

1 ***Bacillus subtilis*-mediated weathering of basalt revealed through sporulation**

2

3 **AUTHOR NAMES**

4 Christopher Yip¹, Kira Stonkevitch^{1, #}, Abigail Knecht^{1, #}, Philip D. Weyman¹, Tania
5 Timmermann¹, Gonzalo A. Fuenzalida-Meriz^{1,*}

6

7 **AUTHOR ADDRESS**

8 ¹ Andes Ag, Inc., Alameda, CA, USA

9 *Corresponding author: Gonzalo A. Fuenzalida-Meriz, gonzalofuenzalida@gmail.com

10 [#]KS and AK contributed equally to this manuscript

11

12 **ABSTRACT**

13 Silicate rock weathering is a naturally occurring process that provides a long-term sink for
14 atmospheric CO₂, but its natural rates are too slow on human-relevant timescales to offset
15 anthropogenic emissions. Microbial activity offers a potential mechanism for accelerating silicate
16 mineral dissolution and subsequent CO₂ drawdown. Here, we investigated the role of *Bacillus*
17 *subtilis* strains MP1 and MP2 in the weathering of basalt, a cation-bearing, silicate-rich rock.

18 Incubation of basalt with MP1 or MP2 resulted in significantly increased levels of soluble calcium
19 compared to uninoculated, abiotic controls. In addition to calcium, we demonstrated that other
20 metals released during basalt weathering can efficiently trigger sporulation. Because sporulation
21 is known to require cations including Ca²⁺, Fe^{2/3+}, and Mn²⁺, this physiological response could be
22 used as an additional proxy for monitoring and assessing silicate weathering in *in vitro* systems.

23 Scanning electron microscopy revealed feldspar twinning features on basalt surfaces following

24 microbial treatment, providing concrete evidence of silicate rock weathering; these micrographs
25 also identified numerous ovoid cell structures, indicating the presence of bacterial spores at the
26 mineral surface. Together, these findings establish MP1 and MP2 as active agents of basalt
27 weathering and highlight *Bacillus* sporulation as a potential biosensor for silicate dissolution. By
28 linking microbial physiology with geochemical processes, our results highlight how strain-specific
29 interactions with rock compositions could inform silicate weathering strategies for carbon dioxide
30 removal (CDR), including Enhanced Weathering (EW) and Microbial Carbon Dioxide
31 Mineralization (MCM).

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **1. INTRODUCTION**

48 Silicate weathering is a fundamental geochemical process that regulates Earth's carbon cycle and
49 has been central in stabilizing the global climate over millennia by generating a sink for carbon
50 dioxide (CO₂) (Brantley et al., 2023; Trapp-Müller et al., 2025; Walker et al., 1981). In the
51 weathering process and at the most basic level, silicate minerals found ubiquitously throughout
52 terrestrial environments react with a variety of acids, including organic acids from microbial and
53 plant origin, and carbonic acid formed from atmospheric CO₂ and water (Goll et al., 2021;
54 Hartmann et al., 2013). Weathering liberates soluble metal cations from native silicates, and
55 alkalinity is generated as a result of this process (Goll et al., 2021; Hartmann et al., 2013; Trapp-
56 Müller et al., 2025). The resulting alkalinity is enriched for soluble bicarbonates and carbonates,
57 and is transported through the soil column, eventually reaching the oceans, where it is estimated
58 to be stable for thousands of years (Middelburg et al., 2020; Monger et al., 2015). As such, silicate
59 weathering ultimately captures and removes atmospheric CO₂ and stores the carbon as stable
60 carbonates and bicarbonates across geological timescales.

61

62 Because rates of silicate weathering are too slow to meaningfully counteract anthropogenic CO₂
63 emissions on timescales relevant to climate mitigation, new applications, practices, and
64 technologies that facilitate more rapid silicate weathering are urgently needed, in combination with
65 reducing CO₂ emissions themselves. In recent years, enhanced weathering (EW) has emerged as a
66 promising strategy for CO₂ removal by applying silicate minerals to soils (Dietzen et al., 2018;
67 Hasemer et al., 2024; Holzer et al., 2023; Kantola et al., 2023; Larkin et al., 2022).
68 Supplementation of soils with crushed silicate minerals can mitigate soil acidification, and the
69 increased mineral surface area accelerates silicate weathering and subsequent carbon dioxide

70 removal (CDR). Among the potential EW feedstocks, basaltic rocks are of particular interest.
71 Basalt is one of the most abundant volcanic rocks on Earth and is rich in silicate minerals such as
72 olivine, pyroxene, and plagioclase (Brooks, 2022). The widespread availability of basalt and its
73 capacity to release divalent cations (e.g. Ca^{2+} and Mg^{2+}) make it an attractive candidate for large-
74 scale deployment in agricultural settings for CDR efforts (Lewis et al., 2021). In addition to their
75 ability to complex with and stabilize bicarbonate ions, the cations released by weathering have
76 many co-benefits, including improving soil pH, soil fertility, and plant health (Sanderman, 2012;
77 Wilson, 2004).

78

79 An alternative strategy to EW is the addition of specific microorganisms to soils that are already
80 rich in cation-bearing silicate minerals (Timmermann et al., 2025). This strategy, termed microbial
81 carbon dioxide mineralization (MCM), leverages naturally-occurring microbes, specifically their
82 cellular processes and metabolisms, to accelerate and enhance the dissolution of native silicates
83 without requiring additional rock applications. Microorganisms, particularly bacteria and fungi,
84 are increasingly being recognized as active participants in silicate weathering (Finlay et al., 2020;
85 Timmermann et al., 2025; Uroz et al., 2009; Vicca et al., 2022; Wild et al., 2022; Yang et al.,
86 2026). Microbes and microbial communities can increase silicate dissolution rates relative to
87 abiotic processes by altering the local pH and redox conditions (Mo & Lian, 2011; Timmermann
88 et al., 2025). These microbes and microbial communities can also produce and secrete diverse
89 panels of biomolecules such as organic acids, chelators, enzymes, and various other redox-active
90 metabolites (Ahmed & Holmström, 2014; Basak & Biswas, 2009; Finlay et al., 2020; Ribeiro et
91 al., 2020; Uroz et al., 2009; Vicca et al., 2022). Among the microbes that promote weathering,
92 *Bacillus* species have attracted considerable attention for their ability to colonize mineral surfaces

93 and mobilize silicate-bound nutrients (Štyriaková et al., 2012). *B. mucilaginosus* and *B. edaphicus*
94 are known to produce low molecular weight organic acids (e.g. oxalic and citric acids) that
95 solubilize potassium and silicon from aluminosilicate-minerals, providing plant nutrients and
96 improving soil fertility (Basak & Biswas, 2009; Han et al., 2025; Sheng, 2005).

97

98 Despite the growing evidence of microbial contributions to silicate rock weathering, far less is
99 currently understood about how these interactions can subsequently affect microbial physiology
100 (Ribeiro et al., 2020; Uroz et al., 2009). Many cellular processes are influenced by metal
101 availability, including sporulation, and the ways microbes influence and respond to silicate
102 weathering remain largely unexplored. Understanding physiological responses may reveal
103 biological indicators for tracking microbially-mediated silicate weathering and could couple
104 biochemical processes to CDR strategies.

105

106 We previously reported that *B. subtilis* strain MP1 (herein referred to as “MP1”) enhanced the
107 weathering of anorthite, a calcium rich feldspar, and promoted the formation of soil inorganic
108 carbon under both laboratory and field conditions (Timmermann et al., 2025). A recent soil
109 mesocosm study demonstrated that MP1 also improved the weathering of basalt, resulting in a
110 significant increase in soil alkalinity (Yang et al., 2026). These findings established MP1 as an
111 effective biological agent of silicate weathering and provided foundational evidence that microbial
112 activity can drive silicate mineral dissolution and subsequent carbon dioxide removal in
113 agricultural soils. MP1, however, is not genetically tractable, limiting genetic approaches to
114 understanding the biochemical mechanisms of action of microbial-mediated silicate weathering.
115 To overcome this limitation, we employed *Bacillus subtilis* strain MP2 (herein referred to as

116 “MP2”). MP2 shares approximately 99% DNA sequence similarity to MP1, but can be readily
117 modified using standard genetic tools. The close genetic relatedness between MP1 and MP2
118 enables direct comparison of their weathering capabilities while facilitating the generation of
119 defined mutants to interrogate weathering-associated cellular processes. Accordingly, MP2 serves
120 as a genetically tractable surrogate for MP1, enabling mechanistic analyses of *Bacillus*-mediated
121 silicate weathering.

122

123 In line with our previous findings, when calcium release was measured as a proxy for silicate
124 weathering under *in vitro* conditions, we consistently observed a decrease in soluble calcium at
125 later timepoints (Timmermann et al., 2025). We speculated that the decrease in calcium levels
126 could be due to the onset of sporulation, a cellular process requiring uptake of calcium, and/or the
127 precipitation of insoluble calcium carbonates. Consistent with this, high spore titers were
128 recovered from our established *in vitro* weathering assays and scanning electron microscopy
129 revealed basalt surfaces were heavily populated with *Bacillus* spores. Given that spore formation
130 in *B. subtilis* requires metals such as Ca^{2+} , $\text{Fe}^{2/3+}$, and Mn^{2+} , which are also found abundantly in
131 rocks such as basalt, we hypothesized that sporulation may act as an additional proxy for
132 microbially-mediated silicate weathering (Granger et al., 2011). Altogether, this study provides
133 new insight into the physiological responses of *B. subtilis* during silicate weathering and suggests
134 that sporulation may serve as a biological indicator of mineral dissolution. Furthermore, the
135 microbe’s ability to procure the metals needed for sporulation from the rock is evidence of its
136 ability to promote rock weathering. By linking microbial metabolism and physiology to basalt
137 weathering dynamics, our findings expand the understanding of microbial contributions to
138 enhanced weathering and offer a framework for developing biologically informed CDR strategies.

139

140 **2. MATERIALS AND METHODS**

141 **2.1. Isolation and identification of strain MP2.** *Bacillus subtilis* strain MP2 is a naturally
142 occurring soil microbe isolated from bunchgrass roots and rhizosphere soil samples from Imperial
143 County, California, USA. Root samples with rhizosphere soil attached were collected and stored
144 in a clean plastic bag. Soil and roots were divided into two samples (roots and rhizosphere soil),
145 and portions of each sample were plated on LB-Lennox agar medium (1% tryptone, 0.5% yeast
146 extract, 0.5% NaCl, 1.5% agar). MP2 was recovered as colonies from both rhizosphere soil and
147 root samples.

148

149 Genome sequencing of MP2 was performed by Macrogen, Inc. (South Korea) using both PacBio
150 and Illumina reads, and the resulting assembled genome was annotated with Bakta (Schwengers
151 et al., 2021). MP1 and MP2 genomes were aligned with Mauve embedded in the Geneious Prime
152 software package (version 2025.1.2) and were found to have a pairwise identity of 99.1%. MP1
153 and MP2 each share 86% pairwise identity with the common reference strain *Bacillus subtilis*
154 subsp. *subtilis* strain 168.

155

156 **2.2. Generation of Δ spoIIE mutant.**

157 A deletion of the open reading frame (ORF) encoded by gene *spoIIE* was generated using
158 homologous recombination in strain MP2. First, a plasmid was constructed using Gibson
159 Assembly that consisted of 1) a 985-bp left homology region upstream of the *spoIIE* ORF that
160 ended 15-bp before the start codon, 2) a 1230-bp spectinomycin cassette that was ordered as a
161 gblock, 3) a 930-bp right homology region downstream of the *spoIIE* ORF and including the last

162 5-bp of the *spoIIIE* ORF sequence, and 4) the vector pBR322 replacing the tetracycline resistance
163 gene. Primers for the left homology region were 5'-
164 TCCTAATGCATGTCTCCGAGCTGGCAAGTAGCCTGTTGACAC and 5'-
165 ATATGTAAGATTAAATGCAACCGCCTGTTATTCGTTGCCTGT. Primers for the right
166 homology region were 5'-
167 AATAGGGGGATCTTCTCGAGATAACATAACGCTCCGTATAAATCA and 5'-
168 TGCTCACGTCAGTCCCATCGACGTTCTGCCAAATACACAATTCC. The plasmid was
169 sequenced and transformed into MP2 using natural transformation protocols and selection with
170 spectinomycin (Hoover et al., 2010). Correct insertion was confirmed by PCR amplification of the
171 entire left homology-spectinomycin resistance-right homology region from primers outside the
172 homology arms and sequencing using Nanopore. The sporulation deficient phenotype was verified
173 by the lack of spores after culturing in Difco Sporulation Medium.

174

175 **2.3. Basalt preparation for weathering assays.** Commercially available basalt (BrixBlend, from
176 Pioneer Valley, MA, Fedcoseeds.com) was sieved to <710 µm particles using a no. 25 test sieve
177 (VWR# 57334-268). Detailed mineral and elemental compositions can be found in supplemental
178 tables S1 and S2. To remove available cations and easily weatherable carbonates, 60 g sieved
179 basalt was resuspended in 600 ml 1 mM HCl and incubated at room temperature for 5 minutes.
180 The basalt was then pelleted at 2000 x g for 5 minutes and the supernatant was decanted and
181 discarded. The basalt pellet was washed an additional time with HCl, followed by two additional
182 washes with distilled water. The basalt was then dried overnight at 60 °C, then sieved an additional
183 time through a no. 25 test sieve.

184

185 **2.4. Strain growth conditions, *in vitro* weathering assay, and analysis.** *B. subtilis* strain MP1
186 and *B. subtilis* MP2-derived strains were routinely cultured at 30 °C in LB-Lennox medium. Basalt
187 *in vitro* weathering assays were conducted over 3- and 7-day time courses and performed as
188 follows: Exponential phase cultures were back diluted into mB4-1 (0.2% yeast extract, 0.3%
189 casamino acids, 0.5% glucose, pH 7.3) to a final OD₆₀₀ of 0.1. Two milliliters of the cultures were
190 transferred to 24-well plates with or without 50 mg substrates or acid-washed basalt. The plates
191 were sealed with breathable membranes and incubated without shaking at 30 °C. At specified
192 timepoints, the biofilms were disrupted, and the cultures were homogenized by repeated pipetting.
193 Approximately 1.5 ml of the cultures were collected, pelleted, and 1 ml of the clarified supernatants
194 were assayed for pH and soluble calcium. To measure pH, 199 µl of clarified supernatants was
195 added to a 96-well plate, then mixed with 1 µl 0.5% phenol red for a final concentration of
196 0.0025%. The sample absorbances were measured at 570 nm, then fitted against a 12-point
197 sigmoidal curve with standards ranging from pH 5 to pH 9. Soluble calcium, liberated as a
198 byproduct of basalt weathering, was measured using the QuantiChrom™ Calcium Assay Kit
199 (DICA-500, Bioassay Systems). Briefly, 5 µl of clarified supernatants was added to a 96-well
200 plate, mixed with 100 µl QuantiChrom™ working solution, and incubated at room temperature for
201 at least 3 minutes. In the presence of calcium, the QuantiChrom™ dye forms a blue-colored
202 complex that absorbs maximally at 612 nm. The calcium concentrations are directly proportional
203 to the intensity of the blue color and were calculated when fitted to a 12-point calibration curve
204 with calcium chloride standards ranging from 0 mM to 4 mM.

205
206 **2.5. Assessing sporulation.** To assess the presence of spores and to determine the sporulation
207 efficiency of our strains, 50 µl of homogenized cultures were mixed with 450 µl 1X PBS. The

208 samples were serially diluted and plated onto LB agar to obtain total cell counts. In parallel, the
209 homogenized cultures were incubated at 80 °C for 20 minutes to remove any heat-labile vegetative
210 cells and to purify spores. The heat-treated samples were allowed to cool, serially diluted, then
211 plated onto LB agar to obtain total spore counts.

212

213 **2.6. Preparation of spent media.** $\Delta spoIIE$ was cultured in nutrient broth (Difco, NB)
214 supplemented with 0.5% glucose, with or without acid-washed basalt for 3 days to allow for
215 mineral dissolution. The samples were pelleted, and the supernatants were filter-sterilized to
216 generate spent nutrient broth prepared without basalt (“-BA Spent NB”), or spent nutrient broth
217 prepared with basalt (“+BA Spent NB”). MP2 and $\Delta spoIIE$ were then inoculated into either fresh
218 nutrient broth (NB), -BA Spent NB, or +BA Spent NB, then incubated at 30 °C for 3 days.

219

220 **2.7. One-month basalt weathering assay.** Basalt (Ward’s Scientific) disks were cut to 1.5 cm
221 diameter and 0.3 cm thickness, polished using 400 grit silicon carbide, sonicated to remove
222 particulates, then sterilized by autoclaving. The basalt disks were dried overnight at 60 °C before
223 use. To visually observe weathering by our *B. subtilis* strains MP1, MP2, and $\Delta spoIIE$, exponential
224 phase cultures were back diluted into nutrient broth supplemented with 0.5% glucose to a final
225 OD₆₀₀ of 0.1. Thirty milliliters of the cultures were transferred to 50 ml-beakers containing a
226 sterilized basalt disk. The beakers were sealed with breathable membranes and incubated at room
227 temperature, with minimal agitation (80 rpm).

228

229 After 30-days, the culture supernatants were decanted and stored at room temperature for soluble
230 calcium measurements and spore and total cell enumeration (Supplemental Table S3). The basalt

231 disks were gently rinsed three times with dH₂O. The basalt disks were dried overnight at 60 °C,
232 carbon coated to a thickness of 15 nm, then imaged using a JEOL JSM IT800HL Scanning Electron
233 Microscope (SEM). The SEM was equipped with a backscatter electron detector (BED) and a
234 secondary electron detector (SED), and routinely operated at 10-20 kV.

235

236 3. RESULTS

237 3.1. *Bacillus subtilis* facilitates the weathering of basalt.

238 To determine the extent to which *Bacillus subtilis* strains MP1 and MP2 facilitate silicate
239 weathering and mobilize cations, the microbes were cultured in liquid mB4-1 medium with and
240 without basalt for seven days (Figure 1 and Supplemental Figure S1). At each timepoint, the
241 cultures were sampled and analyzed for soluble calcium derived from basalt-associated mineral
242 dissolution. In the uninoculated control containing basalt, calcium concentrations gradually
243 increased to approximately 0.44 mM by day 7 (Figure 1, solid orange line). In contrast, MP1 and
244 MP2 cultures released significantly ($p < 0.0001$) higher calcium in the presence of basalt, reaching
245 approximately 1.8 mM and 1.1 mM on day 7, respectively (Figure 1, solid gray and green lines).
246 In samples lacking basalt, soluble calcium measurements remained low, demonstrating that the
247 soluble calcium increases are derived only from the basalt substrate (Figure 1, dashed lines). The
248 elevated calcium observed in the treatment containing both microbes and basalt suggests the
249 liberated calcium was likely a consequence of microbially-mediated weathering of basalt.

250

251 Compared to MP1 cultures grown with calcium-bearing feldspars, MP1 and MP2 exhibited
252 strikingly similar pH dynamics when cultured with basalt (Timmermann et al., 2025, and
253 Supplemental Figure S2). In the absence of basalt, MP1 and MP2 initially decreased the media pH

254 by day 1, then gradually raised the alkalinity to pH 7 by the end of the experimental time course
255 (Supplemental Figure S2, dashed gray and green lines). In contrast, MP1 and MP2 co-cultured
256 with basalt exhibited a subtle decrease in pH by day 1 but then caused a rapid increase in pH,
257 which was eventually stabilized near pH 9 (Supplemental Figure S2, solid gray and green lines).
258 Additionally, compared to MP1 cultures treated with calcium-bearing feldspars (Timmermann et
259 al., 2025), in the presence of basalt, MP1, MP2, and Δ spoIIE also exhibited robust pellicle
260 formation; biofilms and pellicle formation were absent from samples containing the mB4-1 media
261 alone (Supplemental Figure S1).

262

263 **3.2. *Bacillus subtilis* MP1 and MP2 can undergo sporulation in the presence of basalt.**
264 We consistently observed a decrease in soluble calcium after day 2 of our *in vitro* weathering
265 experiments with both feldspar and basalt (Timmermann et al., 2025, and Figure 1, respectively).
266 We hypothesized that this decrease could be partially attributed to the onset of sporulation and the
267 formation of mature spores, which are known to take up calcium from the medium (Nishikawa &
268 Kobayashi, 2021; Paidhungat et al., 2000; Sinnelä et al., 2021). To test this hypothesis, we
269 quantified the total number of cells and spores from cultures grown in the presence and absence of
270 basalt after three days of incubation (Figure 2). Approximately 10^7 CFU/ml total viable cells were
271 recovered from MP1 and MP2 cultures grown without basalt. Under basalt-free conditions, spore-
272 forming units were recovered at approximately 10^3 spores/ml for MP1 and 10^4 spores/ml for MP2.
273 Contrary, in the treatments where basalt was added, the total viable cell counts remained similar;
274 however, spore counts increased significantly by ~4-log and ~2.5-log for MP1 and MP2,
275 respectively (Figure 2). This significant increase in the number of spores and consequently

276 sporulation efficiency suggests that the microbes can weather basalt rocks which releases metals
277 required for the induction of sporulation (e.g., Ca^{2+} , Mg^{2+} , K^+ , Mn^{2+} , and $\text{Fe}^{2/3+}$).

278
279 To determine whether the decrease in soluble calcium was directly linked to the onset of
280 sporulation and mature spore formation, we generated and examined a ΔspoIIE sporulation-
281 deficient strain of MP2. The ΔspoIIE strain was unable to produce spores when cultured under
282 standard sporulation promoting conditions (Supplemental Figure S3). When tested in a basalt
283 weathering assay, ΔspoIIE exhibited robust vegetative growth, and the total viable cell counts of
284 the mutant were similar to MP1 and MP2 in both the presence and absence of basalt (Figure 2).
285 As expected, the ΔspoIIE strain was unable to produce spores in the presence or absence of basalt.
286 When ΔspoIIE was cultured in the presence of basalt, calcium levels remained elevated well
287 beyond day 2, a point at which MP1 and MP2 calcium levels begin to decline (Figure 1, solid blue
288 line). These results support our hypothesis that sporulation is partially responsible for the decline
289 in soluble calcium during the course of basalt weathering under our laboratory conditions, as
290 calcium levels remained significantly elevated with ΔspoIIE in comparison to its wild type, MP2
291 ($p < 0.0001$), and to MP1 ($p < 0.01$) (Figure 1).

292
293 **3.3. Mineral substrates lacking key metals cannot induce *Bacillus* sporulation.**
294 Difco Sporulation Medium (DSM), a standardized medium for producing *B. subtilis* endospores,
295 contains several cations, notably Ca^{2+} , $\text{Fe}^{2/3+}$, K^+ , Mg^{2+} , and Mn^{2+} , that can induce spore formation
296 and allow for the formation of mature spores (Granger et al., 2011; Li et al., 2022; Weinberg,
297 1964). To test whether the presence of specific metals influences sporulation, MP2 cultures were
298 incubated for three days in mB4-1 medium with or without different mineral substrates (Figure 3).

299 Importantly, mB4-1 alone cannot efficiently trigger *Bacillus* sporulation due to the absence of
300 essential metals (Figure 1 and Figure 2). Given the heterogeneous mixture of silicates and silicate-
301 bound metals found in basaltic rocks, we hypothesized that the weathering of basalt could release
302 essential metals, such as Mn^{2+} , that can trigger sporulation. Alternatively, substrates that lack this
303 panel of essential metals should not significantly trigger sporulation.

304

305 MP2 cultures grown in the presence and absence of metal-bearing substrates exhibited similar total
306 viable cell counts ($\sim 10^7$ CFU/ml, Figure 3). In the absence of substrate, we recovered
307 approximately 10^5 spores/ml from MP2 (sporulation efficiency <1%). Consistent with our
308 hypothesis, MP2 grown in the presence of basalt exhibited an approximate 2-log increase in the
309 number of spores, relative to the no-substrate control; this increase in spore count corresponded to
310 a sporulation efficiency of approximately 56%. In contrast, while total viable cell counts were
311 comparable to the no-substrate control and basalt sample, minimal spore formation (sporulation
312 efficiency <1%) was observed when MP2 was co-cultured with dolomite, a calcium-magnesium
313 rich carbonate mineral that lacks other metal cations required for sporulation. Consistent with our
314 strains' ability to weather minerals, MP1, MP2, and $\Delta spoIIE$ could also liberate calcium from
315 dolomite (Supplemental Figure S4). These findings demonstrate that sporulation of *Bacillus* strains
316 cannot be induced solely by the presence of soluble calcium or magnesium (as in the case with
317 dolomite), but instead relies on accessing a broader suite of trace metals released from silicate
318 substrates such as basalt.

319

320 **3.4. Basalt weathering by MP2 and $\Delta spoIIE$ releases soluble cations that induce sporulation.**

321 We next questioned whether *B. subtilis* co-cultured with basalt could reconstitute a spore-inducing
322 medium from a medium that normally cannot trigger *Bacillus* sporulation. We hypothesized that
323 MP2 and Δ *spoIIE* can weather basalt to release basalt-associated metals, to then trigger
324 sporulation. To determine if the interaction between *B. subtilis* and basalt could generate
325 weathering products (i.e., Ca^{2+} , $\text{Fe}^{2/3+}$, K^+ , Mg^{2+} , and Mn^{2+}) capable of triggering sporulation in
326 other cells, we assessed cell-free supernatants generated from Δ *spoIIE* grown in the presence and
327 absence of basalt.

328

329 MP2 and Δ *spoIIE* grew to similar cell densities ($\sim 10^7$ CFU/ml) across all three media treatments,
330 indicating that growth was not limited by nutrient depletion in the spent media (Figure 4, purple).
331 In fresh nutrient broth (NB) and spent nutrient broth lacking basalt (-BA Spent NB), MP2 exhibited
332 minimal sporulation (approximately 10^2 - 10^3 spores/ml). Strikingly, MP2 grown in spent nutrient
333 broth derived from Δ *spoIIE* cultured in the presence of basalt (+BA Spent NB) showed a drastic
334 and significant ($p < 0.01$) increase in spore CFUs (Figure 4). This increase in spore counts
335 corresponded to a sporulation efficiency of approximately 60%. As expected, we were unable to
336 recover or detect any Δ *spoIIE* spores under any of the conditions tested. Together, these findings
337 suggest that Δ *spoIIE* and MP2 can weather silicates to release soluble metal ions (Ca^{2+} , $\text{Fe}^{2/3+}$,
338 Mn^{2+} , as well as other silicate-derived metals) into the surrounding medium, and these metals can
339 induce sporulation in *B. subtilis* (Figures 2, 3, and 4).

340

341 **3.5. Basalt surfaces incubated with MP1 and MP2 reveal feldspar twinning and are heavily**
342 **populated with *Bacillus* spores.**

343 After demonstrating the positive effects of MP1 and MP2 on basalt dissolution by measuring
344 soluble calcium and sporulation efficiencies as proxies, we next examined whether the apparent
345 weathering activity could manifest observable changes to basalt surfaces. To demonstrate this
346 potential effect, we conducted scanning electron microscopy (SEM) analyses on polished basalt
347 surfaces. In the absence of microbes, the uninoculated control (UTC) exhibited no microbial
348 colonization (Figure 5 and Supplemental Figure S5). In contrast, basalt incubated with MP1 and
349 MP2 were heavily colonized (Figure 5 and Supplemental Figure S5). Interestingly, no colonization
350 was observed when the basalt was cultured with Δ spoIIE (Figure 5, ‘ Δ spoIIE’). Although Δ spoIIE
351 cells were not detected on basalt surfaces, viable cell counts were recovered after the 30-day
352 incubation period (Supplemental Table S3). Δ spoIIE’s absence in these micrographs likely reflects
353 differences in developmental stages (discussed later).

354

355 Upon closer examination of the cell morphologies at higher magnifications (2000x and 4000x),
356 the basalt rocks were heavily populated with ovoid structures approximately 1 μ m in length (Figure
357 5). The size and shape of these structures are consistent with *Bacillus subtilis* spores. In line with
358 our datasets, approximately 10^7 spores/ml were recovered from MP1 and MP2 after the 30-day
359 incubation (Supplemental Table S3). No spores were recovered from Δ spoIIE under these
360 conditions. Interestingly, vegetative Δ spoIIE cells were also visually absent from the micrographs.
361 It is possible the heat-labile Δ spoIIE were unable to survive the long incubation period (30 days)
362 and/or the drying and downstream SEM sample preparation processes. Furthermore, it is also
363 possible that *Bacillus* spores have additional adhesion factors that allow them to attach to and
364 retain onto the basalt disks, whereas vegetative cells cannot.

365

366 Evidence of silicate weathering can often manifest as micropitting or etching on mineral surfaces
367 (Lybrand et al., 2019; Song et al., 2007, 2010). As expected, we were unable to find evidence of
368 weathering in our UTC sample, as pitting and etching were visually absent, and the mineral
369 surfaces remained smooth. In contrast, we observed structured, striation-like features on the
370 surfaces of the basalt disks incubated with MP1, MP2, and $\Delta spoIIE$ (Figure 5, red arrows). These
371 features are likely twinning of feldspar minerals within the basalt rock, a phenomenon related to
372 geometric crystalline growth. The presence and greater abundance of these features relative to the
373 UTC sample suggests enhanced mineral dissolution driven by the microbes.

374

375 **4. DISCUSSION**

376 The positive effects of microbes on feldspar weathering prompted us to evaluate whether a similar
377 phenomenon would occur with basaltic rocks. Importantly, the relatively high abundance,
378 widespread availability, and capacity of basalt to release divalent cations relevant to carbon
379 dioxide removal make it an attractive candidate for EW practices. To examine the effect of *B.*
380 *subtilis* environmental isolates MP1 and MP2 on basalt weathering, we utilized a similar
381 weathering screen as previously described (Timmermann et al., 2025). In uninoculated controls
382 containing basalt, calcium concentrations gradually increased, which we attributed to abiotic
383 dissolution and, potentially, the release of readily accessible surface ions. In contrast, MP1 and
384 MP2, when co-cultured with basalt, solubilized and released three- to four-fold more calcium in
385 comparison to uninoculated controls, indicating a substantial microbial enhancement of basalt
386 dissolution.

387

388 Silicate weathering is widely recognized as a pH-dependent process (Brady & Walther, 1989;
389 Hartmann et al., 2013; White & Brantley, 2003). Across all conditions tested, MP1, MP2, and
390 Δ spoIIE initially decreased the media pH by day 1, independent of substrate type or substrate
391 addition. However, in the presence of basalt, the cultures exhibited a very subtle decrease in pH,
392 relative to cultures lacking substrate, which could be partially attributed to basalt acting as a sink
393 for H⁺. Silicate weathering, which consumes protons and thus raises pH, led to the release of base
394 cations and alkalinity. As previously observed during feldspar weathering, we propose that these
395 pH dynamics are also exaggerated and driven by microbial metabolism in response to cation-
396 bearing silicate substrates and serve to promote mineral dissolution (Timmermann et al., 2025).
397 Accordingly, both MP1 and MP2 enhanced the dissolution of basalt and the release of calcium
398 above abiotic levels, which is consistent with microbially-mediated silicate weathering.

399

400 During silicate dissolution, the concentration of soluble metals and base cations is expected to
401 increase over time and remain elevated. We consistently observed a decline in soluble calcium on
402 or after day 2 with both anorthite and basalt during our *in vitro* weathering assays (Timmermann
403 et al., 2025). There are at least two potential mechanisms for this decrease: the precipitation of
404 carbonate minerals under alkaline conditions, and the uptake of calcium through cellular processes
405 (sporulation and biofilm formation). Sporulation in *Bacillus* species is known to require substantial
406 amounts of calcium and, in the presence of basalt, MP1 and MP2 exhibited significantly higher
407 spore counts despite similar total viable cell counts relative to the no-substrate controls. In contrast,
408 the Δ spoIIE-derivative of MP2 maintained comparable vegetative cell growth in the presence of
409 basalt but was unable to form heat-resistant spores and did not exhibit a decrease in soluble
410 calcium. These observations indicated that sporulation contributes to calcium depletion during

411 basalt weathering, although it is unlikely to be the sole sink for released calcium. Indeed, calcium
412 incorporated into spores accounted for only ~10% of the total calcium released, suggesting that
413 the majority of the weathered-derived cations remain available for downstream geochemical
414 processes, including carbonate and bicarbonate formation relevant to CDR strategies.

415

416 Having identified sporulation as a relevant sink for calcium during basalt weathering, we next
417 investigated whether sporulation could serve as a physiological proxy for silicate weathering in a
418 defined medium. Soluble calcium measurements provide useful geochemical evidence for
419 weathering activity but have some limitations. First, geochemical evidence does not provide
420 insight into the physiological responses of microbial cells to mineral-derived metals and, second,
421 they cannot discriminate between weathering of silicate versus non-silicate minerals (e.g., calcium
422 carbonates). Using alternative mineral substrates, we demonstrated that although MP1 and MP2
423 were capable of liberating calcium from dolomite, sporulation was not induced, indicating that
424 calcium and magnesium alone are insufficient to trigger this developmental response. Furthermore,
425 cell-free spent media generated from Δ spoIIE cultures incubated with basalt strongly induced MP2
426 sporulation, whereas spent media derived from Δ spoIIE grown without basalt had no such effect.
427 These findings confirm that Δ spoIIE was able to weather basalt and extract key elements such as
428 Mn²⁺ and Fe^{2/3+} for the induction of sporulation, and Ca²⁺ for the formation of mature spores in *B.*
429 *subtilis*. Our findings suggest soluble products of basalt weathering can trigger sporulation and
430 that sporulation may serve as a complementary indicator for silicate weathering by *Bacillus*.

431

432 The soluble calcium measurements and presence of microbial spores under basalt treatment
433 provided complementary geochemical and physiological evidence for microbial-mediated

434 weathering of basalt. We therefore investigated whether this activity could also be accompanied
435 by detectable physical changes to basalt surfaces. Twinning is a characteristic crystalline structure
436 that can commonly occur in feldspar minerals and is formed from the intergrowth of two or more
437 crystal lattices (Lee et al., 1998; Parsons et al., 2015). As these crystalline structures exist naturally
438 within feldspars, we hypothesized that the dissolution of silicate minerals through weathering
439 processes could expose underlying twinning structures. SEM analyses of basalt disks treated with
440 MP1, MP2, and $\Delta spoIIE$ revealed prominent striation-like features that are consistent with feldspar
441 twinning. Importantly, these features were conspicuously absent from uninoculated controls. The
442 prevalence of twinning in the microbe-treated samples likely reflects overall mineral dissolution
443 enhanced by the microbes. Thus, while twinning features are likely present in the original silicate
444 rock samples, the increased visibility of these features in the presence of microbes is consistent
445 with microbially-mediated weathering of basalt.

446

447 Collectively, these findings establish *Bacillus subtilis* MP1 and MP2 as active and effective
448 biological agents capable of enhancing basalt weathering under controlled *in vitro* conditions.
449 Beyond increased cation release, this work identifies sporulation as a sensitive physiological proxy
450 for microbial access to mineral-derived metals and extends prior observations of microbially-
451 mediated feldspar weathering to compositionally-complex and environmentally-relevant basalt
452 rocks. The ability of *Bacillus* species to integrate mineral dissolution products into developmental
453 processes highlights a tight coupling between microbial physiology and environmental
454 geochemistry.

455

456 Future work should focus on identifying specific chemical species, biomolecules, and molecular
457 mechanisms that mediate basalt dissolution by *Bacillus*. This information will be critical for
458 understanding how these processes operate in soils and other natural environments. Determining
459 how microbial physiology, mineral composition, and environmental conditions interact to regulate
460 weathering rates will help guide biologically informed strategies for enhancing silicate weathering.
461 Ultimately, integrating microbial processes into enhanced weathering frameworks (e.g., Yang et
462 al., 2026) may provide a scalable and mechanistically grounded approach for accelerating carbon
463 dioxide removal through microbially-mediated silicate dissolution.

464

465 **ACKNOWLEDGMENTS**

466 We thank John L. Grimsich at the University of California, Berkeley's Earth and Planetary Science
467 Department (EPS) for their help preparing and processing the basalt disks, and for their expertise
468 and technical support on the JEOL JSM IT800HL Scanning Electron Microscope. We also thank
469 Marjorie Schulz for their advice interpreting SEM images and Corey R. Lawrence for their
470 biogeochemical advice and feedback on the manuscript.

471

472 **AUTHOR CONTRIBUTIONS**

473 CY designed, planned, and managed the experiments. CY, KS, and AK performed the experiments
474 and collected samples and data. TT, CY, PDW performed statistical analyses. CY, PDW, and TT
475 wrote the first draft of the manuscript. GAFM and TT acquired funding for this study. All authors
476 read, edited, and approved the final manuscript.

477

478 **CONFLICTS OF INTEREST**

479 The authors declare potential competing interests as follows: Christopher Yip, Kira Stonkevitch,
480 Abigail Knecht, Philip D. Weyman, Tania Timmermann, and Gonzalo A. Fuenzalida-Meriz are
481 employed by Andes Ag Inc., the company that funded this study.

482

483 **REFERENCES**

484 Ahmed, E., & Holmström, S. J. M. (2014). Siderophores in environmental research: roles and
485 applications. *Microbial Biotechnology*, 7(3), 196–208. [https://doi.org/10.1111/1751-
486 7915.12117](https://doi.org/10.1111/1751-7915.12117)

487 Basak, B. B., & Biswas, D. R. (2009). Influence of potassium solubilizing microorganism
488 (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass
489 (Sorghum vulgare Pers.) grown under two Alfisols. *Plant and Soil*, 317(1–2), 235–255.
490 <https://doi.org/10.1007/s11104-008-9805-z>

491 Brady, P. V., & Walther, J. V. (1989). Controls on silicate dissolution rates in neutral and basic
492 pH solutions at 25°C. *Geochimica et Cosmochimica Acta*, 53(11), 2823–2830.
493 [https://doi.org/10.1016/0016-7037\(89\)90160-9](https://doi.org/10.1016/0016-7037(89)90160-9)

494 Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., & Balashov, V. N. (2023). How temperature-
495 dependent silicate weathering acts as Earth's geological thermostat. *Science*, 379(6630),
496 382–389. <https://doi.org/10.1126/science.add2922>

497 Brooks, K. (2022). Rocks explained 2: Basalt. *Geology Today*, 38(6), 236–242.
498 <https://doi.org/10.1111/gto.12414>

499 Dietzen, C., Harrison, R., & Michelsen-Correa, S. (2018). Effectiveness of enhanced mineral
500 weathering as a carbon sequestration tool and alternative to agricultural lime: An incubation

501 experiment. *International Journal of Greenhouse Gas Control*, 74, 251–258.

502 <https://doi.org/10.1016/j.ijggc.2018.05.007>

503 Finlay, R. D., Mahmood, S., Rosenstock, N., Bolou-Bi, E. B., Köhler, S. J., Fahad, Z., Rosling,

504 A., Wallander, H., Belyazid, S., Bishop, K., & Lian, B. (2020). Reviews and syntheses:

505 Biological weathering and its consequences at different spatial levels – from nanoscale to

506 global scale. *Biogeosciences*, 17(6), 1507–1533. <https://doi.org/10.5194/bg-17-1507-2020>

507 Goll, D. S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S., Hartmann, J., Janssens, I.,

508 Li, W., Obersteiner, M., Penuelas, J., Tanaka, K., & Vicca, S. (2021). Potential CO₂

509 removal from enhanced weathering by ecosystem responses to powdered rock. *Nature*

510 *Geoscience*, 14(8), 545–549. <https://doi.org/10.1038/s41561-021-00798-x>

511 Granger, A. C., Gaidamakova, E. K., Matrosova, V. Y., Daly, M. J., & Setlow, P. (2011). Effects

512 of Mn and Fe Levels on *Bacillus subtilis* Spore Resistance and Effects of Mn²⁺, Other

513 Divalent Cations, Orthophosphate, and Dipicolinic Acid on Protein Resistance to Ionizing

514 Radiation. *Applied and Environmental Microbiology*, 77(1), 32–40.

515 <https://doi.org/10.1128/AEM.01965-10>

516 Han, X., Shen, Y., Sun, L., Shen, J., Mao, Y., Fan, K., Wang, S., Ding, Z., & Wang, Y. (2025).

517 Phyllospheric application of *Bacillus mucilaginosus* mediates the recovery of tea plants

518 exposed to low-temperature stress by alteration of leaf endophytic community and plant

519 physiology. *BMC Microbiology*, 25(1), 177. <https://doi.org/10.1186/s12866-025-03880-1>

520 Hartmann, J., West, A. J., Renforth, P., Köhler, P., De La Rocha, C. L., Wolf-Gladrow, D. A.,

521 Dürr, H. H., & Scheffran, J. (2013). Enhanced chemical weathering as a geoengineering

522 strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean

523 acidification. *Reviews of Geophysics*, 51(2), 113–149. <https://doi.org/10.1002/rog.20004>

524 Hasemer, H., Borevitz, J., & Buss, W. (2024). Measuring enhanced weathering: inorganic
525 carbon-based approaches may be required to complement cation-based approaches.
526 *Frontiers in Climate*, 6. <https://doi.org/10.3389/fclim.2024.1352825>

527 Holzer, I. O., Nocco, M. A., & Houlton, B. Z. (2023). Direct evidence for atmospheric carbon
528 dioxide removal via enhanced weathering in cropland soil. *Environmental Research
529 Communications*, 5(10), 101004. <https://doi.org/10.1088/2515-7620/acfd89>

530 Hoover, S. E., Xu, W., Xiao, W., & Burkholder, W. F. (2010). Changes in DnaA-Dependent
531 Gene Expression Contribute to the Transcriptional and Developmental Response of *Bacillus*
532 *subtilis* to Manganese Limitation in Luria-Bertani Medium. *Journal of Bacteriology*,
533 192(15), 3915–3924. <https://doi.org/10.1128/JB.00210-10>

534 Kantola, I. B., Blanc-Betes, E., Masters, M. D., Chang, E., Marklein, A., Moore, C. E., von
535 Haden, A., Bernacchi, C. J., Wolf, A., Epiphov, D. Z., Beerling, D. J., & DeLucia, E. H.
536 (2023). Improved net carbon budgets in the <scp>US</scp> Midwest through direct
537 measured impacts of enhanced weathering. *Global Change Biology*, 29(24), 7012–7028.
538 <https://doi.org/10.1111/gcb.16903>

539 Larkin, C. S., Andrews, M. G., Pearce, C. R., Yeong, K. L., Beerling, D. J., Bellamy, J.,
540 Benedick, S., Freckleton, R. P., Goring-Harford, H., Sadekar, S., & James, R. H. (2022).
541 Quantification of CO₂ removal in a large-scale enhanced weathering field trial on an oil
542 palm plantation in Sabah, Malaysia. *Frontiers in Climate*, 4.
543 <https://doi.org/10.3389/fclim.2022.959229>

544 Lee, M. R., Hodson, M. E., & Parsons, I. (1998). The role of intragranular microtextures and
545 microstructures in chemical and mechanical weathering: direct comparisons of

546 experimentally and naturally weathered alkali feldspars. *Geochimica et Cosmochimica*
547 *Acta*, 62(16), 2771–2788. [https://doi.org/10.1016/S0016-7037\(98\)00200-2](https://doi.org/10.1016/S0016-7037(98)00200-2)

548 Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L., Yeong, K. L.,
549 Davies, K., Nelson, P. N., Bird, M. I., Kantola, I. B., Masters, M. D., DeLucia, E., Leake, J.
550 R., Banwart, S. A., & Beerling, D. J. (2021). Effects of mineralogy, chemistry and physical
551 properties of basalts on carbon capture potential and plant-nutrient element release via
552 enhanced weathering. *Applied Geochemistry*, 132, 105023.
553 <https://doi.org/10.1016/j.apgeochem.2021.105023>

554 Li, L., Jin, J., Hu, H., Deveau, I. F., Foley, S. L., & Chen, H. (2022). Optimization of sporulation
555 and purification methods for sporicidal efficacy assessment on *Bacillus* spores. *Journal of*
556 *Industrial Microbiology and Biotechnology*, 49(4). <https://doi.org/10.1093/jimb/kuac014>

557 Lybrand, R. A., Austin, J. C., Fedenko, J., Gallery, R. E., Rooney, E., Schroeder, P. A.,
558 Zaharescu, D. G., & Qafoku, O. (2019). A coupled microscopy approach to assess the nano-
559 landscape of weathering. *Scientific Reports*, 9(1), 5377. [https://doi.org/10.1038/s41598-019-41357-0](https://doi.org/10.1038/s41598-019-
560 41357-0)

561 Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and
562 Biogeochemical Processes. *Reviews of Geophysics*, 58(3).
563 <https://doi.org/10.1029/2019RG000681>

564 Mo, B., & Lian, B. (2011). Interactions between *Bacillus mucilaginosus* and silicate minerals
565 (weathered adamellite and feldspar): Weathering rate, products, and reaction mechanisms.
566 *Chinese Journal of Geochemistry*, 30(2), 187–192. [https://doi.org/10.1007/s11631-011-0500-z](https://doi.org/10.1007/s11631-011-
567 0500-z)

568 Monger, H. C., Kraimer, R. A., Khresat, S., Cole, D. R., Wang, X., & Wang, J. (2015).
569 Sequestration of inorganic carbon in soil and groundwater. *Geology*, 43(5), 375–378.
570 <https://doi.org/10.1130/G36449.1>

571 Nishikawa, M., & Kobayashi, K. (2021). Calcium Prevents Biofilm Dispersion in *Bacillus*
572 *subtilis*. *Journal of Bacteriology*, 203(14). <https://doi.org/10.1128/JB.00114-21>

573 Paidhungat, M., Setlow, B., Driks, A., & Setlow, P. (2000). Characterization of Spores of
574 *Bacillus subtilis* Which Lack Dipicolinic Acid. *Journal of Bacteriology*, 182(19), 5505–
575 5512. <https://doi.org/10.1128/JB.182.19.5505-5512.2000>

576 Parsons, I., Fitz Gerald, J. D., & Lee, M. R. (2015). Routine characterization and interpretation
577 of complex alkali feldspar intergrowths. *American Mineralogist*, 100(5–6), 1277–1303.
578 <https://doi.org/10.2138/am-2015-5094>

579 Ribeiro, I. D. A., Volpiano, C. G., Vargas, L. K., Granada, C. E., Lisboa, B. B., & Passaglia, L.
580 M. P. (2020). Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in
581 Crops: A Review. *Frontiers in Plant Science*, 11. <https://doi.org/10.3389/fpls.2020.590774>

582 Sanderman, J. (2012). Can management induced changes in the carbonate system drive soil
583 carbon sequestration? A review with particular focus on Australia. *Agriculture, Ecosystems*
584 & *Environment*, 155, 70–77. <https://doi.org/10.1016/j.agee.2012.04.015>

585 Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A. (2021).
586 Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence
587 identification. *Microbial Genomics*, 7(11). <https://doi.org/10.1099/mgen.0.000685>

588 Sheng, X. F. (2005). Growth promotion and increased potassium uptake of cotton and rape by a
589 potassium releasing strain of *Bacillus edaphicus*. *Soil Biology and Biochemistry*, 37(10),
590 1918–1922. <https://doi.org/10.1016/j.soilbio.2005.02.026>

591 Sinnelä, M. T., Pawluk, A. M., Jin, Y. H., Kim, D., & Mah, J.-H. (2021). Effect of Calcium and
592 Manganese Supplementation on Heat Resistance of Spores of *Bacillus* Species Associated
593 With Food Poisoning, Spoilage, and Fermentation. *Frontiers in Microbiology*, 12.
594 <https://doi.org/10.3389/fmicb.2021.744953>

595 Song, W., Ogawa, N., Oguchi, C. T., Hatta, T., & Matsukura, Y. (2007). Effect of *Bacillus*
596 *subtilis* on granite weathering: A laboratory experiment. *CATENA*, 70(3), 275–281.
597 <https://doi.org/10.1016/j.catena.2006.09.003>

598 Song, W., Ogawa, N., Takashima-Oguchi, C., Hatta, T., & Matsukura, Y. (2010). Laboratory
599 experiments on bacterial weathering of granite and its constituent minerals.
600 *Géomorphologie : Relief, Processus, Environnement*, 16(4), 327–336.
601 <https://doi.org/10.4000/geomorphologie.8038>

602 Štyriaková, I., Štyriak, I., & Oberhänsli, H. (2012). Rock weathering by indigenous heterotrophic
603 bacteria of *Bacillus* spp. at different temperature: a laboratory experiment. *Mineralogy and*
604 *Petrology*, 105(3–4), 135–144. <https://doi.org/10.1007/s00710-012-0201-2>

605 Timmermann, T., Yip, C., Yang, Y., Wemmer, K. A., Chowdhury, A., Dores, D., Takayama, T.,
606 Nademanee, S., Traag, B. A., Zamanian, K., González, B., Breecker, D. O., Fierer, N.,
607 Slessarev, E. W., & Fuenzalida-Meriz, G. A. (2025). Harnessing Microbes to Weather
608 Native Silicates in Agricultural Soils for Scalable Carbon Dioxide Removal. *Global Change*
609 *Biology*, 31(5). <https://doi.org/10.1111/gcb.70216>

610 Trapp-Müller, G., Caves Rugenstein, J., Conley, D. J., Geilert, S., Hagens, M., Hong, W.-L.,
611 Jeandel, C., Longman, J., Mason, P. R. D., Middelburg, J. J., Milliken, K. L., Navarre-
612 Sitchler, A., Planavsky, N. J., Reichart, G.-J., Slomp, C. P., Sluijs, A., van Hinsbergen, D. J.

613 J., & Zhang, X. Y. (2025). Earth's silicate weathering continuum. *Nature Geoscience*,
614 18(8), 691–701. <https://doi.org/10.1038/s41561-025-01743-y>

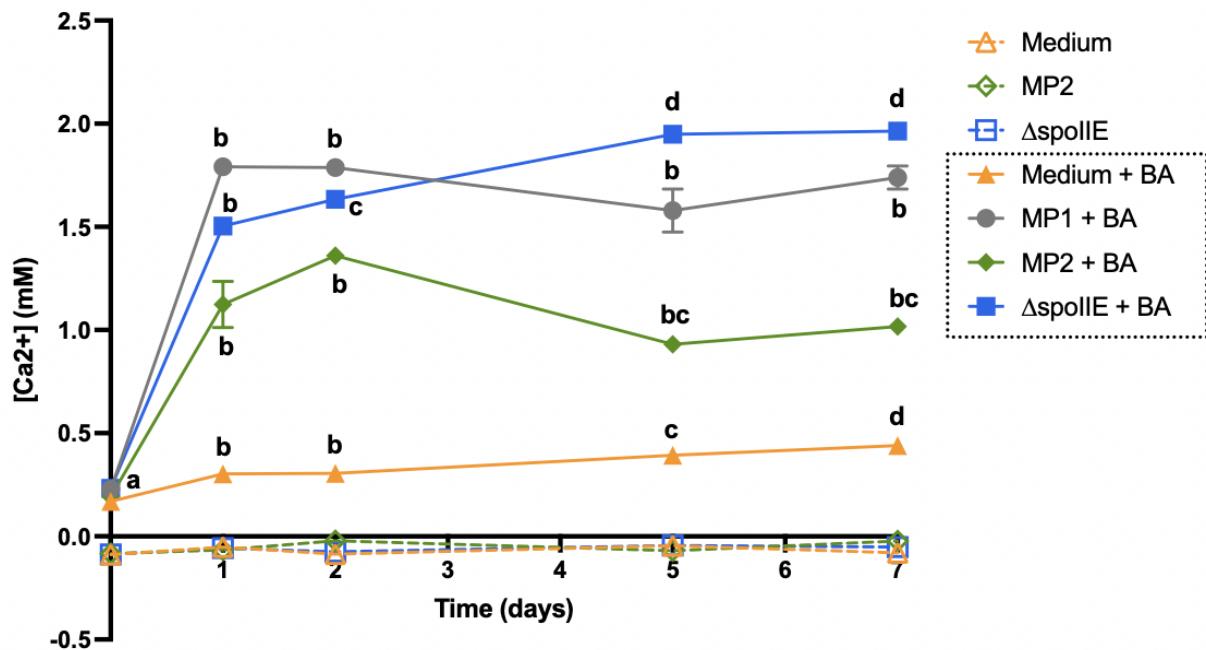
615 Uroz, S., Calvaruso, C., Turpault, M.-P., & Frey-Klett, P. (2009). Mineral weathering by
616 bacteria: ecology, actors and mechanisms. *Trends in Microbiology*, 17(8), 378–387.
617 <https://doi.org/10.1016/j.tim.2009.05.004>

618 Vicca, S., Goll, D. S., Hagens, M., Hartmann, J., Janssens, I. A., Neubeck, A., Peñuelas, J.,
619 Poblador, S., Rijnders, J., Sardans, J., Struyf, E., Swoboda, P., van Groenigen, J. W.,
620 Vienne, A., & Verbruggen, E. (2022). Is the climate change mitigation effect of enhanced
621 silicate weathering governed by biological processes? *Global Change Biology*, 28(3), 711–
622 726. <https://doi.org/10.1111/gcb.15993>

623 Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the
624 long-term stabilization of Earth's surface temperature. *Journal of Geophysical Research: Oceans*, 86(C10), 9776–9782. <https://doi.org/10.1029/JC086iC10p09776>

625 Weinberg, E. D. (1964). Manganese Requirement for Sporulation and Other Secondary
626 Biosynthetic Processes of Bacillus. *Applied Microbiology*, 12(5), 436–441.
627 <https://doi.org/10.1128/am.12.5.436-441.1964>

628 White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals:
629 why do weathering rates differ in the laboratory and field? *Chemical Geology*, 202(3–4),
630 479–506. <https://doi.org/10.1016/j.chemgeo.2003.03.001>

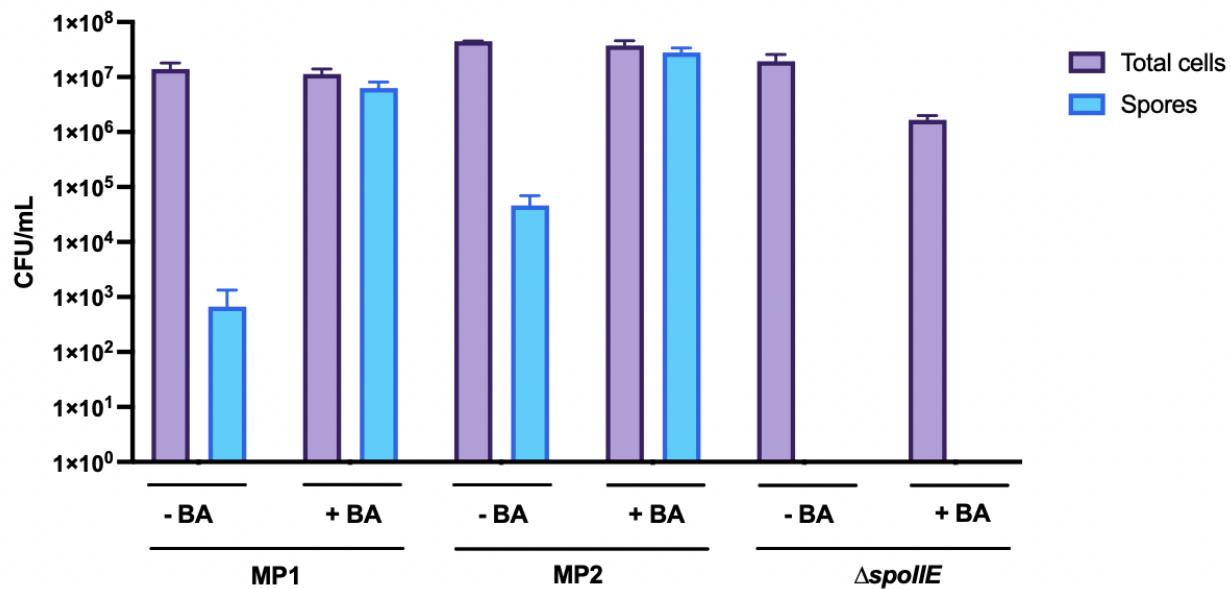

631 Wild, B., Gerrits, R., & Bonneville, S. (2022). The contribution of living organisms to rock
632 weathering in the critical zone. *Npj Materials Degradation*, 6(1), 98.
633 <https://doi.org/10.1038/s41529-022-00312-7>

635 Wilson, M. J. (2004). Weathering of the primary rock-forming minerals: processes, products and
 636 rates. *Clay Minerals*, 39(3), 233–266. <https://doi.org/10.1180/0009855043930133>

637 Yang, Y., Bueno de Mesquita, C. P., Lawrence, C. R., Weyman, P. D., Dores, D., Timmermann,
 638 T., Fierer, N., & Fuenzalida-Meriz, G. A. (2026). Synergistic Effects of a Microbial
 639 Amendment and Crushed Basalt: Soil Geochemical and Microbial Responses. *Global
 640 Change Biology*, 32(1). <https://doi.org/10.1111/gcb.70705>

641

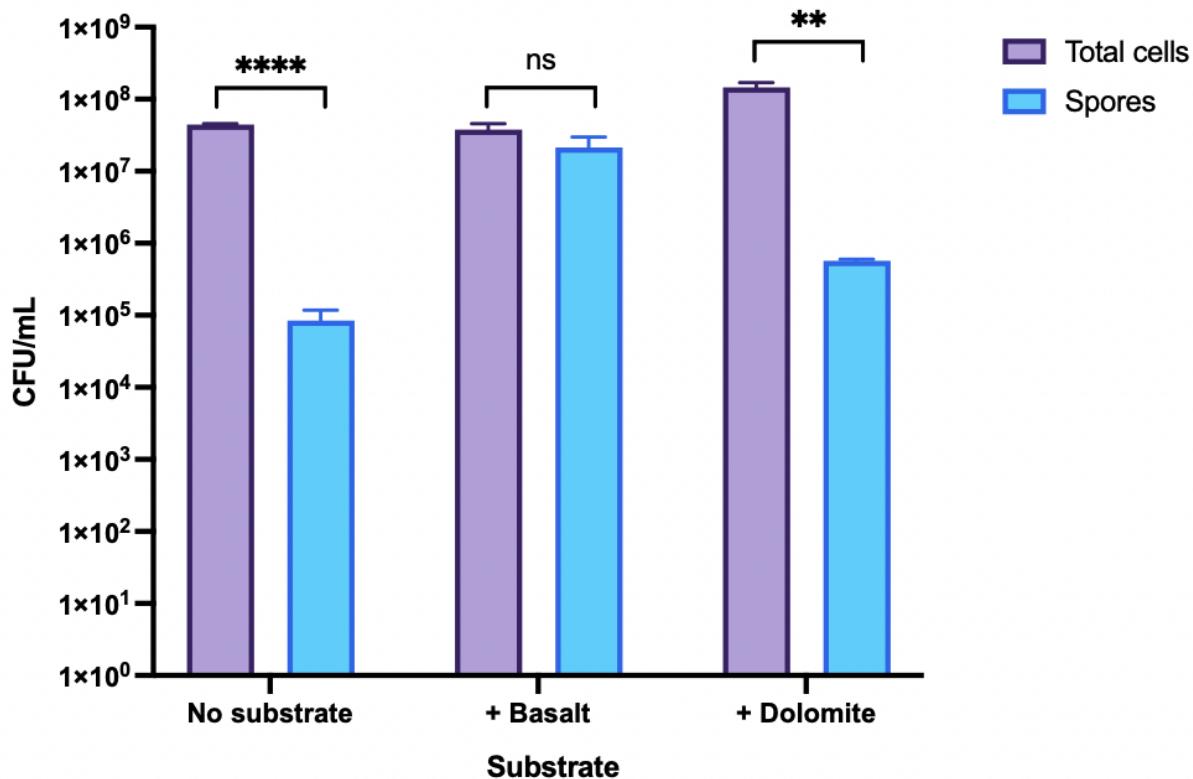
642 **MAIN FIGURES AND TABLES**


643

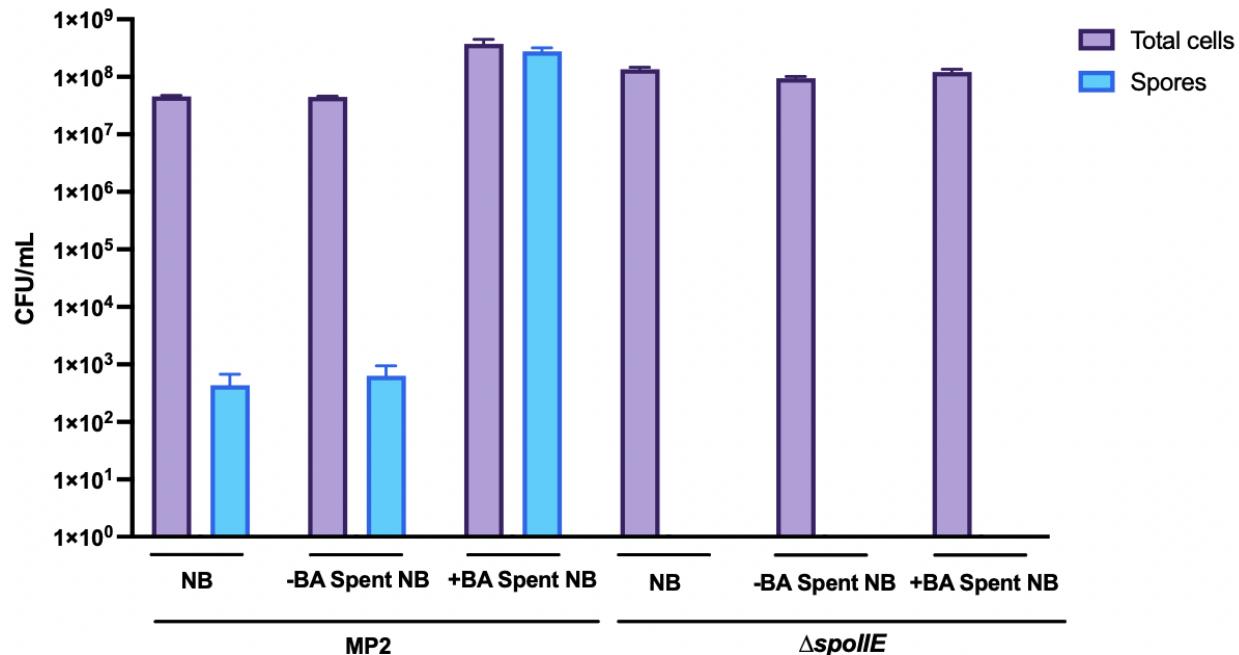
644 **Figure 1. Calcium release during *in vitro* weathering of basalt by *Bacillus subtilis* strains.**

645 MP1 (gray circles), MP2 (green diamonds), and a Δ spoIIE mutant (blue squares) were cultured in
 646 mB4-1 medium with or without basalt (BA) for seven days. Soluble calcium concentrations were
 647 quantified at the indicated time points. Data represent the mean +/- SE from biological replicates
 648 (n=3). One-way ANOVA and Tukey's multiple comparisons test were performed within each

649 basalt treatment to determine significant differences among time points. Letters (a, b, c or d) above
650 each time point indicate statistically significant differences ($p < 0.05$).


651

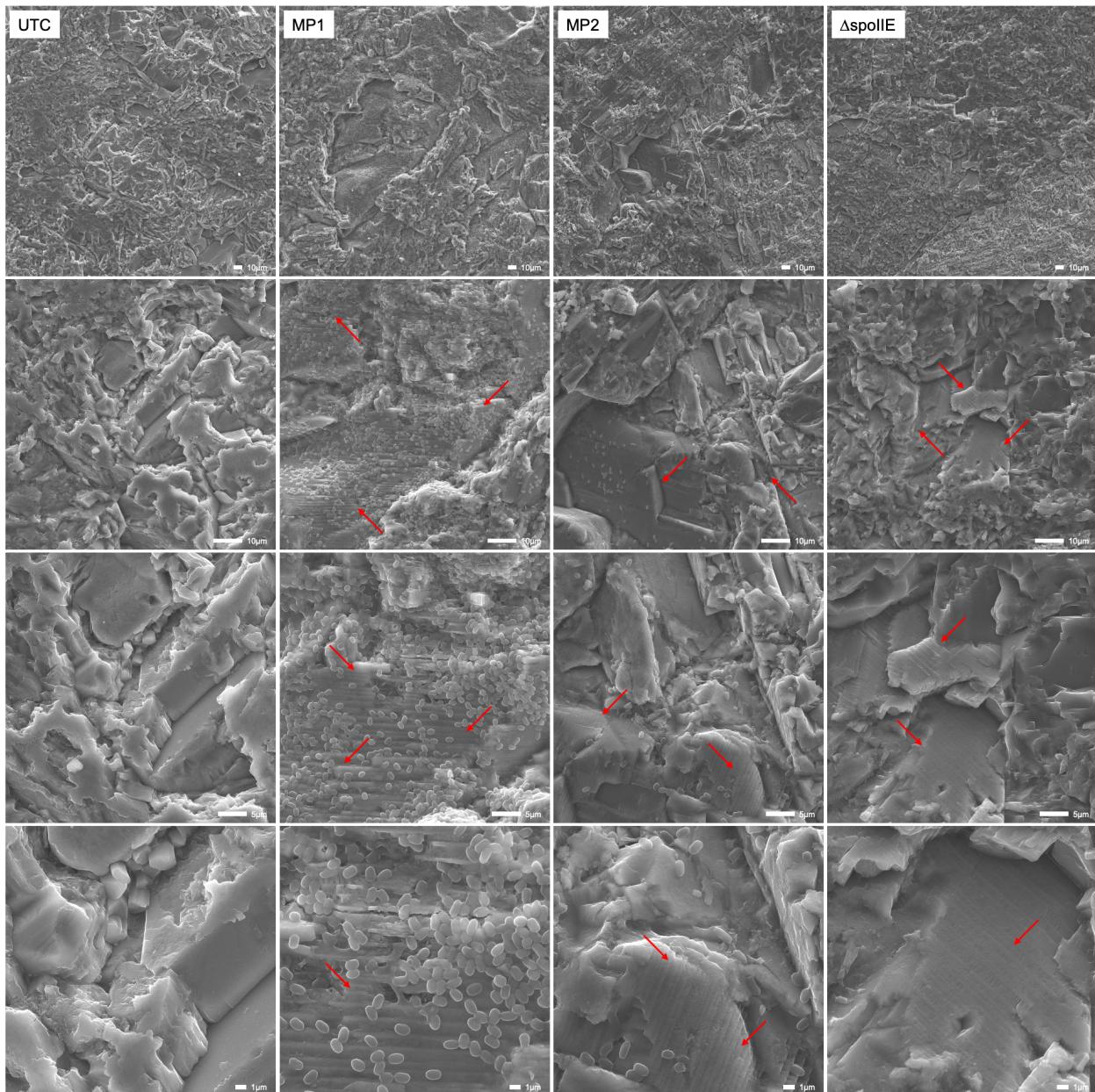
652


653 **Figure 2.** *Bacillus subtilis* strains MP1 and MP2 sporulate under *in vitro* weathering
654 conditions. Total viable cells (purple bars) and spores (blue bars) were enumerated from 3-day
655 cultures grown in mB4-1 medium in the presence (+BA) or absence of basalt (-BA). Data represent
656 the mean +/- SE from biological replicates (n=3).

657

658

659 **Figure 3. Sporulation of *Bacillus subtilis* MP2 in the presence of mineral substrates.** Total
 660 viable cells (purple bars) and spores (blue bars) were enumerated from 3-day MP2 cultures grown
 661 in mB4-1 medium with or without basalt or dolomite. Data represent the mean +/- SE from
 662 biological replicates (n=3). Asterisks above each bar indicate statistically significant differences
 663 (unpaired t-test, ns: not significant, ** p < 0.01, **** p < 0.0001).


664

665 **Figure 4. Soluble products from basalt incubated with ΔspoIIE can induce MP2 sporulation.**

666 ΔspoIIE was grown in nutrient broth in the presence (+BA) or absence (-BA) of basalt for 3 days,
 667 then the culture supernatants were filter-sterilized to generate spent media (Spent NB).
 668 Subsequently, MP2 and ΔspoIIE were cultured in fresh nutrient broth (NB), spent NB lacking
 669 basalt (-BA Spent NB), and spent NB with basalt (+BA Spent NB). The purple bars represent total
 670 cell CFU/ml and the blue bars represent total spore CFU/ml. ΔspoIIE produced no spores in any
 671 of the conditions tested. Data represents the mean +/- SE from biological replicates (n=3).

672

673

674

675 **Figure 5. Scanning electron micrographs of basalt surfaces following 30-day incubation with**
 676 ***B. subtilis* strains.** Uninoculated basalt disks (UTC) displayed smooth crystalline planes with no
 677 visible evidence of microbial colonization. In contrast, basalt surfaces incubated with MP1 and
 678 MP2 were densely populated with numerous ovoid spores, visible along striations/crystalline
 679 planes (red arrows). The striations closely resemble feldspar twinning, a phenomenon related to
 680 geometric crystal growth. Images were acquired at 300x (top row), 1000x (second row), 2000x

681 (third row), and 4000x (bottom row) magnification. Scale bars = 10 μm (top panel) and 1 μm
682 (bottom panel).

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

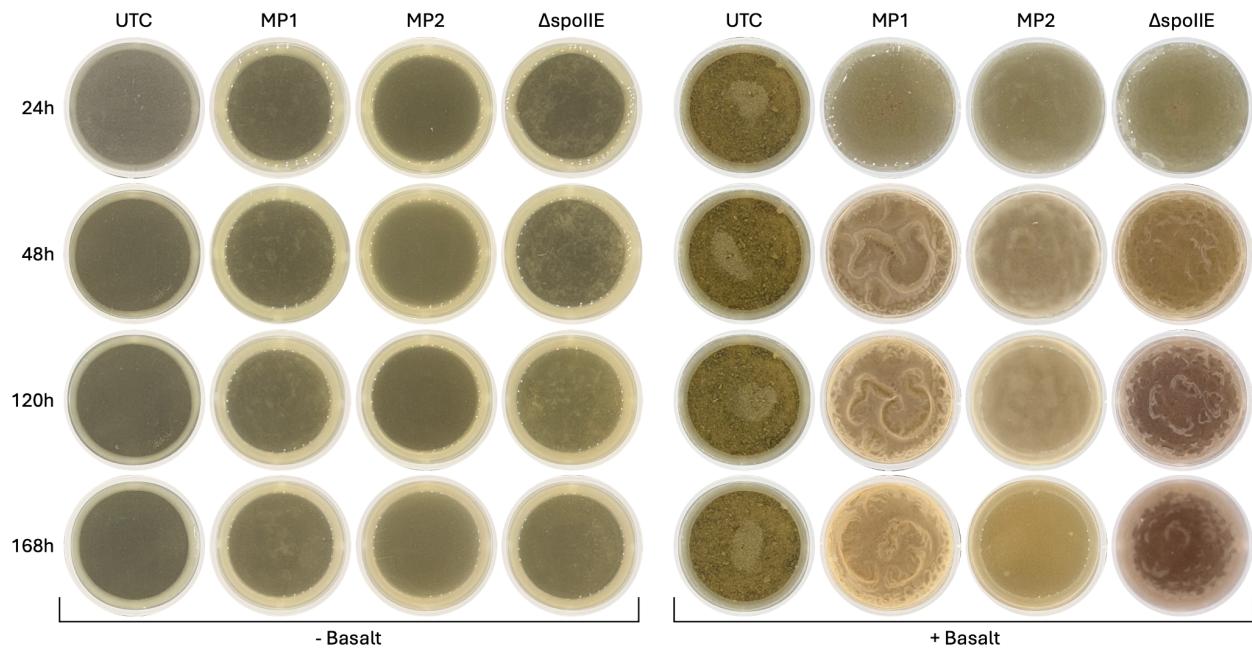
698

699

700

701

702


703

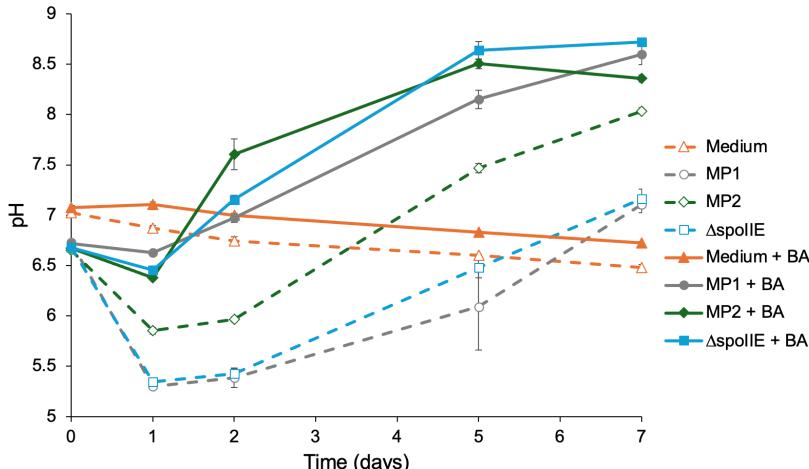
704

SUPPLEMENTARY INFORMATION

705

FIGURES AND TABLES

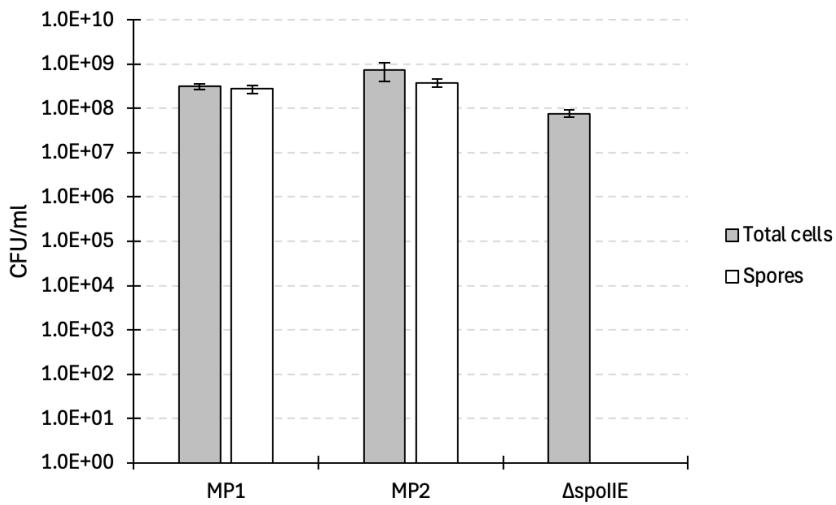
706


707 **Supplemental Figure S1. *Bacillus subtilis* MP1, MP2, and Δ spoIIE growth phenotypes in the**
708 **presence and absence of basalt.** Images of the weathering plates were captured from above at the

709 indicated timepoints. *Bacillus subtilis* MP1, MP2, and Δ spoIIE were cultured in mB4-1 in the

710 presence and absence of 50 mg basalt. In the presence of basalt, robust pellicle biofilms were

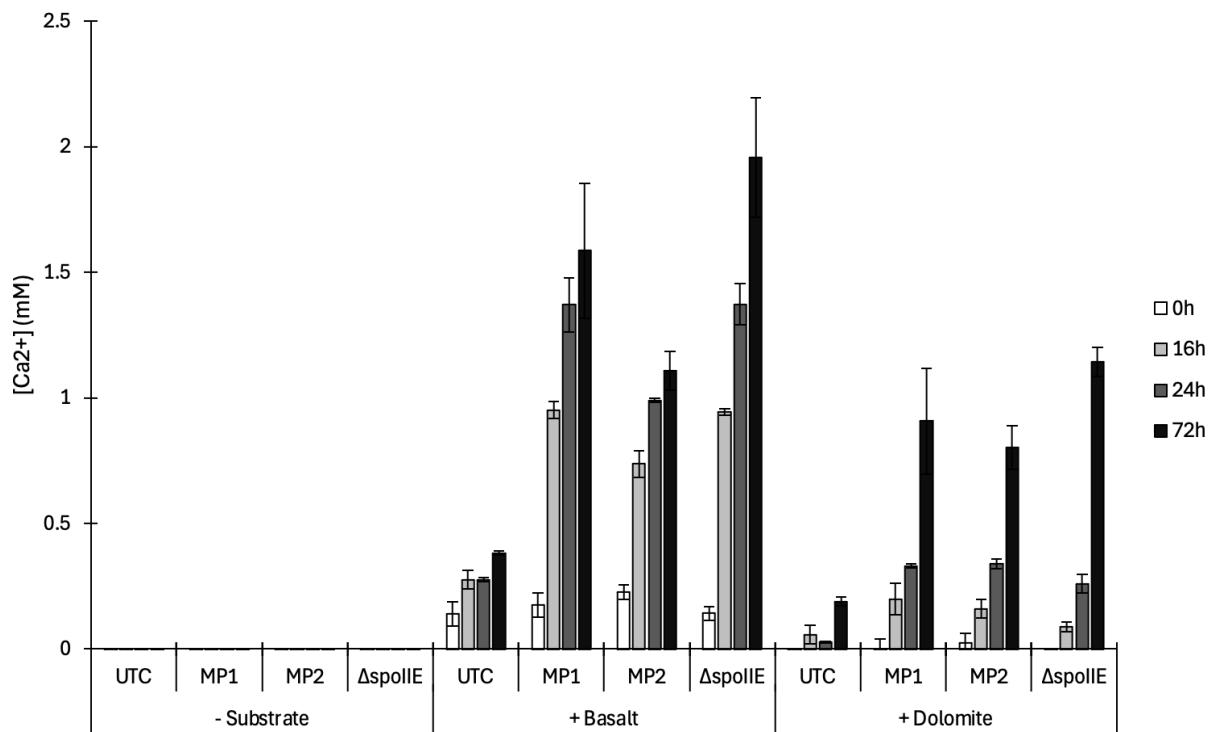
711 observed after 48-hours.


712

713

714 **Supplemental Figure S2. pH dynamics during *in vitro* weathering of basalt by *Bacillus***
 715 ***subtilis* strains.** MP1 (gray circles), MP2 (green diamonds), and a Δ *spoIIE* mutant (blue squares)
 716 were cultured in mB4-1 medium with or without (BA) for seven days. The pH of the cultures was
 717 measured at the indicated time points. Data represent the mean +/- SD from biological replicates
 718 (n=3).

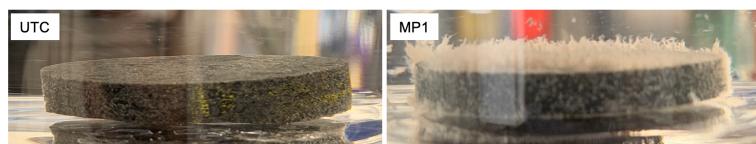
719



720

721 **Supplemental Figure S3. *Bacillus subtilis* strains Δ *spoIIE* is impaired in its ability to**
 722 **sporulate while the wild-type strains MP1 and MP2 are not.** Total cells and heat-resistant spore

723 counts after 2 days of incubation in a media that promotes sporulation (DSM). Data represent the
724 mean +/- SD from biological replicates (n=3).


725

726

727 **Supplemental Figure S4. Calcium release during *in vitro* weathering of basalt and dolomite**
728 **by *Bacillus subtilis* strains MP1, MP2, and ΔspoIIE.** MP1, MP2, and ΔspoIIE were cultured in
729 mB4-1 medium with or without basalt and dolomite for three days. Soluble calcium concentrations
730 were quantified at indicated timepoints. MP1, MP2, and ΔspoIIE released higher levels of calcium
731 in the presence of both basalt and dolomite. Data represent the mean +/- SD from biological
732 replicates (n=3).

733

734

735 **Supplemental Figure S5. Basalt disks after 30-day incubation.** Basalt disks resuspended in
736 dH₂O demonstrate dense colonization by MP1, a necessary condition for weathering, as evidenced
737 by the thick biofilm associated with the silicate rock. Biomass and exopolysaccharides associated
738 with biofilms are visually absent from the UTC sample.

739

Mineral	Basalt (%)
Quartz	9
K-Feldspar	0
Albite	0
Other Silicates	0
Pyroxene/Amphibole	28
Anorthite	63

740 **Table S1.** The mineral abundance of BrixBlend basalt was measured via semi-quantitative XRD.

741

Oxide	Basalt (%)
SiO ₂	49.1
TiO ₂	0.9
Al ₂ O ₃	13.0
FeO*	15.9
MnO	0.2
MgO	6.6
CaO	10.1

Na ₂ O	2.8
K ₂ O	0.5
P ₂ O ₅	0.0
LOI %	3.1

742 **Table S2.** Elemental abundance of major oxides in BrixBlend basalt measured by XRF. Loss-on-
 743 ignition (LOI) represents the mass of volatile compounds in the sample, including organic matter
 744 and structural water in clays. *Indicates total iron calculated as FeO.

745

Sample	Total Viable Cells (CFU/ml)	Total Spores (CFU/ml)	Sporulation Frequency (%)	Soluble Ca improvement over UTC (%)
UTC	0.00E+00	0.0E+00	0.0	
MP1	6.02E+07	5.1E+07	82.3	210.1
MP2	7.80E+07	3.7E+07	47.4	126.4
Δ _{spoIIIE}	6.91E+06	0.0E+00	0.0	109.7

746 **Table S3.** Total viable CFUs, spore CFUs, sporulation frequencies, and soluble calcium
 747 measurements from 30-day basalt weathering samples.