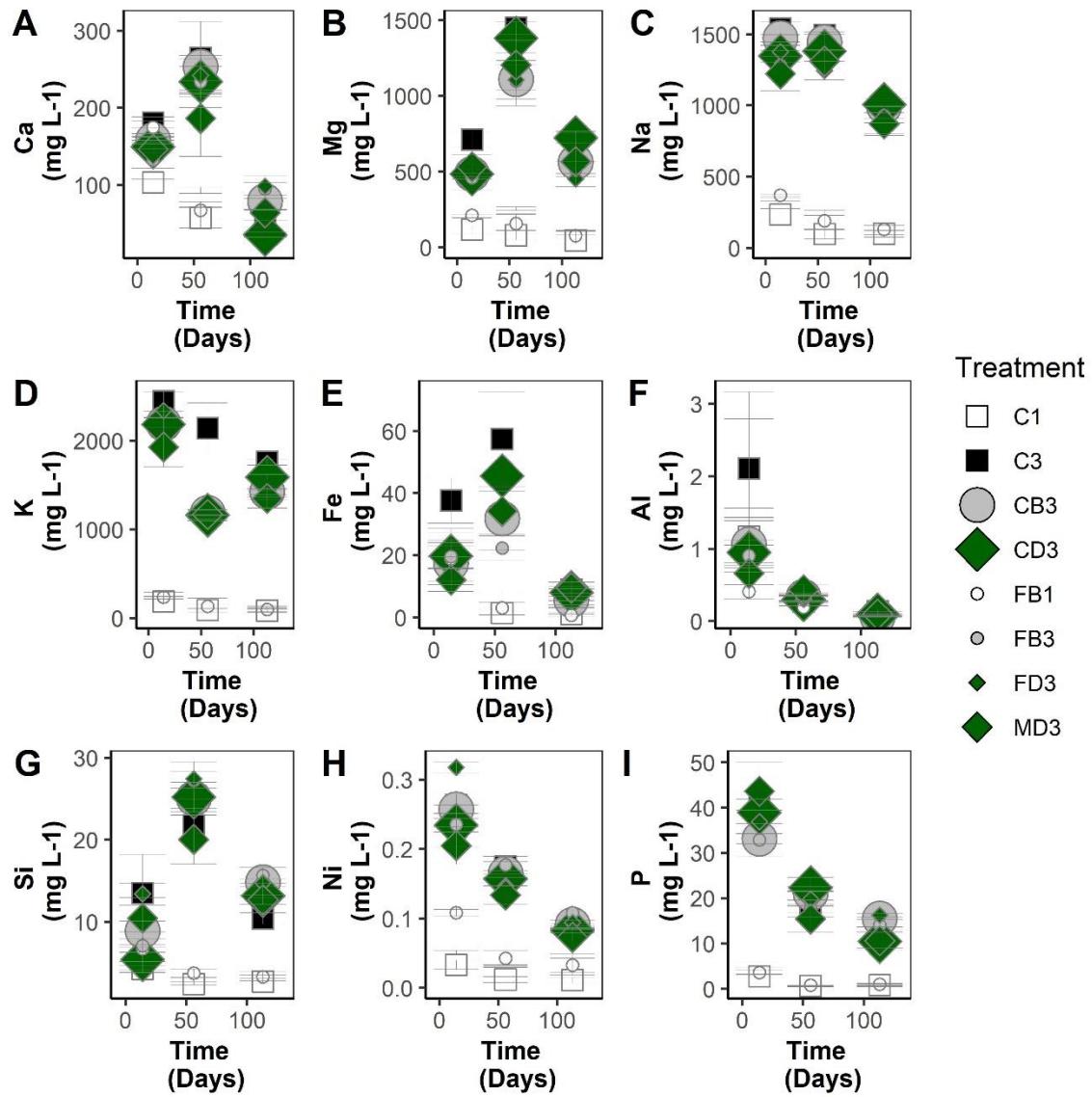
752

Table S1: irrigation water elemental composition (average values, in mg/L).


N	Ca	Mg	Na	K	Fe	Al	Si	Ni	P	Mn	Cr
0.911	22.77882	1.301343	6.327669	12.28209	0.037757	0.129011	2.109618	0.001285	0.305199	<0.001	0.000941

753

754


3. Extended leachate data

755

756
 757 **Fig. S2:** Leachate composition for (A) DIC, (B) DOC, (C) TA and (D) pH in function of time for different treatments.
 758 Points and error bars indicate averages \pm standard errors of the mean for all experimental data.

759
 760
 761
 762
 763
 764
 765
 766

767

768 **Fig. S3:** Leachate composition for (A) Ca (B) Mg (C) Na (D) K (E) Fe (F) Al (G) Si (H) Ni and (I) P in function of
769 time for different treatments. Points and error bars indicate averages \pm standard errors of the mean.

770

771

772

773

774

775

776

777

778

779

780

781

782 **Table S2:** Summary statistics for masses of elements leached. All units are in mg, except TA, which is in meq.
783 Reported values are model coefficients with p-values from repeated measures linear models in parentheses.
784 Significant effects are shown in bold. For the SOC \times basalt and time \times basalt interaction, p-values are only shown
785 when significant; non-significant interaction terms were removed from the final model (indicated with N.S.).

786

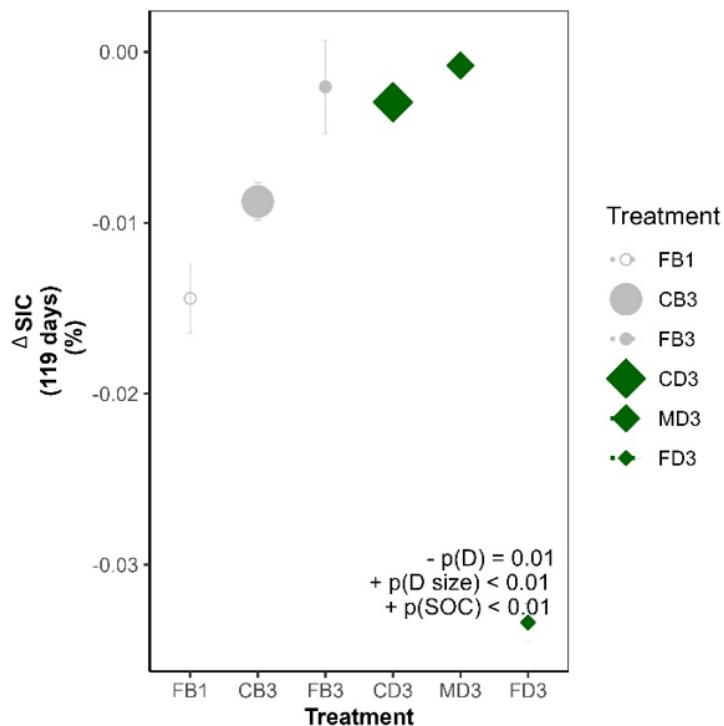
	Treatments in dataset: C3, FB3, CB3, FD3, MD3, CD3						Treatments in dataset: C1, FB1, C3, FB3			
variable	Basalt	Basalt particle size	Basalt x Time	Dunite	Dunite particle size	Dunite x Time	Basalt	Basalt x Time	SOC	SOC x Basalt
DIC	40.18 (0.97)	-0.26 (0.41)	N.S.	-21.6 (0.98)	0 (0.97)	N.S.	-6.12 (0.93)	N.S.	290.92 (<0.01)	N.S.
DOC	-444.41 (0.64)	-0.15 (0.85)	N.S.	-259.4 (0.68)	-0.05 (0.86)	N.S.	-218.32 (0.22)	N.S.	512.12 (<0.01)	N.S.
TA	-25.44 (0.8)	-0.06 (0.39)	N.S.	-40.96 (0.24)	0.03 (0.29)	N.S.	-18.13 (0.2)	N.S.	52.69 (<0.01)	N.S.
Ca	-30.67 (0.96)	-0.01 (0.95)	N.S.	-45.43 (0.81)	-0.01 (0.91)	N.S.	4.01 (0.93)	N.S.	62.64 (<0.01)	N.S.
Mg	-272.91 (0.87)	-0.19 (0.83)	N.S.	-402 (0.49)	0.22 (0.53)	N.S.	-119.33 (0.53)	N.S.	475.8 (<0.01)	N.S.
Na	-224.87 (0.91)	-0.03 (0.97)	N.S.	-334.65 (0.59)	0.12 (0.73)	N.S.	-56.81 (0.77)	N.S.	620.74 (<0.01)	N.S.
K	-833.03 (0.19)	-0.24 (0.76)	N.S.	-829.5 (0.02)	0.01 (0.97)	N.S.	513.9 (0.06)	N.S.	1120.5 (<0.01)	- 472.03 (0.03)
Fe	-30.26 (0.31)	0.01 (0.86)	N.S.	-26.67 (0.11)	0.01 (0.41)	N.S.	+16.70 (0.09)	N.S.	13.01 (<0.01)	- 15.08 (0.05)
Al	-1.00 (<0.01)	-5 e-5 (0.83)	0.010 (<0.01)	-1.02 (<0.01)	+5e-5 (0.61)	0.010 (<0.01)	-0.94 (<0.01)	0.009 (<0.01)	0.09 (0.09)	N.S.
Si	6.09 (0.86)	-0.01 (0.63)	N.S.	1.23 (0.98)	0 (0.75)	N.S.	2.52 (0.53)	N.S.	8.48 (<0.01)	N.S.
Ni	0 (1)	0 (0.66)	N.S.	-0.02 (0.85)	0 (0.76)	N.S.	0.02 (0.5)	N.S.	0.07 (<0.01)	N.S.
P	-4.85 (0.85)	0 (0.92)	N.S.	-1.91 (0.94)	0 (0.75)	N.S.	-1.75 (0.53)	N.S.	10.85 (<0.01)	N.S.

787

788

4. Extended mesh bag (pure silicate) data

789 Solid inorganic carbon (SIC) in basalt or dunite powders in mesh bags was quantified using a Scheibler calcimeter
 790 (Model 08.53, Royal Eijkelkamp, Giesbeek, The Netherlands), calibrated with 2–400 mg CaCO₃ based on CO₂
 791 released after adding 4 M HCl. SIC was determined from 3 g dry rock powdered as in **Equation 1**.


Calcimetry:

792
$$SIC [\%] = \frac{\left(\text{Calibration intercept } [mL] + \text{delta } V_{CO_2} [mL] * \text{Calibration Slope } \left[\frac{g CaCO_3}{mL CO_2} \right] \right) * \frac{12}{100} \left[\frac{g SIC}{g CaCO_3} \right] * 100}{3 [g soil]} \quad (1)$$

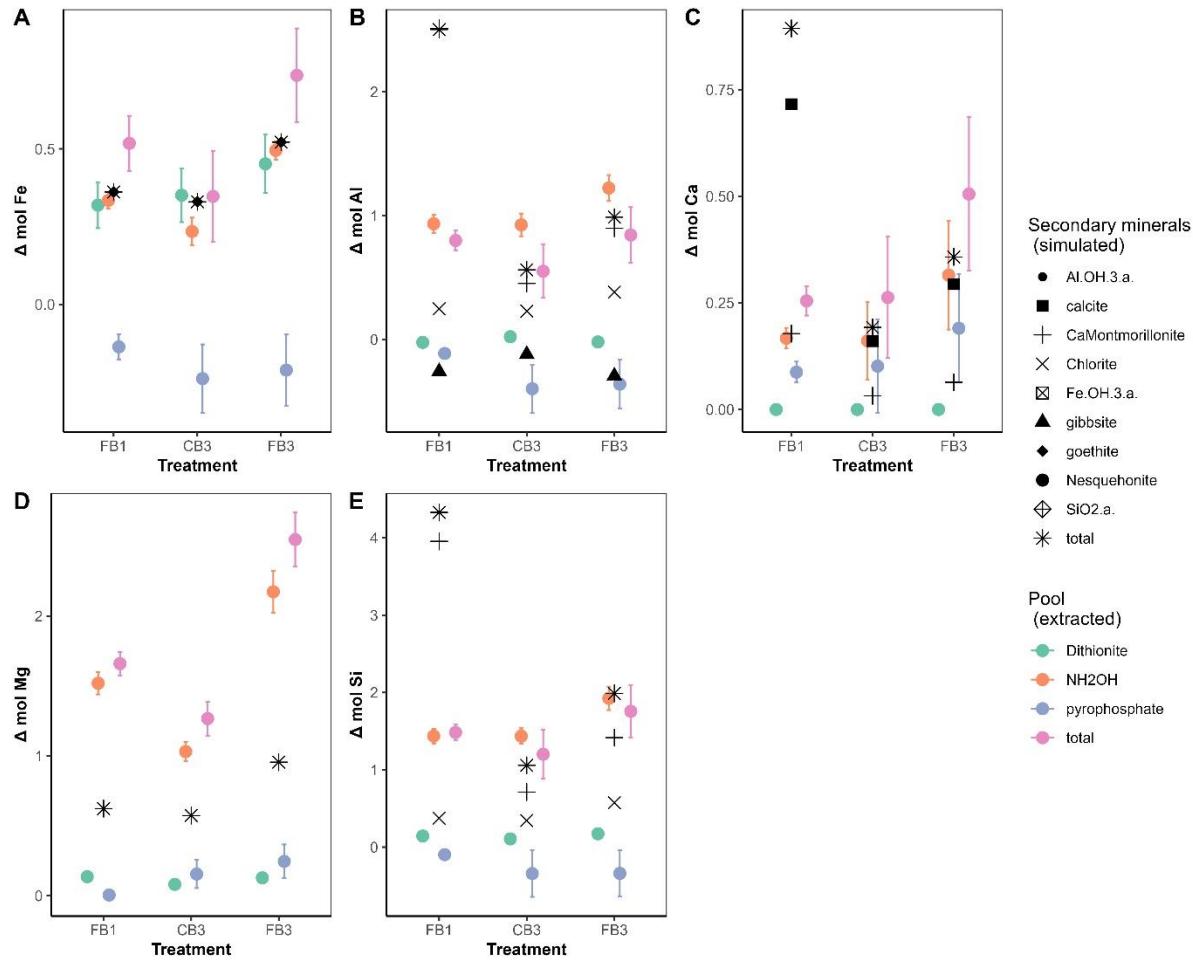
793

794

795 The change in SIC (Δ SIC) was calculated from the difference in SIC between original rock powder and mesh bag
 796 samples taken on day 119. The Δ SIC was significantly more negative for dunite than for basalt (Fig S4). The finer the
 797 dunite, the more SIC decreased. We observed a positive effect of SOC on Δ SIC, but Δ SIC of silicates in mesh bags
 798 remained negative for every rock type. The positive effect of SOC on SIC is most likely due to the carbonates in the
 799 manure.

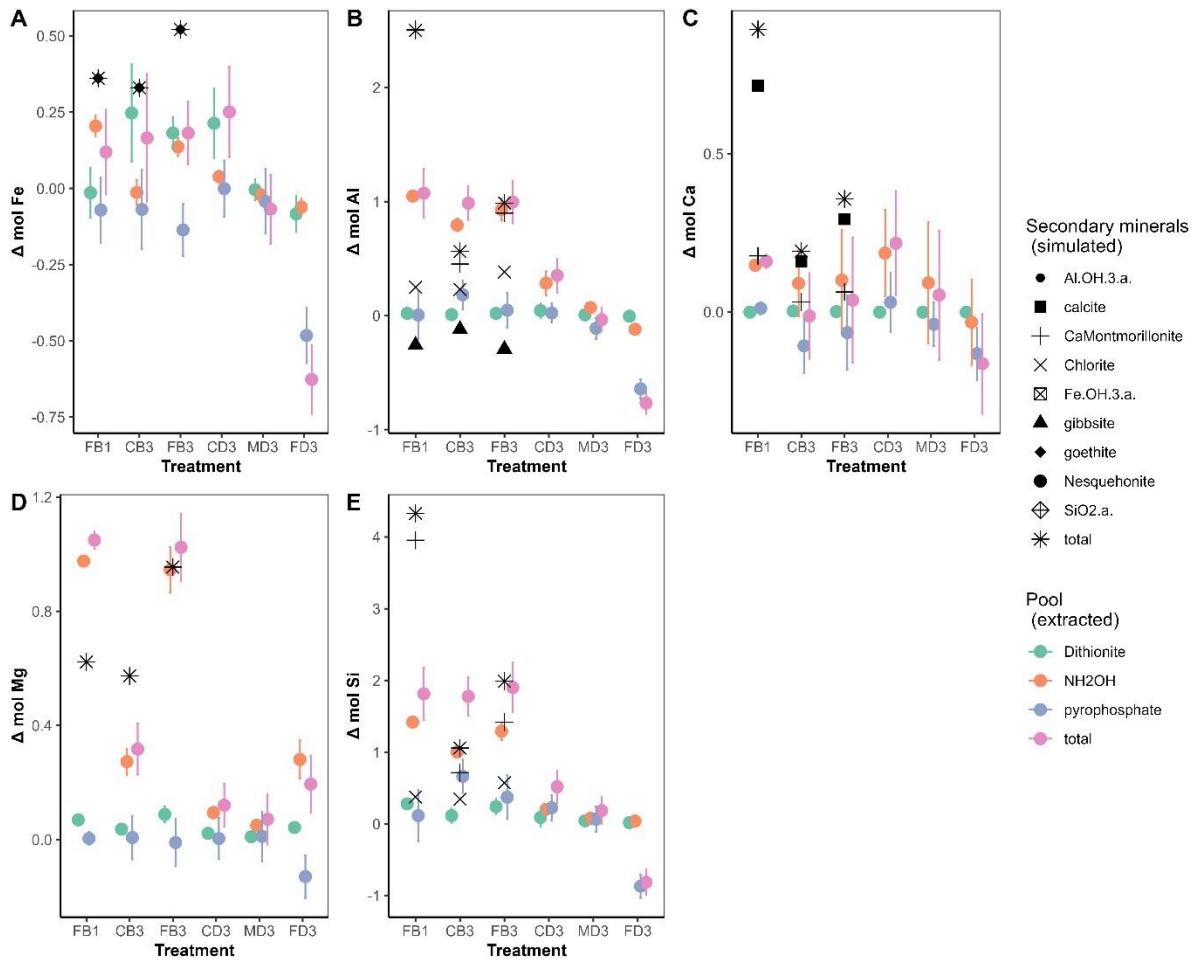
800

801


Fig. S4: Change in SIC change in time (Δ SIC; over 119 days) in silicate mesh bags.

802

803


5. 'Heckman' extractions

804 As an additional analysis to investigate the 'organo-minerallic glue' formation hypothesis in basalt soils, We
 805 performed a second sequential extraction protocol, following Heckman et al. (2018). These extractions were done on
 806 all basalt amended soils on day 130, and on all soils at day 389. These Heckman extractions allow us to distinguish
 807 between the pyrophosphate-, NH_2OH - and dithionite-extractable pools. Pyrophosphate and hydroxylamine fractions
 808 are associated with amorphous minerals, while dithionite is associated with crystalline minerals. The Heckman
 809 extractions revealed that both amorphous and crystalline Fe hydroxides were formed. Oxidized Al, Ca, Mg and Si
 810 increases were observed in amorphous fractions but not in crystalline (dithionite extracted) fractions (Fig. S5 and S6).

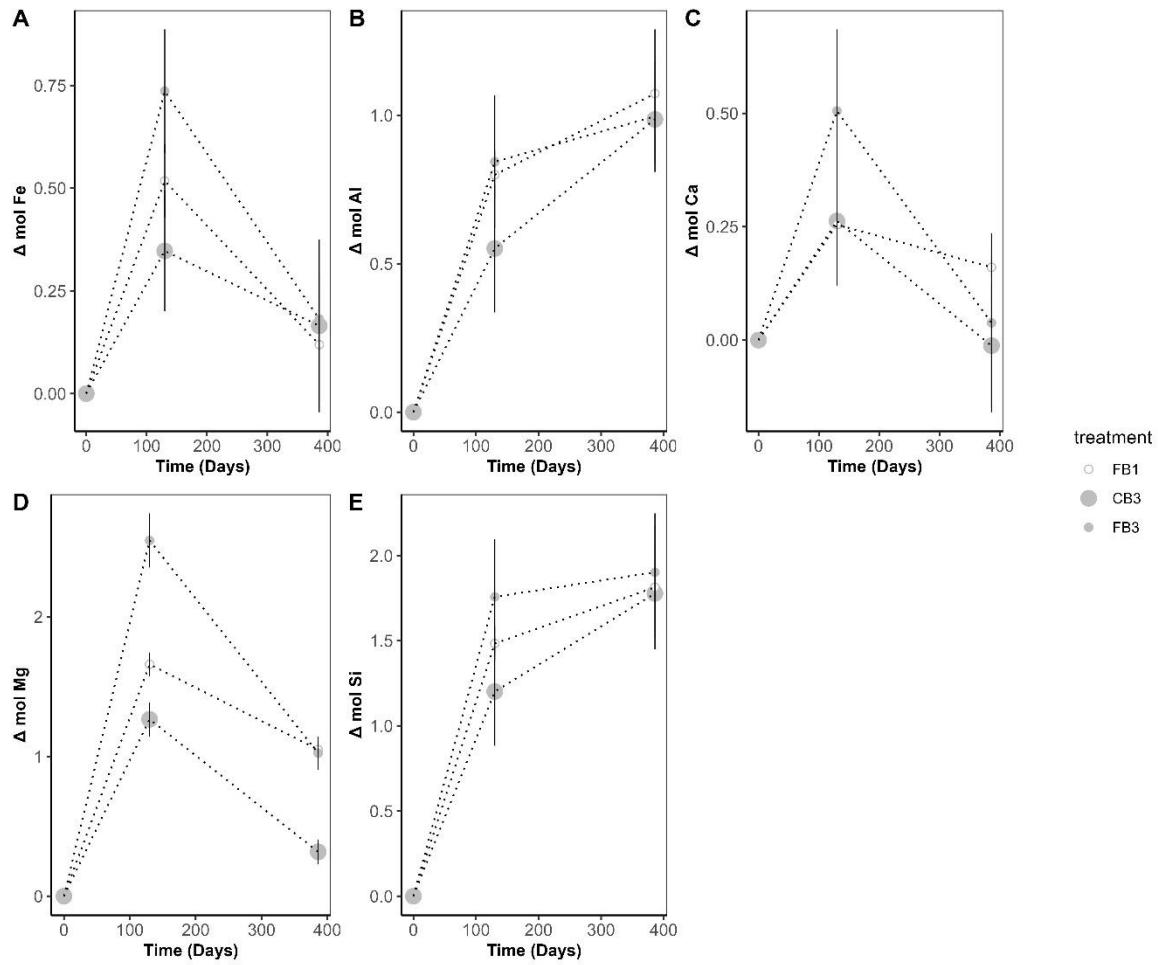
811

812 **Fig. S5:** Change in elements in extracted soil pools after 130 days (Heckman extractions, colored symbols) for each
 813 treatment, relative to control soils and comparison with simulated secondary minerals (black symbols, stars are the
 814 total change) for (A) Fe, (B) Al, (C) Ca, (D) Mg, (E) Si. Only secondary minerals that were formed according to the
 815 model are included. Colored symbols and error bars show experimental averages and standard errors of the mean. An
 816 overview of statistical changes for the dataset with treatments (C1, C3, FB1 and FB3) is shown in **Table S3**.

817

818 **Fig. S6:** Change in elements in extracted soil pools after 389 days (Heckman extractions, colored symbols) for each
 819 treatment, relative to control soils and comparison with simulated secondary minerals (black symbols, stars are the
 820 total change) for (A) Fe, (B) Al, (C) Ca, (D) Mg, (E) Si. Only secondary minerals that were formed according to the
 821 model are included. Colored symbols and error bars show experimental averages and standard errors of the mean. An
 822 overview of statistical changes for the dataset with treatments (C1, C3, FB1 and FB3) is shown in **Table S3**.

823


824 **Table S3:** Statistic results for changes in elemental content in Heckman extracted soil pools, fitted against SOC,
 825 basalt and interaction effects for a dataset with control soil and fine basalt. All basalt x SOC interaction effects were
 826 not statistically significant. Significant basalt effects are indicated in bold. For the SOC x basalt, p-values are only
 827 shown when significant; non-significant interaction terms were removed from the final model (indicated with N.S.).
 828 These statistical tests were performed on the dataset with treatments (C1, C3, FB1 and FB3) and a repeated measures
 829 Anova was used with data from both day 130 and 389.

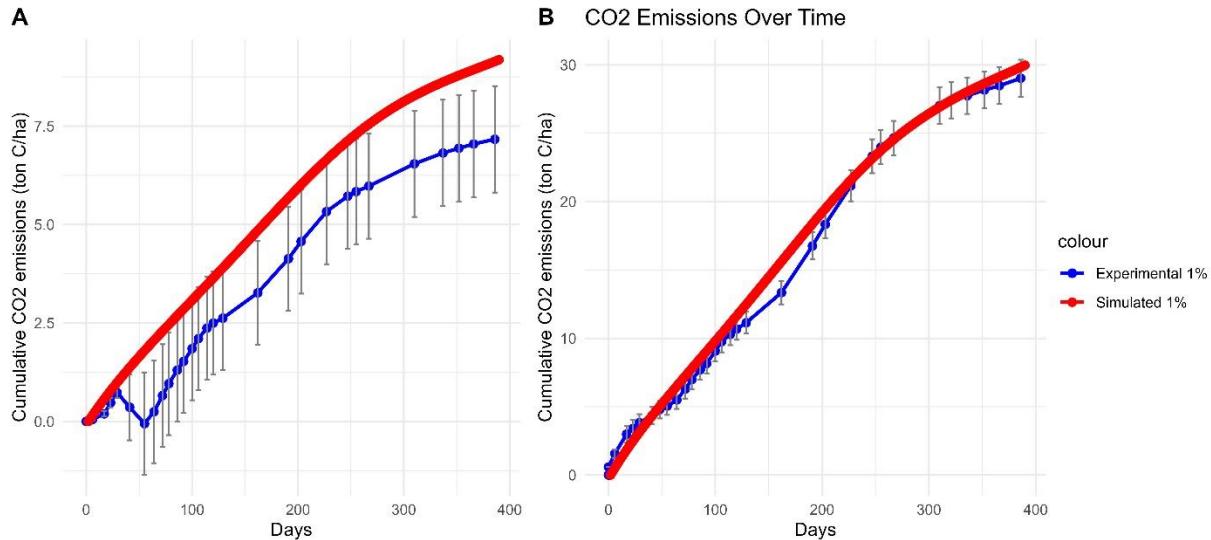
pool	element	Basalt	SOC	SOC Basalt	x (basalt)	P (SOC)	P (basalt x SOC)
pyrophosphate	Fe	-1.1e-01	1.1e-01	-1e-01	0.08	<0.01	N.S.
pyrophosphate	Al	-1.1e-01	2.7e-02	-1e-01	0.3	0.61	N.S.

pool	element	Basalt	SOC	SOC Basalt	x	P (basalt)	P (SOC)	P (basalt x SOC)
pyrophosphate	Ca	-5.2e-02	2.7e-01	-1e-01	0.64	<0.01	N.S.	
pyrophosphate	Mg	-5.2e-02	2.3e-01	-1e-01	0.6	<0.01	N.S.	
pyrophosphate	Si	5.5e-02	1.8e-01	-1e-01	0.81	0.12	N.S.	
NH₂OH	Fe	2.1e-01	-3e-02	-1e-01	<0.01	0.34	N.S.	
NH₂OH	Al	7.1e-01	-8.9e-02	-1e-01	<0.01	0.29	N.S.	
NH₂OH	Ca	1.7e-01	1.8e-01	-1e-01	<0.01	<0.01	N.S.	
NH₂OH	Mg	1e+00	-1.3e-01	-1e-01	<0.01	0.27	N.S.	
NH₂OH	Si	1e+00	-2.1e-01	-1e-01	<0.01	0.12	N.S.	
Dithionite	Fe	1.8e-01	-2.6e-02	-1e-01	<0.01	0.42	N.S.	
Dithionite	Al	1.1e-02	2.7e-02	-1e-01	0.55	<0.01	N.S.	
Dithionite	Ca	1.1e-02	5.1e-03	-1e-01	0.11	0.14	N.S.	
Dithionite	Mg	8.9e-02	-3.4e-03	-1e-01	<0.01	0.63	N.S.	
Dithionite	Si	1.9e-01	4.1e-02	-1e-01	<0.01	0.05	N.S.	

830

831

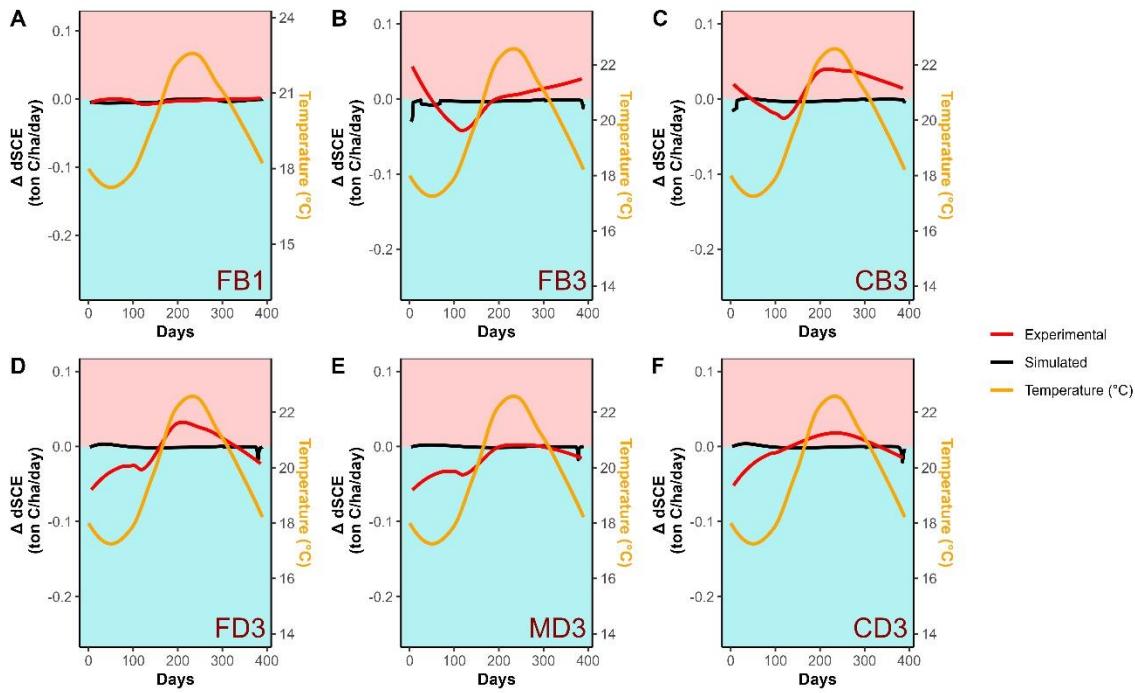
832


833 **Fig. S7:** The change in elements (A) Fe (B) Al (C) Ca (D) Mg and (E) Si (total of the Heckman extracted pools)
 834 relative to control soils, in function of time after rock amendment for basalt treatments.

835

6. Model – SCE data comparison and SOM decomposition

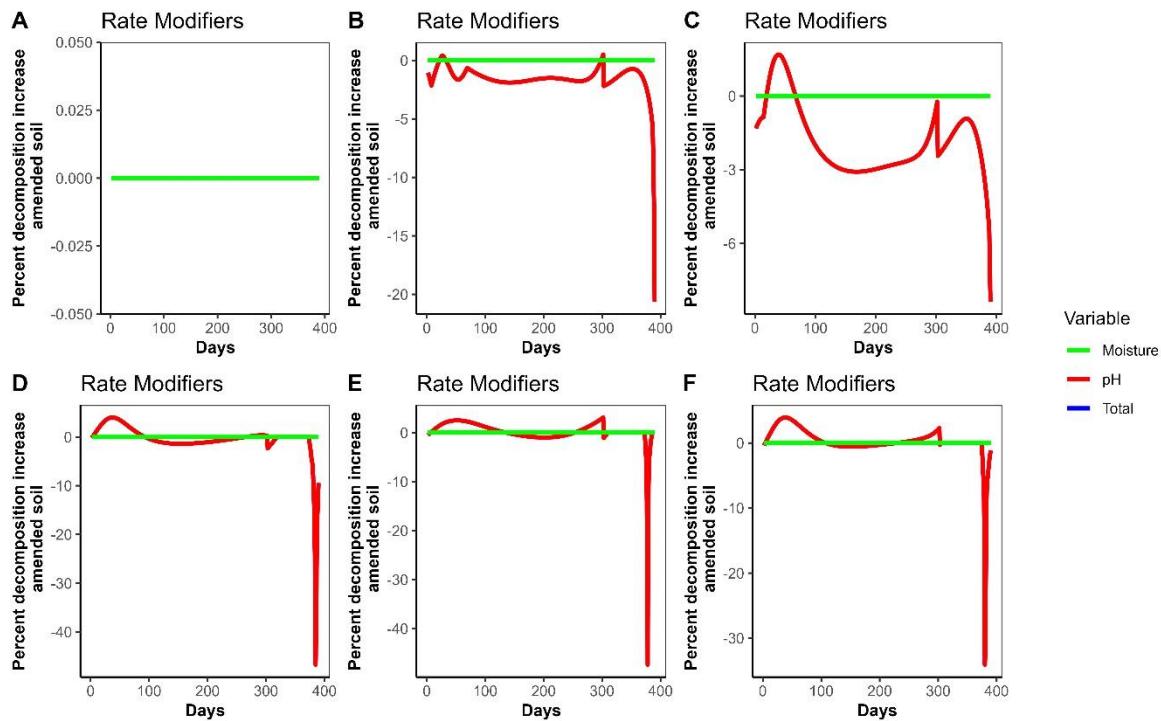
836 For control soils, we could recreate the temporal dynamics for cumulative SCE relatively well (Fig. S8), while we
 837 could not simulate temporal dynamics for silicate amended soils. We the same parameterization to both the 1% and
 838 3% SOC soil models and retained the parameter set that best fit the 3% SOC model (panel B below).


Cumulative CO₂ Emissions control soils for 1% SOC (A) and 3% SOC (B)

839

840 **Fig. S8:** Control simulation versus experimental comparison: Experimental and simulated SCE for (A) 1% SOC
 841 control soil and (B) the 3% SOC soil.

842 Temporal differences between SCE in control and amended soils are shown in **Fig. S9**.
 843



844

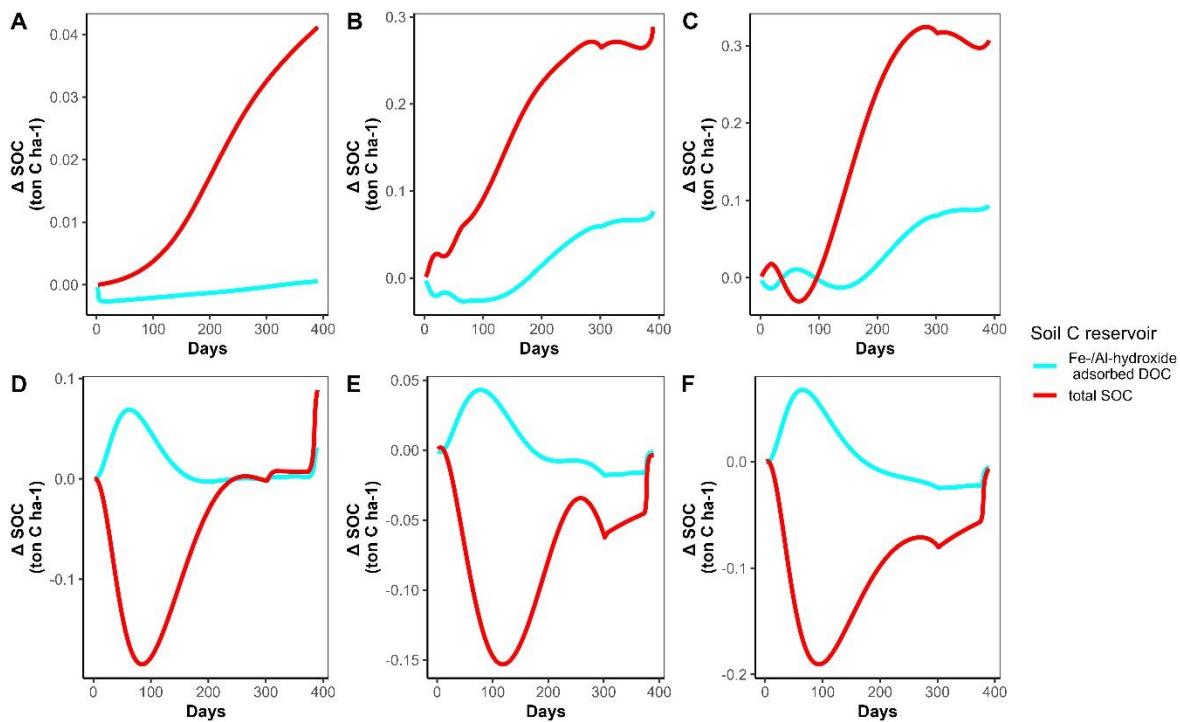
845 **Fig. S9:** Temporal evolution of experimental and simulated changes for $\Delta dSCE$ (the difference in SCE between a
 846 treatment and its control treatment) for each treatment (A) FB1 (B) FB3 (C) CB3 (D) FD3 (E) MD3 and (F) CD3. The
 847 light blue area indicates periods when rock-amended mesocosms emitted less CO₂ than controls, while the pink area
 848 indicates periods when rock-amended soils emitted more CO₂. Temperature is shown in orange on the secondary axis
 849 for comparison.

850
851
852

853 Decomposition fluctuated among treatments due to minor fluctuations in pH. In the 1% soils, the relatively lower SCE
854 and thus pCO₂, combined with the high alkalinity in the control, led to a control pH that exceeded 8. Consequently,
855 basalt amendment did not further increase pH. In the 3%, the higher SCE reflects a higher pCO₂ and thus a lower
856 control pH of 7-7.5. Under these conditions, basalt amendment increased pH above 8 and thus stimulated
857 decomposition (which is maximal at 8 according to the Leifeld relationship). The SWC was first normalized by total
858 porosity (calculated from bulk density) and the moisture modifier was modelled using the Gompertz relationship (see
859 Table 2 of (Sierra et al., 2015). The SWC modifier was 1 in all treatments during this experiment as water was not
860 limiting decomposition. Temperature was equal in all amended/unamended treatments so that the temperature
861 modifier did not change, The total decomposition modifier thus overlaps with the pH modifier (in red; **Fig. S10**).
862 Overall, decomposition modifiers were not substantially affected by our treatments.

863
864 Fig. S10: Decomposition rate modifiers for treatments
865 (A) FB1 (B) FB3 (C) CB3 (D) CD3 (E) MD3 and (F) FD3. Note that the green line is 0 everywhere (as the moisture
866 rate modifier was equal in (un)amended soils) and that the red pH modifier overlaps with the total change in
867 decomposition (blue, not visible) of amended relative to control soil.

868
869
870
871


872

873

874

875

876 Besides changes in decomposition, also MAOM-C formed by adsorption of DOC to Fe and Al hydroxides (Fig. S11).
 877 In addition, clays were formed that decreased the ratio of actively/slowly decomposing SOC, leading to an increase
 878 in SOC relative in basalt amended soils relative to control soils.

879

880 **Fig. S11:** Change in SOC and adsorbed DOC (=MAOM-C) in amended soils relative to controls for treatments (A)
 881 (B) FB3 (C) CB3 (D) CD3 (E) MD3 and (F) FD3. Total SOC change is affected by MAOM-C, but also by
 882 changes in pH modifiers and clay content (which affects the ratio of slow/actively SOC degradation) among
 883 treatments.

884

885

7. Particle size distribution rock powders

886

Table S4: Particle size distribution of dunite and basalt.

Size fraction	Fine basalt (%)	Coarse basalt (%)	Fine dunite (%)	Mid-size dunite (%)	Coarse dunite (%)
< 0.010 µm	0	0	0	0	0
0.01µm-0.05µm	0	0	0	0	0

0.05μm-0.10μm	0	0	0	0	0
0.10μm-0.20μm	0	0	0	0	0
0.20μm-0.30μm	0	0	0	0	0
0.30μm-0.50μm	0.249	0	0.521	0	0
0.50μm-0.75μm	0.663	0	1.496	0	0
0.75μm-1.00μm	0.557	0	1.2	0	0
1.00μm-1.50μm	0.82	0	1.638	0	0
1.50μm-2.00μm	0.679	0	1.384	0	0
2.00μm-4.00μm	2.141	0	5.204	0.21	0
4.00μm-8.00μm	3.13	0	9.142	0.469	0
8.00μm-16.00μm	4.523	0	15.485	0.335	0
16.00μm-30.00μm	5.472	0	18.61	0.9	0
30.00μm-45.00μm	4.698	0	12.436	0.329	0
45.00μm-60.00μm	4.12	0	8.421	0	0
60.00μm-75.00μm	3.82	0	6.082	-0.005	0
75.00μm-90.00μm	3.709	0	4.515	0.478	0
90.00μm-105.00μm	3.709	0	3.381	2.031	0
105.00μm-120.00μm	3.753	0	2.537	3.937	0
120.00μm-135.00μm	3.793	0	1.908	5.697	0

135.00 μ m- 150.00 μ m	3.809	0	1.433	7.055	0
150.00 μ m- 165.00 μ m	3.781	0	1.081	7.876	0
165.00 μ m- 180.00 μ m	3.716	0.009	0.816	8.212	0
180.00 μ m- 200.00 μ m	4.781	0.359	0.792	10.766	0
200.00 μ m- 220.00 μ m	4.518	1.013	0.543	9.955	0
220.00 μ m- 240.00 μ m	4.202	1.679	0.367	8.783	0
240.00 μ m- 260.00 μ m	3.858	2.317	0.237	7.452	0
260.00 μ m- 280.00 μ m	3.503	2.868	0.153	6.161	0
280.00 μ m- 300.00 μ m	3.149	3.35	0.1	4.952	0.038
300.00 μ m- 330.00 μ m	4.09	5.705	0.102	5.521	0.437
330.00 μ m- 360.00 μ m	3.394	6.251	0.081	3.717	1.107
360.00 μ m- 400.00 μ m	3.572	8.755	0.088	2.996	2.5
400.00 μ m- 450.00 μ m	3.22	10.901	0.091	1.728	4.544
450.00 μ m- 500.00 μ m	2.16	10.253	0.073	0.434	5.833
500.00 μ m- 550.00 μ m	1.39	9.223	0.055	0.013	6.728
550.00 μ m- 600.00 μ m	0.748	8.028	0.029	0	7.225
600.00 μ m- 650.00 μ m	0.244	6.806	0	0	7.399
650.00 μ m- 700.00 μ m	0.029	5.65	0	0	7.302
700.00 μ m- 750.00 μ m	0	4.596	0	0	7.014

750.00 μ m- 800.00 μ m	0	3.645	0	0	6.586
800.00 μ m- 850.00 μ m	0	2.836	0	0	6.072
850.00 μ m- 900.00 μ m	0	2.145	0	0	5.509
900.00 μ m- 950.00 μ m	0	1.604	0	0	4.939
950.00 μ m- 1000.00 μ m	0	1.13	0	0	4.374
1000.00 μ m- 2000.00 μ m	0	0.876	0	0	22.394

887

888

889

890